电大形成性考核:微积分初步形成性考核册答案1-4
《微积分初步》形成性考核册

18.下列各函数对中,()中的两个函数相等.答案:D A .2)()(x x f =,x x g =)( B .2)(xx f =,x x g =)(C .2ln )(x x f =,x x g ln 2)(=D .3ln )(x x f =x x g ln 3)(= 提示:两个函数相等,必须是对应的规则相同,定义域相同。
上述答案中,A 定义域不同;B 对应的规则不同;C 定义域不同;D 对应的规则相同,定义域相同9.当0→x 时,下列变量中为无穷小量的是( )答案:C.A .x 1B .xx sin C .)1ln(x +D .2xx提示:以0为极限的变量称为无穷小量。
上述答案中,当0→x 时,A 趋向∞;B 的极限为1;C 的极限为0;D 趋向∞。
10.当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x处连续. 答案:BA .0B .1C .2D .1-提示:当)()(lim 00x f x f x x =→时,称函数)(x f 在0x 连续。
因1)1(lim )(lim20=+=→→x x f x x k f ==)0(,所以当=k 1时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续11.当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续 答案:DA .0B .1C .2D .3提示:当)()(lim 00x f x f x x =→时,称函数)(x f 在0x 连续。
因为3)2(lim )(lim=+=→→x x x e x f k f ==)0(,所以当=k 3时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x ,在0=x 处连续12.函数233)(2+--=x x x x f 的间断点是( )答案:A A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点提示:若)(x f 在0x 有下列三种情况之一,则)(x f 在0x 间断:①在0x 无定义;②在0x 极限不存在;③在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→。
国开电大 高等数学基础 形成性作业1-4答案

高等数学基础形考作业1:第1章 函数 第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B.x 轴C. y 轴D. x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C.0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是无穷小量. A. x x sin B. x 1C.xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 21e . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x . ⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。
国开电大 微积分基础 形成性考核册作业1-4答案

微积分基础形成性考核作业(一)————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是 .解:020)2ln({>-≠-x x , 23{>≠x x所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是 .解:05>-x ,5<x 所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 .解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f.解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x 所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是 .解:因为当01=+x ,即1-=x 时函数无意义所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim .解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim 00===→→kkxkx x xk kx x x x所以2=k10.若23sin lim 0=→kxxx ,则=k .解:因为2333lim 33lim 00===→→kx x sim k kx x sim x x所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y xx x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。
《微积分基础》形考作业1-4

微积分基础形成性考核作业(一)————函数,极限和连续一、填空题(每小题2分,共20分)1.函数)2ln(1)(-=x x f2.函数xx f -=51)(3.函数24)2ln(1)(x x x f -++=.4.函数72)1(2+-=-x x x f ,则=)(x f x 2+6.5.函数⎩⎨⎧>≤+=0e 02)(2x x x x f x ,则=)0(f 2 .6.函数x x x f 2)1(2-=-,则=)(x f x 2−1 .7.函数1322+--=x x x y 的间断点是 x =−1 .8.=∞→xx x 1sinlim 1 .9.若2sin 4sin lim0=→kx xx ,则=k 2 . 10.若23sin lim 0=→kx x x ,则=k 32 .二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( B ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是( A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数222)(x x x x f -+=的图形是关于( D )对称.A .x y =B .x 轴C .y 轴D .坐标原点 4.下列函数中为奇函数是(C).A .x x sinB .x lnC .)1ln(2x x ++ D .2x x + 5.函数)5ln(41+++=x x y 的定义域为( D ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x6.函数)1ln(1)(-=x x f 的定义域是( D ).A . ),1(+∞B .),1()1,0(+∞⋃C .),2()2,0(+∞⋃D .),2()2,1(+∞⋃7.设1)1(2-=+x x f ,则=)(x f ( C )A .)1(+x xB .2xC .)2(-x xD .)1)(2(-+x x8.下列各函数对中,( D )中的两个函数相等. A .2)()(x x f =,x x g =)(B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .3ln )(x x f =,x x g ln 3)(=9.当0→x 时,下列变量中为无穷小量的是( C ).A .x 1B .x x sinC .)1ln(x +D .2xx10.当=k ( B )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续。
《微积分基础》形考作业1-4

微积分基础形成性考核作业(一)————函数,极限和连续一、填空题(每小题2分,共20分)1.函数)2ln(1)(-=x x f2.函数xx f -=51)(3.函数24)2ln(1)(x x x f -++=.4.函数72)1(2+-=-x x x f ,则=)(x f x 2+6.5.函数⎩⎨⎧>≤+=0e 02)(2x x x x f x ,则=)0(f 2 .6.函数x x x f 2)1(2-=-,则=)(x f x 2−1 .7.函数1322+--=x x x y 的间断点是 x =−1 .8.=∞→xx x 1sinlim 1 .9.若2sin 4sin lim0=→kx xx ,则=k 2 . 10.若23sin lim 0=→kx x x ,则=k 32 .二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( B ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是( A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数222)(x x x x f -+=的图形是关于( D )对称.A .x y =B .x 轴C .y 轴D .坐标原点 4.下列函数中为奇函数是(C).A .x x sinB .x lnC .)1ln(2x x ++ D .2x x + 5.函数)5ln(41+++=x x y 的定义域为( D ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x6.函数)1ln(1)(-=x x f 的定义域是( D ).A . ),1(+∞B .),1()1,0(+∞⋃C .),2()2,0(+∞⋃D .),2()2,1(+∞⋃7.设1)1(2-=+x x f ,则=)(x f ( C )A .)1(+x xB .2xC .)2(-x xD .)1)(2(-+x x8.下列各函数对中,( D )中的两个函数相等. A .2)()(x x f =,x x g =)(B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .3ln )(x x f =,x x g ln 3)(=9.当0→x 时,下列变量中为无穷小量的是( C ).A .x 1B .x x sinC .)1ln(x +D .2xx10.当=k ( B )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续。
2020年国家开放大学电大考试《微积分》形成性考核册

微积分初步形成性考核作业(一)解答————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2-ln(1)(x x f =的定义域是)∞,3(∪)3,2(+2.函数xx f -51)(=的定义域是)5,-3.函数2-4)2ln(1)(x x x f ++=的定义域是]2,1-(∪)1-,2-(4.函数72-)1-(+=x x x f ,则=)(x f 62+x5.函数>+=e 0≤2)(2x x x x f x,则=)0(f 2 . 6.函数x x x f 2-)1-(2=,则=)(x f 1-2x7.函数13-2-2+=x x x y 的间断点是1-=x8.=xx x 1sinlim ∞→ 1 . 9.若2sin 4sin lim0→=kxxx ,则=k 2 .10.若23sin lim0→=kxxx ,则=k 23二、单项选择题(每小题2分,共24分) 1.设函数2e exxy +=,则该函数是(B ). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是(A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数222)(xx xx f +=的图形是关于(D )对称.A .x y =B .x 轴C .y 轴D .坐标原点4.下列函数中为奇函数是(C).A .x x sinB .x lnC .)1ln(2x x ++D .2x x +5.函数)5ln(41+++=x x y 的定义域为( D ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x6.函数)1-ln(1)(x x f =的定义域是(D ).A . )∞,1(+B .)∞,1(∪)1,0(+C .)∞,2(∪)2,0(+D .)∞,2(∪)2,1(+ 7.设1-)1(2x x f =+,则=)(x f ( C )A .)1(+x xB .2x C .)2-(x x D .)1-)(2(x x + 8.下列各函数对中,(D)中的两个函数相等.A .2)()(x x f =,x x g =)(B .2)(x x f =,x x g =)(C .2ln )(x x f =,9.当0→x 时,下列变量中为无穷小量的是( C ). A .x 1 B .x x sin C .)1ln(x + D .2xx10.当=k ( B )时,函数=+=,≠,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .111.当=k ( D )时,函数=+=,≠,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3 12.函数23-3-)(2+=x x x x f 的间断点是( A ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点三、解答题(每小题7分,共56分)⒈计算极限4-23-lim 222→x x x x +.解:4-23-lim 222→x x x x +4121-lim )2-)(2()2-)(1-(lim 2→2→=+=+=x x x x x x x x2.计算极限1-6-5lim 221→x x x x + 解:1-6-5lim 221→x x x x +2716lim )1-)(1()6)(1-(lim 1→1→=++=++=x x x x x x x x3.3-2-9-lim 223→x x x x解:3-2-9-lim 223→x x x x 234613lim )3-)(1()3-)(3(lim 3→3→==++=++=x x x x x x x x4.计算极限45-86-lim 224→++x x x x x解:45-86-lim 224→++x x x x x 321-2-lim )4-)(1-()4-)(2-(lim 4→4→===x x x x x x x x5.计算极限65-86-lim 222→++x x x x x .解:65-86-lim 222→++x x x x x 23-4-lim )3-)(2-()4-)(2-(lim 2→2→===x x x x x x x x6.计算极限xx x 1--1lim→. 解:x x x 1--1lim→)1-1(lim )1-1()1-1)(1--1(lim 0→0→+=++=x x xx x x x x x 21-1-11lim→=+=x x7.计算极限xx x 4sin 1--1lim→。
微积分初步形成性考核册答案
微积分初步形成性考核作业(一)————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是.解:020)2ln({>-≠-x x , 23{>≠x x 所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是.解:05>-x ,5<x 所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是.解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f .解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x 所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是.解:因为当01=+x ,即1-=x 时函数无意义 所以函数1322+--=x x x y 的间断点是1-=x8.=∞→x x x 1sinlim .解:=∞→x x x 1sin lim 111sinlim=∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim00===→→kkxkx x xk kx x x x 所以2=k 10.若23sin lim 0=→kxxx ,则=k .解:因为2333lim 33lim 00===→→k x x sim k kx x sim x x 所以23=k二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y x x x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。
【微积分初步】-形考作业1-4答案
电大【微积分初步】 形考作业1-4答案作业(一)————函数,极限和连续一、填空题(每小题2分,共20分)1.函数)2ln(1)(-=x x f 的定义域是 . 答案:),3()3,2[+∞ 提示:对于)2ln(1-x ,要求分母不能为0,即0)2ln(≠-x ,也就是3≠x ; 对于)2ln(-x ,要求02>-x ,即2>x ;所以函数)2ln(1)(-=x x f 的定义域是),3()3,2[+∞2.函数xx f -=51)(的定义域是 . 答案:)5,(-∞ 提示:对于x-51,要求分母不能为0,即05≠-x ,也就是5≠x; 对于x -5,要求05≥-x ,即5≤x ;所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 . 答案:]2,1()1,2(--- 提示:对于)2ln(1+x ,要求分母不能为0,即0)2l n (≠+x ,也就是1-≠x ; 对于)2ln(+x ,要求02>+x ,即2->x ; 对于24x -,要求042≥-x ,即2≤x 且2-≥x ; 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(---4.函数72)1(2+-=-x x x f ,则=)(x f. 答案:62+x提示:因为6)1(72)1(22+-=+-=-x x x x f ,所以6)(2+=x x f5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x,则=)0(f . 答案:2 提示:因为当0=x是在0≤x 区间,应选择22+x 进行计算,即220)0(2=+=f6.函数x x x f 2)1(2-=-,则=)(x f. 答案:12-x 提示:因为1)1(2)1(22--=-=-x x x x f ,所以1)(2-=x x f7.函数1322+--=x x x y 的间断点是 . 答案: 1-=x提示:若)(x f 在0x 有下列三种情况之一,则)(x f 在0x 间断:①在0x 无定义;②在0x 极限不存在;③在0x 处有定义,且)(lim 0x f x x → 存在,但)()(lim 00x f x f x x ≠→。
最新中央电大《微积分初步》形成性考核册参考答案
中央电大《微积分初步》形成性考核册参考答案微积分初步作业1 参考答案1、函数、极限和连续一、填空题(每小题2分,共20分)1.()()3,+∞2,3 或填{}23x x x >≠且; 2.(),5-∞或填{}5x x <;3.()(]2,11,2--⋃-或填{}121x x x -<≤≠-且; 4.26x +; 5.2; 6.21x -; 7.1x =-; 8.1; 9.2; 10.32.二、单项选择题(每小题2分,共24分)1.B2.A3.D4.C5.D6.D7.C8.D9.C 10.B 11.D 12.A三、解答题(每小题7分,共56分) 1.解:原式=()()()()221211limlim .2224x x x x x x x x →→---==+-+ 2.解:原式=()()()()126167lim lim .1112x x x x x x x x →→+-+==+-+ 3.解:原式=()()()()323333limlim .1312x x x x x x x x →→+-+==+-+ 4.解:原式=()()()()422422lim lim .1413x x x x x x x x →→---==--- 5.解:原式=()()()()22244limlim 2.233x x x x x x x x →→---==--- 6.解:原式=111.2x x →→==-7.解:原式=111.8x x →→==-8.解:原式=()()0sin 4242lim16.x x x x x→→⋅⋅==微积分初步作业2 参考答案2、导数与微分3、导数的应用一、填空题(每小题2分,共20分)1.12; 2.10x y -+=; 3.230x y +-=; 41; 5.6-; 6.()271ln3+;7.21x-; 8.2-; 9.()1,+∞; 10. 0a >.二、单项选择题(每小题2分,共24分)1.D2.C3.C4.B5.D6.C7.C8.C9.A 10.B 11.B 12.A三、解答题(每小题7分,共56分)1.解:()111221221xxx y xe x e x e x ⎛⎫'=+-=- ⎪⎝⎭.2.解:24cos43sin cos y x x x '=-. 3.解:21y x '=-. 4.解:sin tan cos x y x x '==. 5.解:方程两边同时对x 求微分,得()()2202222xdx ydy xdy ydx x y dx x y dyx ydy dxx y+--=-=--∴=-6. 解: 原方程可化为()21x y +=1,1x y y x ∴+=±=-±1,y dy dx '∴=-=-7. 解:方程两边同时对x 求微分,得20x y y e dx e dy xe dx xdx +++=()2y x y xe dy e e x dx =-++2x y ye e xdy dx xe++∴=-. 8. 解:方程两边同时对x 求微分,得()()sin 0y x y dx dy e dy -+++=()()sin sin yx y dy dx e x y +∴=-+ 微积分初步作业3 参考答案4、不定积分、极值应用问题一、填空题(每小题2分,共20分)1.2ln 2x x x c -+; 2.24x e --; 3.()1x x e +; 4.2cos 2x ; 5.1x;6.4cos 2x -;7.2x e dx -; 8.sin x c +; 9.()1232F x c -+; 10. ()2112F x c--+.二、单项选择题(每小题2分,共16分) 1.A 3.A 4.A 5.A 6.A 7.C 8.B三、解答题(每小题7分,共35分)1.解:原式=32sin 3ln cos 3x dx x x c x⎛⎫=-+ ⎪⎝⎭⎰.2.解:原式=()()()()10111121212121221122x d x x c x c --=⨯-+=-+⎰.3.解:原式=111sin cos d c x x x⎛⎫-=+ ⎪⎝⎭⎰. 4.解:原式=11111cos 2cos 2cos 2cos 2sin 222224xd x x x xdx x x x c -=-+=-++⎰⎰. 5.解:原式=()1x x x x x x xde xe e dx xe e c x e c -------=-+=--+=-++⎰⎰.四、极值应用题(每小题12分,共24分)1.解: 设矩形ABCD 的一边AB x =厘米,则60BC x =-厘米, 当它沿直线AB 旋转一周后,得到圆柱的体积()()260,060V x x x π=-<<令()()2602600V x x x π⎡⎤'=---=⎣⎦得20x = 当()0,20x ∈时,0V '>;当()20,60x ∈时,0V '<.20x ∴=是函数V的极大值点,也是最大值点.此时6040x -=答:当矩形的边长分别为20厘米和40厘米时,才能使圆柱体的体积最大. 2. 解:设成矩形有土地的宽为x 米,则长为216x米, 于是围墙的长度为()4323,0L x x x=+> 令243230L x'=-=得()12x =取正易知,当12x =时,L 取得唯一的极小值即最小值,此时21618x= 答:这块土地的长和宽分别为18米和12米时,才能使所用的建筑材料最省. 五、证明题(本题5分)()()()()1 0, 01 0, 0,0.x x f x e x e x f x f x x e '=-<<<'∴<>=--∞证:当时当时从而函数在区间是单调增加的微积分初步作业4 参考答案5、定积分及应用一、填空题(每小题2分,共20分)1.23-; 2.2; 3.3221633y x =-; 4.4; 5.24a π; 6.0;7.12;8.x y e =; 9.3x y ce -=; 10. 4.二、单项选择题(每小题2分,共20分)1.A2.A3.A4.D5.D6.B7.B8.D9.C 10.B三、计算题(每小题7分,共56分)1.解:原式=()()()2ln 23ln 20011911133xx x ed e e ++=+=-⎰. 2.解:原式=()()()21111715ln 15ln 15ln 5102e ex d x x ++=+=⎰. 3.解:原式=()111100011x x x xxde xe e dx e e e e =-=-=--=⎰⎰.4.解:原式=02cos 2cos 4sin 4222x x x xd x ππ⎡⎤-=-+=⎢⎥⎣⎦⎰.5.解:原式=22220000cos cos cos 0sin 1xd x x x xdx x ππππ-=-+=+=⎰⎰.6. 解:()()21,1P x Q x x x==+()()()()()()112ln 2ln 342 1 11 111 42P x dx P x dx dx dx x x x xy e Q x e dx c e x e dx c e x e dx c x x dx c x x x c x ---⎡⎤⎰⎰=+⎢⎥⎣⎦⎡⎤⎰⎰=++⎢⎥⎣⎦⎡⎤=++⎣⎦⎡⎤=++⎣⎦⎡⎤=++⎢⎥⎣⎦⎰⎰⎰⎰通解即通解31142c y x x x=++ 7. 解:()()1,2sin 2P x Q x x x x=-=()()()()11ln ln 2sin 2 2sin 21 2sin 2 cos 2P x dx P x dx dx dx x xx x y e Q x e dx c e x xedx c e x xe dx c x x x dx c x x x c ---⎡⎤⎰⎰∴=+⎢⎥⎣⎦⎡⎤⎰⎰=+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=⋅+⎢⎥⎣⎦=-+⎰⎰⎰⎰通解即通解为()cos2y x x c =-+.四、证明题(本题4分)()()()()()()()()()()()000000aaaaaaaa af x dx f x dxf x dx f x dxf x d x f x dx f x dx f x dxf x f x dx ----+=-+=---+=-+=-+=⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰证:左边=右边。
2020年国家开放大学电大《微积分》形成性考核册
微积分初步形成性考核作业(一)解答————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2-ln(1)(x x f =的定义域是)∞,3(∪)3,2(+2.函数xx f -51)(=的定义域是)5,-3.函数2-4)2ln(1)(x x x f ++=的定义域是]2,1-(∪)1-,2-(4.函数72-)1-(+=x x x f ,则=)(x f 62+x5.函数>+=e 0≤2)(2x x x x f x,则=)0(f 2 . 6.函数x x x f 2-)1-(2=,则=)(x f 1-2x7.函数13-2-2+=x x x y 的间断点是1-=x8.=xx x 1sinlim ∞→ 1 . 9.若2sin 4sin lim0→=kxxx ,则=k 2 .10.若23sin lim0→=kxxx ,则=k 23二、单项选择题(每小题2分,共24分) 1.设函数2e exxy +=,则该函数是(B ). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是(A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数222)(xx xx f +=的图形是关于(D )对称.A .x y =B .x 轴C .y 轴D .坐标原点4.下列函数中为奇函数是(C).A .x x sinB .x lnC .)1ln(2x x ++D .2x x +5.函数)5ln(41+++=x x y 的定义域为( D ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x6.函数)1-ln(1)(x x f =的定义域是(D ).A . )∞,1(+B .)∞,1(∪)1,0(+C .)∞,2(∪)2,0(+D .)∞,2(∪)2,1(+ 7.设1-)1(2x x f =+,则=)(x f ( C )A .)1(+x xB .2x C .)2-(x x D .)1-)(2(x x + 8.下列各函数对中,(D)中的两个函数相等.A .2)()(x x f =,x x g =)(B .2)(x x f =,x x g =)(C .2ln )(x x f =,9.当0→x 时,下列变量中为无穷小量的是( C ). A .x 1 B .x x sin C .)1ln(x + D .2xx10.当=k ( B )时,函数=+=,≠,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .111.当=k ( D )时,函数=+=,≠,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3 12.函数23-3-)(2+=x x x x f 的间断点是( A ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点三、解答题(每小题7分,共56分)⒈计算极限4-23-lim 222→x x x x +.解:4-23-lim 222→x x x x +4121-lim )2-)(2()2-)(1-(lim 2→2→=+=+=x x x x x x x x2.计算极限1-6-5lim 221→x x x x + 解:1-6-5lim 221→x x x x +2716lim )1-)(1()6)(1-(lim 1→1→=++=++=x x x x x x x x3.3-2-9-lim 223→x x x x解:3-2-9-lim 223→x x x x 234613lim )3-)(1()3-)(3(lim 3→3→==++=++=x x x x x x x x4.计算极限45-86-lim 224→++x x x x x解:45-86-lim 224→++x x x x x 321-2-lim )4-)(1-()4-)(2-(lim 4→4→===x x x x x x x x5.计算极限65-86-lim 222→++x x x x x .解:65-86-lim 222→++x x x x x 23-4-lim )3-)(2-()4-)(2-(lim 2→2→===x x x x x x x x6.计算极限xx x 1--1lim→. 解:x x x 1--1lim→)1-1(lim )1-1()1-1)(1--1(lim 0→0→+=++=x x xx x x x x x 21-1-11lim→=+=x x7.计算极限xx x 4sin 1--1lim→。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分初步形成性考核作业(一)解答————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2-ln(1)(x x f =的定义域是)∞,3(∪)3,2(+2.函数xx f -51)(=的定义域是)5,-3.函数2-4)2ln(1)(x x x f ++=的定义域是]2,1-(∪)1-,2-(4.函数72-)1-(+=x x x f ,则=)(x f 62+x5.函数>+=e 0≤2)(2x x x x f x,则=)0(f 2 . 6.函数x x x f 2-)1-(2=,则=)(x f 1-2x7.函数13-2-2+=x x x y 的间断点是1-=x8.=xx x 1sinlim ∞→ 1 . 9.若2sin 4sin lim0→=kxxx ,则=k 2 .10.若23sin lim0→=kxxx ,则=k 23二、单项选择题(每小题2分,共24分) 1.设函数2e exxy +=,则该函数是(B ). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是(A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数222)(xx xx f +=的图形是关于(D )对称.A .x y =B .x 轴C .y 轴D .坐标原点4.下列函数中为奇函数是(C).A .x x sinB .x lnC .)1ln(2x x ++D .2x x +5.函数)5ln(41+++=x x y 的定义域为( D ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x6.函数)1-ln(1)(x x f =的定义域是(D ).A . )∞,1(+B .)∞,1(∪)1,0(+C .)∞,2(∪)2,0(+D .)∞,2(∪)2,1(+ 7.设1-)1(2x x f =+,则=)(x f ( C )A .)1(+x xB .2x C .)2-(x x D .)1-)(2(x x + 8.下列各函数对中,(D)中的两个函数相等.A .2)()(x x f =,x x g =)(B .2)(x x f =,x x g =)(C .2ln )(x x f =,9.当0→x 时,下列变量中为无穷小量的是( C ). A .x 1 B .x x sin C .)1ln(x + D .2xx10.当=k ( B )时,函数=+=,≠,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .111.当=k ( D )时,函数=+=,≠,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3 12.函数23-3-)(2+=x x x x f 的间断点是( A ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点三、解答题(每小题7分,共56分)⒈计算极限4-23-lim 222→x x x x +.解:4-23-lim 222→x x x x +4121-lim )2-)(2()2-)(1-(lim 2→2→=+=+=x x x x x x x x2.计算极限1-6-5lim 221→x x x x + 解:1-6-5lim 221→x x x x +2716lim )1-)(1()6)(1-(lim 1→1→=++=++=x x x x x x x x3.3-2-9-lim 223→x x x x解:3-2-9-lim 223→x x x x 234613lim )3-)(1()3-)(3(lim 3→3→==++=++=x x x x x x x x4.计算极限45-86-lim 224→++x x x x x解:45-86-lim 224→++x x x x x 321-2-lim )4-)(1-()4-)(2-(lim 4→4→===x x x x x x x x5.计算极限65-86-lim 222→++x x x x x .解:65-86-lim 222→++x x x x x 23-4-lim )3-)(2-()4-)(2-(lim 2→2→===x x x x x x x x6.计算极限xx x 1--1lim→. 解:x x x 1--1lim→)1-1(lim )1-1()1-1)(1--1(lim 0→0→+=++=x x xx x x x x x 21-1-11lim→=+=x x7.计算极限xx x 4sin 1--1lim→解:x x x 4sin 1--1lim→)1-1(4sin )1-1)(1--1(lim0→++=x x x x x 81-)1-1(44sin 1lim 41-)1-1(4sin lim0→0→=+=+=x xx x x xx x8.计算极限2-44sin lim→+x x x .解:2-44sin lim→+x x x )24)(2-4()24(4sin lim→+++++=x x x x x16)24(44[lim 4)24(4sin lim 0→0→=++=++=x xxsim x x x x x微积分初步形成性考核作业(二)解答(除选择题)————导数、微分及应用一、填空题(每小题2分,共20分) 1.曲线1)(+=x x f 在)2,1(点的斜率是21 2.曲线xx f e )(=在)1,0(点的切线方程是1+=x y 3.曲线21x y =在点)1,1(处的切线方程是03-2=+y x 4.=′)2(xxx22ln 25.若y = x (x – 1)(x – 2)(x – 3),则y ′(0) =_-6 6.已知x x x f 3)(3+=,则)3(f ′3ln 2727+=.7.已知x x f ln )(=,则)(x f ′′=21x8.若xx x f e)(=,则=′′)0(f 29.函数2)1-(3x y =的单调增加区间是)∞,1[+ 10.函数1)(2+=ax x f 在区间)∞,0(+内单调增加,则a 应满足0≥a二、单项选择题(每小题2分,共24分) 1.函数2)1(+=x y 在区间)2,2-(是( D ) A .单调增加 B .单调减少 C .先增后减 D .先减后增2.满足方程0)(=′x f 的点一定是函数)(x f y =的( C ). A .极值点 B .最值点 C .驻点 D . 间断点 3.若x x f xcos e)(=,则)0(f ′=( C ).A . 2B . 1C . -1D . -2 4.设x y 2lg =,则=y d ( B ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 5..设)(x f y =是可微函数,则=)2(cos d x f ( D ). A .x x f d )2(cos 2′ B .x x x f d22sin )2(cos ′ C .x x x f d 2sin )2(cos 2′ D .x x x f d22sin )2(cos ′6.曲线1e2+=xy 在2=x 处切线的斜率是( C ).A .4e B .2e C .42e D .27.若x x x f cos )(=,则=′′)(x f ( C ). A .x x x sin cos + B .x x x sin -cosC .x x x cos -sin 2-D .x x x cos sin 2+ 8.若3sin )(a x x f +=,其中a 是常数,则=′′)(x f ( C ). A .23cos a x + B .a x 6sin + C .x sin - D .x cos9.下列结论中( A )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .若)(x f 在[a ,b ]内恒有0)(<′x f ,则在[a ,b ]内函数是单调下降的. 10.若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =)(lim 0→,但)(≠0x f AC .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微11.下列函数在指定区间)∞, +上单调增加的是( B ). A .sin x B .e x C .x 2 D .3 - x12.下列结论正确的有( A ). A .x 0是f (x )的极值点,且f ′(x 0)存在,则必有f ′(x 0) = 0 B .x 0是f (x )的极值点,则x 0必是f (x )的驻点 C .若f ′(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f ′不存在的点x 0,一定是f (x )的极值点 三、解答题(每小题7分,共56分) ⒈设xx y 12e =,求y ′.解:x x xx e xe xe x xe y 112121-2)1-(2=+=′x e x 1)1-2(= 2.设x x y 3cos 4sin +=,求y ′.解:x x x y sin cos 3-4cos 42=′3.设x y x 1e1+=+,求y ′. 解:211-121xex y x ++=′4.设x x x y cos ln +=,求y ′. 解:x x x x x y tan -23cos sin 23=+=′ 5.设)(x y y =是由方程4-22=+xy y x 确定的隐函数,求y d . 解:两边微分:0)(-22=++xdy ydx ydy xdx xdx ydx xdy ydy 2--2= dx xy xy dy -22-=6.设)(x y y =是由方程1222=++xy y x 确定的隐函数,求y d . 解:两边对1222=++xy y x 求导,得:0)(222=′++′+y x y y y x 0=′++′+y x y y y x ,)(-)(y x y y x +=′+,1-=′y dx dx y dy -=′=7.设)(x y y =是由方程4e e 2=++x x y x 确定的隐函数,求y d . 解:两边微分,得:02=+++xdx dy xe dx e dx e yyxdx x e e dy xe yxy)2(-++=,dx xe xe e dy yy x 2-++= 8.设1e )cos(=++yy x ,求y d . 解:两边对1e )cos(=++yy x 求导,得:0)sin()1(=′++′+y e y y x y0)sin(-)sin(-=′++′+ye y y x y y x )sin()]sin(-[y x y y x e y+=′+ )sin(-)sin(y x e y x y y ++=′dx y x e y x dx y dy y)sin()sin(++=′=微积分初步形成性考核作业(三)解答(填空题除外)———不定积分,极值应用问题一、填空题(每小题2分,共20分)1.若)(x f 的一个原函数为2ln x ,则=)(x f 。