《数学物理方法》第七章_08-2008级

合集下载

数学物理方法第07章习题

数学物理方法第07章习题

第七章 习题答案7.1-1将Helmholtz 方程0=+∆u u λ在柱坐标系中分离变量。

解:01122222=+∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=+∆u zuu u u u λϕρρρρρλ 设)()()(),,(z Z R z u ϕφρϕρ=代入上面的方程有:0d d d d d d d d 22222=Φ+Φ+Φ+⎪⎪⎭⎫ ⎝⎛ΦZ R zZ R RZ R Z λϕρρρρρ 两边同时除以Z R Φ,并移项得:λϕρρρρρ--=ΦΦ+⎪⎪⎭⎫ ⎝⎛22222d d 1d d 1d d d d 1z ZZ R R 上式左边与z 无关,右边与ϕρ,无关,令左右两边都等于μ-,即: 右边为:0)(d d d d 12222=-+⇒-=--Z u zZ zZ z λμλ①而左边有:μϕρρρρρ-=ΦΦ+⎪⎪⎭⎫ ⎝⎛222d d 1d d d d 1R R 两边同时除以2ρ,并移项得:2222d d 1d d d d m R R =ΦΦ-=+⎪⎪⎭⎫ ⎝⎛ϕμρρρρρ0d d d d 1222222=Φ+Φ⇒=ΦΦ-m mϕϕ②和:22d d d d m R R =+⎪⎪⎭⎫⎝⎛μρρρρρ2222d d d d m R RR =+⎪⎪⎭⎫⎝⎛+μρρρρρ0d d 1d d 2222=⎪⎪⎭⎫⎝⎛-++R mRR ρμρρρ③Helmholtz 方程在柱坐标系下可分解为①②③三个常微分方程。

7.1-2 将三维热传导方程02=∆-∂∂u a tu 在球坐标系中分离变量。

解:02=∆-∂∂u a t u 在球坐标系中的表示式为:0sin 1sin sin 1122222222=⎥⎦⎤⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-∂∂ϕθθθθθu r u r r u r r r a t u设()()()ϕθψϕθ,,,,,⋅=t r R t r u ,代入上述方程有:()0sin sin sin 1,22222222=⎥⎦⎤⎢⎣⎡∂∂⋅+⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂⋅⋅-∂∂ϕψθθψθθθψϕθψr R r R r R r r r a t R方程两边同时除以22ra R ψ并移项有:222222sin 1sin sin 11ϕψθψθψθθθψ∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂-=∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂t RRar r R r r R 左右两边互不相关但相等,只能为常数,设为()1+l l 。

【免费下载】数学物理方法讲义

【免费下载】数学物理方法讲义

0

ih t
复数


ቤተ መጻሕፍቲ ባይዱ
h2 2m
x, y, z, t
1. 数的概念的扩充
正整数(自然数) 1,2,…
负数
整数

运算规则 +,-,×,÷, 2 ,
- 1 2 1
÷2
2
x2
0,-1,-2,…
…,-2,-1,0,1,2,…
2
y 2
1 0.5 1 0.333
有理数(分数) 整数、有限小数、无限循环小数
无理数 无限不循环小数
实 数 有理数、无理数
虚数 复数
2. 负数的运算符号
2 1.414
1 i yi
实数、虚数、实数+虚数
x2 1
x i
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数学物理方法电子教案第七章

数学物理方法电子教案第七章

第二篇 数学物理方程第七章数学物理定解问题在科学技术和生产实际中常常要求研究某个物理量(电场强度、电势、磁感应强度、声压、杂质浓度)在空间的某个区域的分布情况,以及它们怎样随着时间而变化。

这些问题中的自变数不仅有时间,而且还有空间坐标。

如波动微分方程222221t yu x y ∂∂=∂∂静电势的微分方程(Poisson 方程) 22222222,zy x ∂∂+∂∂+∂∂=∇-=∇其中ερϕ由Maxwell 方程组导出的平面电磁波波动微分方程222222200221,......t B u x B t E x E zz y y ∂∂=∂∂∂∂=∂∂εμ描述微观粒子运动规律的Schrödinger 方程()ϕϕϕr U mt i +∇-=∂∂222 弄清楚物理量在空间的分布规律和在时间中的变化规律,就是物理课程中的物理规律,它是解决物理问题的依据。

物理规律反映的是同一类物理现象的共同规律,即普遍性或共性。

解决具体问题时,还要考虑物理问题的个性。

要考虑所研究区域的边界条件(‘环境’)和初始条件(‘历史’)。

边界条件和初始条件在数学上合称为定解条件。

物理规律用数学的语言‘翻译’出来,就是物理量u 在空间和时间中的变化规律,换句话说,它是物理量u 在各个地点和各个时刻所取的值之间的联系。

物理规律用偏微分方程表达出来,叫做数学物理方程。

数学物理方程,作为同一类物理现象的共性,跟具体条件无关。

数学上叫泛定方程。

在给定的定解条件下求解数学物理方程,就叫做数学物理定解问题或简称为定解问题。

§7.1 数学物理方程的导出(一) 均匀弦的微小横振动有一根完全柔软的均匀弦,沿水平直线绷紧,而后以某种方法激发,使弦在同一平面上振动。

取弦的平衡位置为x 轴,且令端点坐标为x=0与x=l 。

设u(x,t)是坐标为x 的弦上一点在t 时刻的(横向)位移。

在弦上隔离出长为dx 的一小段(弦元)。

弦元足够小,可以把它看成是质点。

数学物理方法课件(北师大版)7

数学物理方法课件(北师大版)7

物质。
Q(x)
一、初始条件
• 在初始时刻给定物理量的分布:u(x,t)|t=0=φ(x). 表示t=0 时刻空间所有点的物理量的值是给定的。 • 由于多数运动方程含有对时间的二阶导数,因此我们还需 要知道初始时刻的“速度”分布,即物理量的一阶导数分 布值, ut(x,t)|t=0=ψ(x). • 稳恒状态:当系统的物理量不随时间发生变化,即
• 物理意义:作坐标变换X=x-at, T=t, 则f2(x-at)=f2(X), 与时间无关!故f2(x-at)描述的是沿x正方向以速度a传播 的行波; • 同样, f1(x+at)描述沿x负方向以速度a传播的行波。 • u=f1(x+at)+f2(x-at)描述以速度a向两个方向传播波的叠加。 • 函数f1和f2是由初始条件决定的,决定沿正方向和负方向 传播的波形,即两个波的形状不会发生改变。 • 当两个波发生重叠时,整体的波形将发生改变。 • 注意到坐标变换实际上是伽利略变换。
B. 在一根均匀弦的中间有一个振动源?
C. 在两种不同材料之间的热传导方程及衔接条件?
§7.3 达朗贝尔公式
• 我们已经获得了一些关于连续介质运动的偏微分方程,以 及定解条件,现在的问题是如何求解这些方程。
• 本课程主要介绍级数求解法、积分求解法、积分变换法。
• 对于常微分方程的一般解法,先从方程本身求出通解,通 解中会含有一些积分常数,然后利用附加条件来确定这些 常数。偏微分方程也可以采用这种方法来求解。 • 我们首先介绍一种特殊的通解方法。
1. u1(x0,t)=u2(x0,t) u1t(x0,t)=u2t(x0,t); 2. u1xx(x0,t)-u2xx(x0,t)=(a12+ a22)u1tt(x0,t) ??

数学物理方法课件:7-数学物理定解问题

数学物理方法课件:7-数学物理定解问题

x
T (ux |xdx ux |x ) (dx)utt 因 dx很小
T
ux
xdx ux dx
x
utt
utt Tu xx (7.1.5)
5
utt Tu xx (7.1.5)
因为B段是任选的,所以方程(7.1.5)适用于弦上各处, 是弦做微小横振动的运动方程,简称弦振动方程。

T a2
(a 0)
响 ➢ 将这种影响用数学关系式表达出来,并简化
整理数学物理方程
2
(一)均匀弦的微小横振动
有一个完全柔软的均匀弦,沿水平直线绷紧,而后以某 种方法激发,使弦在同一个平面上作小振动.列出弦的 横振动方程。
假定:
➢弦是理想柔软的横截面方向无应力,张力沿弦切线
➢弦的质量线密度为;
➢静止时弦位于x 轴,横向振动时各点的位移为 u(x,t); ➢弦没有纵向振动,横向振幅是微小的; ➢张力 T>>重力 mg。
x x+dx x A u Bu+du C
t 时刻杆伸长 u(x dx,t) u(x,t)
相对伸长量 u(x dx,t) u(x,t) u(x,t) 随x而异
dx
x
由胡克(Hooke)定律 P(x,t) E u(x,t) x
由牛顿运动定律 Sdxutt P(x dx,t)S P(x,t)S
第七章 数学物理定解问题(5)
1.数学物理方程(又称为泛定方程)
物理量在时空中的变化规律,并把它写成数学形式(偏 微分方程)即为数学物理方程。它反映了同一类物理问题 的共性。
2.定解条件(包括初始条件与边界条件)
对具体的实际问题,我们必须考虑周围环境的影响和 初始状态对具体物理问题演化的影响。它反映了具体物 理问题的个性。

第七章 Green 函数法 - 数学物理方法

第七章 Green 函数法 - 数学物理方法

数学物理方法Mathematical Method in Physics西北师范大学物理与电子工程学院豆福全第七章Green函数法Green Function method引言前面几章我们系统的讨论了求解数学物理方法的几种典型方法:分离变量法,行波法以及积分变换法。

分离变量法主要适用于求解各种有界区域内的定解问题,行波法则主要适用于求解无界区域内的波动问题,而积分变换法也主要适用于求解无界区域内的定解问题,然而不受方程类型的限制。

同时,分离变量法,积分变换法这两种方法所给出的解,一般具有无穷级数与无穷积分的形式。

本章介绍求解数学物理方程的另一重要方法——Green函数法。

所不同的是,该法给出的是一种有限积分的解,便于人们进行理论分析与研究。

Green函数的特点是它仅与定解问题所定义的区域的形状及边界条件类型有关,而与定解条件及方程非齐次项所给出的具体形式无关。

特别是一些用分离变量法较难处理的非齐次方程的定解问题,Green函数法更能显示出其优越性。

从物理上看,一个数学物理方程在大多数情况下,往往表示一种特定的“场”和产生这种场的“源”之间的关系。

如热导方程表示的是温度场与点源之间的关系,泊松方程表示的是静电场和电荷分布之间的关系等。

这样,当源被分解成许多点源的叠加时,如果通过某一种方法知道各点源产生的场,然后再利用叠加原理,就可以求出同样边界条件下任意源的场,这种求解数理方程的方法被称为Green函数法,而点源产生的场就是Green函数。

本章首先复习Laplace方程边值问题的几种类型,然后由Green公式建立起Green函数的概念,并通过Green函数得到一般的泊松方程边值问题解的积分表达式,最后在几个特殊区域上讨论Green函数及Laplace方程的第一边值问题具体的求解过程。

7.1 Laplace 方程边值问题7.1.1 内问题Laplace 方程: 2222220u u ux y z∂∂∂++=∂∂∂0u ∆=描述物理中的平衡、稳定等现象,从而变化过程与时间无关,这时不提初始条件,边界条件常用到以下三种:1. 第一边值问题 Dirichlet 问题设曲面P 为空间某一区域Ω的边界,f 是定义在曲面P 上已知连续函数,求一函数(,,)u u x y z =满足Laplace 方程,满足光滑性条件:在区域Ω内有二阶连续偏导数,在Ω=Ω+Γ上连续,且有uf Γ=具有二阶连续偏导数且满足Laplace 方程的函数称为调和函数。

数学物理方法第七章 (2)

数学物理方法第七章 (2)

6
0.5
用数理方程研究物理问题的步骤
1、写出定解问题 泛定方程:数理方程(一般规律) 定解条件:初始、边界、衔接条件(个性)
2、求解 求解方法:行波法、分离变量法、积分变换法、格林函数法、保角变 换法、复变函数法、变分法
3 、分析解答
物理意义 适定性:存在 唯一 稳定
7
0.6
学习方法与考核方式
对于数学物理方程部分,注意以下几点: 1、注意考虑物理系统中涉及到的物理定理、定律以及偏微分方程 ; 2、注意研究将偏微分方程转化为常微分方程的方法,或能够利用已有的常 微分方程知识进行求解的方法; 3、注意将解出的结果进行讨论,给予其物理意义的解释。 4、快速多遍,抓大放小,厘清脉络,掌握典型。 组成:平时成绩30%;期终成绩70% 方式:闭卷考试 内容:典型题,有范围。 共同学习,互相促进!
8
第7章 数学物理方程定解问题
7.1数学物理方程的导出 7.2定解条件 7.3数学物理方程的分类 (自学*) 7.4达朗贝尔公式、定解问题
9
本章基本要求、教学内容及重点
基本要求: 1.了解定解问题的提法; 2.了解几种常见的数学物理方程的导出; 3.熟悉几种常见的边界条件和初始条件的表示形式; 4.能对两个自变数的线性偏微分方程进行分类; 5.了解行波法的意义,行波的物理意义,熟练运用达朗贝尔公式。 教学内容: §7.1.数学物理方程的导出。(均匀弦的微小横振动,均匀杆的纵振动,均匀薄膜的微
受迫振动
f ( x, t ) F ( x, t ) /
15
7.1.3波动方程
例:一长为l的均匀柔软轻绳,其一端固定在竖直轴上,绳子以角速度转动, 试推导此绳相对于水平线的横振动方程
dm dx

《数学物理方法》课件

《数学物理方法》课件

弹性力学方程的求解
总结词
弹性力学方程是描述弹性物体变形和应力分布的偏微分方程 ,通过求解该方程可以了解物体的弹性和稳定性。
详细描述
弹性力学方程的一般形式为 $nabla cdot sigma = f$,其中 $sigma$ 是应力张量,$f$ 是体力密度,$nabla cdot$ 是散 度算子。求解该方程可以得到应力分布、应变能和弹性常数 等。
在工程学中的应用
机械工程
数学物理方法在机械工程 中广泛应用于分析力学、 热传导、流体力学等问题 。
电子工程
在电子工程中,数学物理 方法用于描述电磁波的传 播、散射和吸收等。
土木工程
在土木工程中,数学物理 方法用于分析结构力学、 地震工程等问题。
在经济学中的应用
金融建模
数学物理方法在金融领域中用于 建立复杂的金融模型,如期权定
在此添加您的文本16字
数学物理方法将进一步发展,以适应未来科技发展的需求 ,特别是在能源、环境、生物医学等领域。
在此添加您的文本16字
随着人工智能和机器学习的发展,数学物理方法将与这些 技术相结合,以实现更高效、精确的问题解决方案。
06 数学物理方法的实际案例分析
一维波动方程的求解
总结词
一维波动方程是描述一维波动现象的基本方程,通过求解该方程可以了解波的传播规律 。
这些概念在描述物理现象的变化规律 和求解物理问题中发挥着关键作用, 例如在描述速度、加速度、功和能量 等物理量时。
微积分中的基本概念包括极限、连续 性、导数和积分等。
微分方程
微分方程是描述物理现象变化规律的数学工具,它表示一个或多个未知函数的导数 之间的关系。
微分方程的基本类型包括常微分方程、偏微分方程和积分微分方程等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§7.1.1贝塞尔方程的级数解
二阶线性齐次常微分方程 x2yʺ+xyʹ+(x2-v2)y=0,0≤x≤b (7.1.1) 称为贝塞尔方程. 现在,在x=0的邻域求解贝塞尔方程. 1.级数解的形式 由p(x)=1/x, q(x)=1-v2/x2 , 可见, x=0是p(x)的 一阶极点,是q(x)的二阶极点.因此,x=0是 方程的正则奇点.方程的第一个解具有形式
解 利用递推公式
并进行分部积分,可得
?
45
【例7.2.3】试由递推公式计算J3/2(x)及 J-3/2(x) 解 在式(7.2.6)中 令v = 1/2, 即有
(7.2.16)

同理,在式(7.2.6)中令, v = -1/2,并利用7. 1 节中例7.1.1的结论,即有
46
§7.2.3 贝塞尔函数的渐近公式 平面波按柱面波展开
12

若在特解y2(x)中取 即得一阶贝塞尔函数(3.4节)
图7.1 自变量为实数时头几个Jv(x)的函数曲线.
13
(2)当v不为整数时Jv(x)与J-v(x)是线性无关的。 实际上,当x→0时

因为当x → 0时,级数只保留n=0项.易见

当v不为整数时, Jv(x)与J-v(x)的行为完全不同, 是线 性无关的两个特解;故方程的通解是两者的线性组合


①汪德新.理论物理学导论第二卷:电动力 学.北京:科学出版社,2005.157-163 ②汪德新.理论物理学导论第三卷:量子力 学.武汉:湖北科学技术出版社,2003.316323
2
§7. 1 贝塞尔方程与贝塞尔函数
本节首先用级数解法求解贝塞尔方程, 得到两个特解Jn(x)和J-n(x) ,称为第一 类贝塞尔函数,简称贝塞尔函数.
48
(2) 平面波按柱面波展开


沿x轴方向传播的平面波为 u=cos(kx-wt) (7.2.25) 式中取振幅为1, k为波数,w为圆频率. 若采用指数形式,利用 cos(kx-wt) = Re[ei(kx-wt)] (7.2.26) 并略去符号Re,则有 u= ei(kx-wt) = ei(krcosj-wt)


它们也是贝塞尔方程的线性无关的解,它们 称为汉克尔函数(第三类贝塞尔函数). 这样,贝塞尔方程的通解也可表示为
25
2. 三类贝塞尔函数的关系
26
【例7.1.1】试证明:半奇数阶贝塞尔函数 可用初等函数表示为
证明 利用式(7.1.10)可得
27
同理,利用式(7.1.11)可得
28
作业- §7.1

但是用这个公式计算a与Dk通常是很麻烦的.人们 宁愿重新定义一个与Jn(x)线性无关的函数作为特解, 它就是诺伊曼函数.
15
(2)诺伊曼函数的定义及其微分表达式

诺伊曼函数的定义是
(7.1.13)

诺伊曼函数又称为第二类贝塞尔函数.
16

当v=n(整数)时,诺伊曼函数的定义式是不定 式.利用洛必达法则,可以得到它的微分表 达式


就是式(7.2.4).同理可证明式(7.2.5).
38
由式(7.2.4)中令v=1,可得到一个很有用的公式 [xJ1(x)]ʹ= xJ0ʹ(x) (7.2.8) 在式(7.2.5)中令v=0,可得另一个很有用的公式 J0ʹ(x) = -J1 (x) (7.2.9) 将式(7.2.4)与式(7.2.5)的导数算出来, vxv-1Jv(x)+ xvJvʹ(x) = xvJʹv-1(x) (7.2. 10-1) -vxv-1Jv(x)+ xvJvʹ(x) = -xvJʹv-1(x) (7.2.11-1) 消去公共因子,即有 vJv(x)+ xJvʹ(x) = xJʹv-1(x) (7.2. 10) -vxJv(x)+ xJvʹ(x) = -xJʹv-1(x) (7.2.11) 将两式相减和相加可得式(7.2.6)与式(7.2.7).

用式(7.1.15)减去(-1)n乘式(7.1.16),得
即有 x2 J (x)+ xN J (x)+ 2-n2)Nn 当v=n时Nnnʺ(x)=(-1)nnʹ -n(x) (x(7.1.12)(x)=0 可见诺伊曼函数满足贝塞尔方程 .
当v=n时 为Nn(x)
21
(4) 诺伊曼函数Nn(x)与贝塞尔函数Jn(x)线性无关
(1)、对于大的x值,贝塞尔函数的渐近公式是

证明 公式的严格证明相当复杂,这里只作出 粗略的证明.首先,贝塞尔方程为

代入贝塞尔方程后,全式除x3/2,即有
47

当x≫1时,上方程可近似写成 由此得


这表明,对于大的x值,贝塞尔函数的渐近公 式应具有如下的形式

其函数形式与式(7.2.18)相符
5. 另一个特解

同理,令r=r2=-v,可得另一特解

级数解y2(x)的收敛范围是0<|x|<ㆀ
11
§7.1.2 当vn(整数),方程的通解是贝塞尔函 数J±v(x)的线性组合 (1)贝塞尔函数J±v(x)的定义.


若在特解y1(x)中取
便得到v阶贝塞尔函数(3.4节), (7.1.10) (7.1.11)

改变第二项的求和指标,可得
(7.1.5)
7
由x的同次幂系数之和为零
(7.16) (7.17) C0表示C2n,用C1表示C2n+1 (其中n=1,2,…)
8
4.由递推公式求系数得特解
9

将系数代入式(7.1.2),即得贝塞尔方程的一 个特解
易见级数解y1(x)的收敛范围是0≤|x|<ㆀ;
10
31
§7.2.1 贝塞尔函数的母函数与积分表示
1.母函数 在“解析函数的洛朗展开”中已证明

它表明,函数 的洛朗系数是整数 阶的贝塞尔函数.因此 f(x,t) =
就称为Jn(x)的母函数
32
2. 贝塞尔函数的积分表达式
(1)回路积分表达式.

利用洛朗系数公式 即可得到贝塞尔函数的积分表达式
(2) 定积分表达式.由上式出发,可导出贝塞 尔函数的定积分表达式

5
2.指标方程

将式(7.1.2幂xr的系数为零,即有 (r2-v2)C0=0 因C00,即得指标方程r2-v2=0.由此得指标 r1=v r2=-v (7.1.4)
6
3.系数递推公式

为确定起见,令v>0,并将r=r1=v ,代人方 程(7.1.3),得
Jv(x)也是线性无关的。

由此可见,无论v是否整数和零,贝塞尔方程 的解均可表示为
y(x) = C1Jv(x)十C2Nv(x)
(7.1.23)
24
§7.1.4 研究波的问题时,方程的通解常用汉克 尔函数表示 1.汉克尔函数的定义

既然Jv(x)和Nv(x)是贝塞尔方程的线性无关的 解.因此可以把它们作如下线性组合
(7.1.14)
17
图7.2给出自变量为实数时头几个Nn(x)的 函数曲线.
18
(3)诺伊曼函数是贝塞尔方程的解

贝塞尔函数Jv(x)是贝塞尔方程的解,将y=Jv(x) 代人式(7.1.1),可得 对v求导,可得

19
同理,由J-v(x)是贝塞尔方程的解
对v求导
(7.1.16)
20
(7.1.15) (7.1.16)
(7.2.12)
42
同理可证式(7.2.13)

由式(7.2.12),和式(7.2.13)出发还可导出Nv(x) 的其他递推公式,其形式也与Jv(x)的递推公 式相同. 汉克尔函数的递推公式也可按上法导出.


凡是递推公式具有形如式(7.2.4)和式(7.2.5)的 函数称为柱函数.因此,第一、二、三类贝 塞尔函数又称为第一、二、三类柱函数.
第七章 贝塞尔函数
本章介绍贝塞尔方程、虚宗量贝塞尔方 程及球贝塞尔方程的解; 它们解的微分与积分表达式,递推公式、 渐近公式; *贝塞尔方程本征函数的正交性、正交 归一关系式与完备性等; *在此基础上,还介绍了平面波分别按 柱面波和球面波的展开.

本章的内容在电动力学(如光导波的电磁结构 ①)及量子力学(如弹性散射中的分波法②)中 均有重要应用.
39

利用式(7.2.6)便可由J0(x)及J1(x)求出J2(x) , 接着由J1(x)及J2(x)求出J3(x) ; 余此类推,即可由J0(x)及J1(x) 求出所有整数 阶的贝塞尔函数; 此外,由式(7.2.6)、式(7.2.7)可给出所有整数 阶的贝塞尔函数的导数.


40
2. 诺伊曼函数Nv(x) 与汉克尔函数 H(1)v(x)、 H(2)v(x)的递推公式
Group A
1.
第151页
Group B
1.
Group C
1.
7.1.1
7.1.1
7.1.1
29
§7.2 贝塞尔函数的 母函数 积分表达式 递推公式 渐近公式 与零点





由§3.4节已给出的贝塞尔函数母函数出发,得 到贝塞尔的回路积分表达式和定积分表达式; 由贝塞尔函数的级数表达式出发导出它的递推 公式; 由贝塞尔方程出发导出它的渐近公式; 由母函数关系式导出平面波按柱面波的展开式, 并通过贝塞尔函数的渐近公式理解其物理含义; 最后,由贝塞尔函数的渐近式和递推公式出发 证明贝塞尔的零点分布,它在第三篇求解贝塞 尔方程的本征值问题时具有重要作用.

由此可见,当v为整数和零时,Nn(x)与Jn(x) 是线性无关的。贝塞尔方程的通解为
相关文档
最新文档