工程力学实验指导书2011
10工程力学实验指导书初稿

《理论力学》实验部分实验一:单自由度系统自由振动(无阻尼)一、实验目的1. 记录小阻尼情况下衰减振动的时间――位移曲线,了解阻尼对自由振动的影响。
2. 测量并计算单自由度系统的对数减缩率δ、阻尼系数n 和阻尼比ζ测量系统的固有频率。
3.了解振动实验仪器。
二、实验装置框图和实验原理1.实验框图图1 单自由度自由衰减振动实验框图2.实验原理把质量与钢尺组成的系统视为单自由度系统,在给予一定的初始扰动以后使之产生衰减振动,衰减振动信号经加速度传感器拾振,再经过电荷放大器和信号采集硬件采集后,送入计算机进行显示、记录,并由打印机打印波形和结果。
(1) 单自由度系统在小阻尼下的振动是衰减振动,位移随时间的变化规律为sin()Nt d X Ae t ωθ-=+,时间――位移曲线如后图所示。
利用该曲线可以求出对数减缩率 δ、阻尼系数n 和阻尼比 ζ 对数减缩率为1ln i i A A δ+=,或1ln i i mA m A δ+=(m 为间隔 m 周期)。
(2) 阻尼系数d dn f T δδ==。
(3) 阻尼比2(2)2d nT δζδπζπ===≈。
图2自由衰减振动的加速度波形(4) 加速度随时间的变化规律sin()nt d X A e t αωβ-=+ ,除初相位、幅值不同外,衰减规律与时间――位移曲线相同。
由时间――加速度曲线按相同的方法,也可测量系统的固有频率和阻尼比。
三、实验仪器实验模型;加速度传感器;电荷放大器;信号采集箱和振动信号处理软件;计算机和打印机。
四、实验步骤1. 打开电源总开关;2. 依次打开电荷放大器、信号采集箱、计算机和打印机电源开关;3. 启动振动信号采集系统,设置采集硬件参数,并设采集方式为触发采集;4. 给实验模型一个初始的位移干扰,使其作自由衰减振动;5. 由采集硬件和软件记录自由衰减振动的加速度波形,参看图2。
五、实验数据及结果1.自由衰减振动曲线 (附测试图) 。
工程力学实验指导书.

第一章绪论§1.1 工程力学实验的内容实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。
例如材料力学中应力应变的线性关系就是虎克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。
不仅如此,实验对材料力学有着更重要的一面。
因为材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。
在解决工程设计的强度,刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数。
这些常数只有靠材料试验测试才能得到。
有时实际工程中构件的几何形状和载荷都十分复杂,构件中的应力单纯靠计算难以得到正确的数据,这种情况下必须借助于实验应力分析的手段才能解决。
因此,材料力学实验是学习材料力学课程不可缺少的重要环节。
材料力学实验包括以下三个方面的内容:1.测定材料的力学性能材料的力学性能是指在力或能的作用下,材料在变形、强度等方面表现出的一些特性,如弹性极限、屈服极限(屈服强度)、强度极限、弹性模量、疲劳极限、冲击韧性等。
这些强度指标或参数都是构件强度、刚度和稳定性计算的依据,而它们一般要通过实验来测定。
此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。
随着材料科学的发展,各种新型合金材料、合成材料不断涌现,力学性能的测定,是研究每一中新型材料的重要任务。
2.验证理论公式的正确性材料力学的一些理论是以某些假设为基础的,例如杆件的弯曲理论就以平面假设为基础。
用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。
至于新建立的理论和公式,用实验来验证更是必不可少的。
实验是验证、修正和发展理论的必要手段。
3.实验应力分析某些情况下,例如因构件几何形状不规则,受力复杂或精确的边界条件难以确定等,应力分析计算难于获得准确结果。
工程力学实验指导书

材料力学实验指导书工程训练中心工程力学实验室2005年10月目录第一部分材料的力学性能实验 (3)实验一低碳钢和铸铁的拉伸实验 (3)实验二低碳钢和铸铁的压缩实验 (10)实验三金属材料的扭转实验 (12)第二部分应力分析实验电测法基础 (14)实验四弯曲正应力测定 (21)实验五薄壁圆管弯扭组合变形应变测定实验 (24)实验六材料弹性模量E和泊松比μ测定实验 (28)材料的力学性能试验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
实验一 低碳钢和铸铁的拉伸实验一、实验目的1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。
2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。
3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。
4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。
5.打印低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。
二、实验设备和仪器1.CMT5305微机控制万能材料实验机2.CMT5205微机控制万能材料试验机3.游标卡尺等三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
非常经典的工程力学实验指导书+题.

《工程力学》实验指导书主编:2011年11月目录实验一拉伸和压缩实验 (3)实验二梁弯曲正应力实验 (8)实验三金属材料扭转实验 (12)实验一 拉伸和压缩实验 拉伸实验一、实验目的1.观察与分析低碳钢、灰铸铁在拉伸过程中的力学现象并绘制拉伸图。
2.测定低碳钢的σs 、σb 、δ、ψ 和灰铸铁的σb 。
3.比较低碳钢与灰铸铁的机械性能。
二、实验内容 1.低碳钢拉伸实验材料的机械性能指标σs 、σb 、δ 和ψ 由常温、静载下的轴向拉伸破坏试验测定。
整个试验过程中,力与变形的关系可由拉伸图表示,被测材料试件的拉伸图由试验机自动记录显示。
低碳钢的拉伸图比较典型,可分为四个阶段 :直线阶段OA ——此阶段拉力与变形成正比,所以也称为线弹性变形阶段,A 点对应的载荷为比例极限载荷Fp ;屈服阶段BC ——曲线常呈锯齿形,此阶段拉力的变化不大,但变形迅速增加,此段内曲线上的最高点称为上屈服点B ,,最低点称为下屈服点B ,因下屈服点B 比较稳定,工程上一般以B 点对应的力值作为屈服载荷Fs ;强化阶段CD ——此阶段拉力增加变形也继续增加,但它们不再是线性关系,其最高点D 对应的力值为最大载荷Fb ;颈缩阶段DE ——过了D 点,试件开始出现局部收缩(颈缩),直至试件被拉断。
图1-1为低碳钢拉伸图。
图1-1 图1-2F2.灰铸铁拉伸实验对于灰铸铁,由于拉伸时的塑性变形极小,在变形很小时就达到最大载荷而突然断裂,没有明显的屈服和颈缩现象,其强度极限即为试件断裂时的名义应力。
图1-2为铸铁拉伸图。
三、实验仪器、设备1.600KN 微机屏显式液压万能试验机; 2.游标卡尺。
四、实验原理1.根据低碳钢拉伸载荷F s 、F b 计算屈服极限σs 和强度极限σb 。
2.根据测得的灰铸铁拉伸最大载荷F b 计算强度极限σb 。
3.根据拉断前后的试件标距长度和横截面面积,计算低碳钢的延伸率δ和截面收缩率ψ。
%100001⨯-=L L L δ %100010⨯-=A A A ψ五、实验步骤(一)实验准备1.打开计算机,双击计算机桌面上的TestExpert 图标,试验软件启动。
北航工程力学实验讲义-201109

实验一材料在轴向拉伸、压缩和扭转时的力学性能预习要求:1、复习教材中有关材料在拉伸、压缩、扭转时力学性能的内容;2、预习本实验内容及微控电子万能试验机的原理和使用方法;一、实验目的1、观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限σ,强s 度极限σ,延伸率δ和断面收缩率ψ;b2、观察铸铁在轴向拉伸时的各种现象;3、观察低碳钢和铸铁在轴向压缩过程中的各种现象;4、观察低碳钢和铸铁在扭转时的各种现象;5、掌握微控电子万能试验机的操作方法。
二、实验设备与仪器1、微控电子万能试验机;2、扭转试验机;3、50T微控电液伺服万能试验机;4、游标卡尺。
三、试件试验表明,试件的尺寸和形状对试验结果有影响。
为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。
根据国家标准(GB6397—86),将金属拉伸比例试件的尺寸列表如下:d0=10mm,标距l0=100mm.。
本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件h/d0=2,d 0=15mm, h =30mm (图二)。
本实验的扭转试件按国家标准(GB6397-86)制做。
四、实验原理和方法(一)低碳钢的拉伸试验实验时,首先将试件安装在试验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量试验段的变形。
然后开动试验机,缓慢加载,同时,与试验机相联的微机会自动绘制出载荷—变形曲线(F —∆l 曲线,见图三)或应力—应变曲线(σ—ε曲线,见图四)。
随着载荷的逐渐增大,材料呈现出不同的力学性能:1、线性阶段在拉伸的初始阶段,σ—ε曲线为一直线,说明应力σ与应变ε成正比,即满足胡克定律。
线性段的最高点称为材料的比例极限(σp ),线性段的直线斜率即为材料的弹性模量E 。
若在此阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe )。
一般对于钢等许多材料,其弹性极限与比例极限非常接近。
工程力学实验指南

工程力学实验指导书仲恺农业工程学院机电工程系2008.1前言材料力学是研究工程材料力学性能和构件强度、刚度和稳定性计算理论的科学,主要任务是按照安全、适用与经济的原则,为设计各种构件(主要是杆件)提供必要的理论和计算方法以及实验研究方法。
要合理地使用材料,就必须了解材料的力学性能,各种工程材料固有的力学性质要通过相应的试验测得,这是材料力学实验的一个主要任务。
另外,材料力学的理论是以一定的简化和假设为基础。
这些假设多来自实验研究,而所建立理论的正确性也必须通过实验的检验,这是材料力学实验的第二个任务。
材料力学实验的第三个任务是通过工程结构模型或直接在现场测定实际结构中的应力和变形,进行实验应力分析,为工程结构的设计和安全评估提供可靠的科学依据。
从以上所述各项任务中,不难看到材料力学实验的重要性,它与材料力学的理论部分共同构成了这门学科的两个缺一不可的环节。
学生在学习并进行材料力学实验时,应注意学习实验原理、试验方法和测试技术,逐步培养科学的工作习惯和独立分析、解决问题的能力,要善于提出问题,勤于思考,勇于创新。
这样才能牢固地掌握材料力学课程的基本内容,为将来参加祖国社会主义现代化建设打下坚实的基础。
指导书中将实验内容分为“基本实验”和“选做实验”两个层次,这样既可保证实验教学的基本要求,又可根据不同的需求进行选择,以期在培养学生的综合分析能力和创新能力方面发挥重大作用。
本实验指导书中难免存在缺点和错误之处,请师生们指正,以便今后进一步修改和完善。
基本实验 1低碳钢和灰口铸铁的拉伸、压缩实验一、实验目的1.试样在拉伸或压缩实验过程中,观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。
2.测定该试样所代表材料的P S、P b和ΔL等值。
3.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。
4.学习、掌握电子万能试验机的使用方法及其工作原理。
工程力学实验指导书(机制-材料-汽车)
工程力学实验指导书主编:高波副主编:黄士涛实验一 金属材料的拉伸实验一、试验目的1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度s u σ(eH R ),下屈服强度sL σ(eL R )和抗拉强度b σ(m R )。
2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率δ(A )和断面收缩率ψ(Z )。
3.测定灰铸铁(HT200)的强度性能指标:抗拉强度b σ(m R )。
4.观察、比较低碳钢(Q235 钢)和铸铁两种材料的力学性能、拉伸过程及破坏现象。
5. 学习试验机的使用方法。
二、设备和仪器1.WES-600S 型电液式万能试验机。
2.Q235钢和HT200铸铁试样,游标卡尺,钢直尺,划线笔。
三、试样国标GB/T228-2002采用直径d 0=10mm (名义尺寸)的圆形截面长比例试样。
四、实验原理1)低碳钢(Q235 钢)的拉伸实验将试样安装在试验机的上下夹头中,连接试验机和计算机的数据线,启动试验机对试样加载,计算机自动绘制出载荷位移曲线。
观察试样的受力、变形直至破坏的全过程。
屈服阶段反映在F l -∆曲线图上为一水平波动线。
上屈服力su F 是试样发生屈服而载荷首次下降前的最大载荷。
下屈服力sL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。
最大力b F 是试样在屈服阶段之后所能承受的最大载荷。
相应的强度指标由以下公式计算:上屈服强度s u σ(eH R ) :susU 0F A σ=(1-1)图1-1 试样图1-2 低碳钢的拉伸曲线下屈服强度sL σ(eL R ): sLsL 0F A σ=(1-2) 抗拉强度b σ(m R ): bb 0F A σ=(1-3) 测量断后的标距部分长度u l 和颈缩处最小直径d u ,按以下两式计算其主要塑性指标:断后伸长率δ(A ):100%u l l l δ-=⨯ (1-4) 式中0l 为试样原始标距长度,l 为试样断后的标距部分长度。
工程力学B(二)实验指导书
《工程力学B(二)》实验指导书高孟芬编闽南理工学院光电与机电工程系2012年2月前言一、实验的内容材料力学实验是学习材料力学课程的重要组成部分,是理论联系实际的实践性教学环节,对于提高学生的实践能力、设计能力和创新能力具有重要意义。
材料力学实验内容具体包括以下三个方面。
1、测定材料的力学性质材料的各项强度指标,如屈服极限、强度极限等,以及材料的弹性性能指标,如弹性极限、弹性模量、泊松比等,都是设计构件的基本参数和依据,而这些指标一般是试验来测定的。
2、验证理论材料力学常将实际问题抽象为理想模型,再由科学假设推导出一般性结论和公式。
但是这些假设和结论是否正确,理论公式能否应用于实际之中,必须通过实验来验证。
3、实验应力分析工程上很多构件的形状和受载情况都比较复杂,单纯依靠理论计算不易得到满意的结果,必须用实验的方法来了解构件的应力分布规律,从而解决强度问题,这种办法称为实验应力分析。
目前实验应力分析的方法很多,这里只介绍应用较广的电测法。
通过材料力学的实验课,要求学生初步掌握变形和应变的基本测试方法及主要测试仪器的操作规程,以及实验结果整理方法等基本内容。
二、实验要求材料力学试验过程中主要是测量作用在试件上的载荷和试件产生的变形,它们往往要同时测量,要求同组同学必须协同完成,因此,实验时应注意以下几个方面。
1、实验前的准备工作实验课前,每位学生都必须进行充分的预习和实验准备,明确本次实验目的、原理和实验步骤,了解所使用的试验机、仪器等的基本构造原理,熟悉实验规则和仪器设备的操作规程,拟定好加载方案,并应写出预习报告。
实验小组成员应明确分工,以便在实验中分别进行受力、变形等参数的记录。
2、进行实验实验过程中应精心操作,细心观察,测量和记录各种实验现象和数据。
若出现异常现象应及时报告实验指导老师,并作好原始记录。
3、撰写实验报告在实验结束时要及时编写实验报告。
实验报告包括:实验名称、实验日期、实验者及同级组人员、实验目的及装置、使用的仪器设备、实验原理及方法、实验数据及其处理、计算和实验结果分析。
《工程力学》实验指导书
《工程力学》实验指导书上海海洋大学金属材料拉伸实验一、实验目的1.测定低碳钢(如Q 235钢这种典型塑性材料)的下列力学性能指标:下屈服强度R ec (或称屈服极限、屈服点σs )、抗拉强度R m (或强度极限σb )、断后伸长率A 和断面收缩率z 。
2.测定铸铁(典型脆性材料)的抗拉强度R m (或强度极限σb )。
3.观察塑性与脆性两种材料在拉伸过程中的各种现象。
4.比较并分析低碳钢和铸铁的力学性能特点与断口破坏特征。
二、实验仪器和设备1.万能材料试验机,拉力试验机,电子式拉力试验机。
2.电子引伸计。
3.游标卡尺。
4.试样划线器。
三、实验试样大量实验表明,实验时所用试样的形状、尺寸、取样位置和方向、表面粗糙度等因素,对其性能测试结果都有一定影响。
为了使金属材料拉伸实验的结果具有符合性与可比性,国家制订有统一标准。
本实验按照GB/T228-2002 eqv ISO6892—1998《金属材料 室温拉伸试验方法》第六章试样的要求制备试样。
拉伸试样系由夹持、过渡和平行三部分构成。
试样两端较粗段为夹持部分,其形状和尺寸可依实验室现有使用试验机夹头情况而定;试样两夹持段之间的均匀部分为实验测试的平行部分;而夹持与平行二部分之间为过渡部分,通常用圆弧进行光滑连接,以减少应力集中。
拉伸试验可分为机加工试样和不经机加工的原状全截面试样。
通常采用机加工的圆形截面试样如图1(a )所示,亦可采用矩形截面试样如图1(b )所示。
图中L c 为试样平行段长度,L 0为试样原始标距(或称测量伸长变形的工作长度),d 为圆形试样平行部分的原始直径,a 为矩形试样平行部分的原始厚度,b 为矩形试样平行部分的原始宽度,S 0为试样平行部分原始横截面面积,r 为过渡弧半径。
拉伸试样分为比例和非比例标距两种。
比例试样系按公式0S K L =计算确定的试样,式中系数K 通常为5.65或11.3,前者称为短试样,后者称为长试样。
工程力学实验指导书
工程力学实验指导书武汉科技学院机电工程学院目录实验一低碳钢和铸铁的拉伸、压缩实验 (1)实验二梁弯曲的正应力实验 (5)实验三薄壁圆筒在弯扭组合变形下主应力测定 (8)实验四纯扭转实验 (11)附录..................................................1、组合式材料力学多功能实验台 (13)2、电测法的基本原理 (15)实验一低碳钢和铸铁的拉伸、压缩实验一.实验目的1.用引伸计测定塑性材料的弹性模量;2.测定塑性材料的上下屈服强度R eH ,R eL 、抗拉强度Rm 、断后伸长率A和截面收缩率Z;3.测定脆性材料的抗拉强度Rm ;4.观察和分析上述两种材料在拉伸过程中的各种现象,并比较它们力学性质的差异;5.绘制两种材料的应力-伸长率曲线;6.了解材料试验机微机数据采集系统的构造和工作原理,掌握其使用方法。
二.实验仪器、设备万能材料试验机,引伸计,力传感器,材料试验机微机数据采集系统、游标卡尺等。
试件最常见的拉伸试件的截面是圆形和矩形,如图1-1a、b所示。
夹持过渡夹持过渡hbl0 dl0 l0(a) (b)图1 试件的截面形式试样分为夹持部分、过渡部分和待测部分(l)。
标距(l0)是待测部分的主体,其截面积为S0。
按标距(l0)与其截面积(S0)之间的关系,拉伸试样可分为比例试样和非比例试样。
按国家标准GB228-2002的规定,比例试样的有关尺寸如下表1-1。
表1-1试样标距l0,(mm) 截面积S0,(mm2)圆形试样直径d,(mm)延伸率比例长11.30S或10d 任意任意A短 5.65S或5 d A三.实验原理(一)塑性材料弹性模量的测试:在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
因此金属材料拉伸时弹性模量E地测定是材料力学最主要最基本的一个实验。
测定材料弹性模量E一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:00ES FL L ∆=∆若已知载荷ΔF 及试件尺寸,只要测得试件伸长ΔL 或纵向应变即可得出弹性模量E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章材料的力学性能试验 (1)第一节拉伸试验 (1)第二节压缩试验 (7)参考文献 (29)实验报告 (30)第一章 材料的力学性能试验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
第一节 拉伸试验一、实验目的1. 测定低碳钢拉伸时的强度及塑性性能指标:屈服应力s σ、抗拉强度b σ及伸长率δ、断面收缩率ψ。
2. 测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。
3. 比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。
二、实验设备和仪器1. 液压式万能试验机。
2. 电子式万能试验机。
3. 游标卡尺。
三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )圆形截面试样(b )矩形截面试样 图1-1-1 拉伸试样四、实验原理与方法1.测定低碳钢拉伸时的强度和塑性性能指标(1)强度性能指标屈服应力(屈服点)s σ——试样在拉伸过程中载荷基本不变而试样仍能继续产生变形时的载荷(即屈服载荷)s F 除以原始横截面面积A 所得的应力值,即AF s s =σ抗拉强度b σ——试样在拉断前所承受的最大载荷b F 除以原始横截面面积A 所得的应力值,即A F b b =σ(2)塑性性能指标延伸率δ——拉断后的试样标距部分所增加的长度与原始标距长度的百分比,即%1001⨯-=l ll δ式中:l 为试样的原始标距;1l 为将拉断的试样对接起来后两标点之间的距离。
低碳钢是具有明显屈服现象的塑性材料,在局部变形阶段,可以看到,在试样的某一部位局部变形加快,出现颈缩现象,随后试样很快被拉断。
试样的塑性变形集中产生在颈缩处,并向两边逐渐减小。
因此,断口的位置不同,标距l 部分的塑性伸长也不同。
若断口在试样的中部,发生严重塑性变形的颈缩段全部在标距长度内,标距长度就有较大的塑性伸长量;若断口距标距端很近,则发生严重塑性变形的颈缩段只有一部分在标距长度内,另一部分在标距长度外,在这种情况下,标距长度的塑性伸长量就小。
因此,断口的位置对所测得的伸长率有影响。
为了避免这种影响,国家标准GB228—87对1l 的测定作了如下规定。
测量时,两段在断口处应紧密对接,尽量使两段的轴线在一条直线上。
若在断口处形成缝隙,则此缝隙应计入1l 内。
如果断口在标距以外,或者虽在标距之内,但距标距端点的距离小于d 2,则试验无效。
断面收缩率ψ——拉断后的试样在断裂处的最小横截面面积的缩减量与原始横截面面积的百分比,即%1001⨯-=AA A ψ 式中:A 为试样的原始横截面面积;1A 为拉断后的试样在断口处的最小横截面面积。
2.测定灰铸铁拉伸时强度性能指标灰铸铁在拉伸过程中,当变形很小时就会断裂,万能试验机的指针所指示的最大载荷b F 除以原始横截面面积A 所得的应力值即为抗拉强度b σ,即A F b b =σ五、实验步骤1.低碳钢拉伸(1) 测量试样的尺寸。
在试样标距范围内的中间以及两标距点的内侧附近,分别用游标卡尺在相互垂直方向上测取试样直径的平均值为试样在该处的直径,取三者中的最小值作为计算直径。
(2) 试样安装。
按操作规程使用电子万能试验机拉伸试样,观察屈服和颈缩现象,直至试样被拉断为止,并分别记录屈服载荷s F 和最大载荷b F 。
并打印实验数据。
(3) 取下拉断的试样,将断口吻合压紧,用游标卡尺量取断口处的最小直径和两标点之间的距离。
2.灰铸铁拉伸(1) 测量试样的尺寸。
方法同上。
(2) 试样安装。
按操作规程使用液压万能试验机拉伸试样,观察现象,记录下从动指针所停留位置的最大载荷b F 。
六、实验数据的记录与计算1.表1-1-1 测定低碳钢拉伸时的强度和塑性性能指标试验的数据记录与计算2.表1-1-2 测定灰铸铁拉伸时的强度性能指标试验的数据记录与计算3.计算精确度(1) 强度性能指标(屈服应力s σ和抗拉强度b σ)的计算精度要求为MPa 5.0,即:凡<MPa 25.0 的数值舍去,≥MPa 25.0而<MPa 75.0的数值化为MPa 5.0,≥MPa 75.0的数值者则进为MP a 1。
(2) 塑性性能指标(伸长率δ和断面收缩率ψ)的计算精度要求为%5.0,即:凡<%25.0的数值舍去,≥%25.0而<%75.0的数值化为%5.0,≥%75.0的数值则进为%1。
七、注意事项1. 实验时必须严格遵守实验设备和仪器的各项操作规程,严禁开“快速”档加载。
加载时速度要均匀缓慢,防止冲击。
开动万能试验机后,操作者不得离开工作岗位,实验中如发生故障应立即停机。
八、思考题1.低碳钢和灰铸铁在常温静载拉伸时的力学性能和破坏形式有何异同?2.测定材料的力学性能有何实用价值?3.你认为产生试验结果误差的因素有哪些?应如何避免或减小其影响?第二节 压缩试验一、实验目的1.测定金属材料压缩时的强度性能指标:低碳钢-屈服应力s σ;灰铸铁-抗压强度bc σ。
2.绘制低碳钢和灰铸铁的压缩图,比较低碳钢与灰铸铁在压缩时的变形特点和破坏形式。
二、实验设备和仪器1.万能试验机。
2.游标卡尺。
三、实验试样按照国家标准GB7314—87《金属压缩试验方法》,金属压缩试样的形状随着产品的品种、规格以及试验目的的不同而分为圆柱体试样、正方形柱体试样和板状试样三种。
其中最常用的是圆柱体试样和正方形柱体试样,如图1-2-1所示。
根据试验的目的,对试样的标距l 作如下规定:()d l 2~1=的试样仅适用于测定bc σ;()d l 5.3~5.2=(或b )的试样适用于测定pc σ、sc σ和bc σ;()d l 8~5=(或b )的试样适用于测定pc0.01σ和c E 。
其中d (或b )m m 20~10=。
(a )圆柱体试样 (b )正方形柱体试样图1-2-1 压缩试样对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
四、实验原理与方法1.测定低碳钢压缩时的强度性能指标低碳钢在压缩过程中,当应力小于屈服应力时,其变形情况与拉伸时基本相同。
当达到屈服应力后,试样产生塑性变形,随着压力的继续增加,试样的横截面面积不断变大直至被压扁。
故只能测其屈服载荷s F ,屈服应力为AF ss =σ 式中:A 为试样的原始横载面面积。
2.测定灰铸铁压缩时的强度性能指标灰铸铁在压缩过程中,当试样的变形很小时即发生破坏,故只能测其破坏时的最大载荷bc F ,抗压强度为AF σbc bc =五、实验步骤1. 检查试样两端面的光洁度和平行度,并涂上润滑油。
用游标卡尺在试样的中间截面相互垂直的方向上各测量一次直径,取其平均值作为计算直径。
2. 估算试样的最大载荷,选择相应的测力盘,配置好相应的摆锤。
调整测力指针,使之对准“0”,将从动指针与之靠拢,同时调整好自动绘图装置。
3. 检查球形承垫与承垫是否符合要求。
4. 将试样放进万能试验机的上、下承垫之间,并检查对中情况。
5. 开动万能试验机,均匀缓慢加载,注意读取低碳钢的屈服载荷s F 和灰铸铁的最大载荷b F ,并注意观察试样的变形现象。
六、实验数据的记录与计算表1-2-1 测定低碳钢和灰铸铁压缩时的强度性能指标试验的数据记录与计算七、思考题1. 比较低碳钢和灰铸铁在拉伸与压缩时所测得的s σ和b σ的数值有何差别?2. 仔细观察灰铸铁的破坏形式并分析破坏原因。
附录A 万能试验机介绍1 )机械液压式万能试验机测定材料的力学性能的主要设备是材料试验机。
常用的材料试验机有拉力试验机、压力试验机、扭转试验机、冲击试验机、疲劳试验机等。
能兼作拉伸、压缩、弯曲等多种实验的试验机称为万能材料试验机,或简称为万能机。
供静力实验用的万能材料试验机有液压式、机械式、电子机械式等类型。
现以国产WE系列为例介绍液压式万能材料试验机。
图1-1-3为这一系列中最常见的WE—100A、300、600试验机,其结构简图如图1-1-3、1-1-4所示。
现分别介绍其加载系统和测力系统。
加载系统图 1 图1-1-3在底座1上由两根固定立柱2和固定横梁3组成承载框架。
工作油缸4固定于框架上。
在工作油缸的活塞5上,支承着由上横梁6、活动立柱7和活动平台8组成的活动框架。
当油泵16开动时,油液通过送油阀17,经送油管18进人工作油缸,把活塞5连同活动平台8一同顶起。
这样,如把试样安装于上夹头9和下夹头12之间,由于下夹头固定,上夹头随活动平台上升,试样将受到拉伸。
若把试样置放于两个承压垫板11之间,或将受弯试样置放于两个弯曲支座10上,则因固定横梁不动而活动平台上升,试样将分别受到压缩或弯曲。
此外,实验开始前如欲调整上、下夹头之间的距离,则可开动电机14,驱动螺杆13,便可使下夹头12上升或下降。
但电机14不能用来给试样施加拉力。
测力系统加载时,开动油泵电机,打开送油阀17,油泵把油液送人工作油缸4顶起工作活塞5给试样加载;同时,油液经回油管19及测力油管21(这时回油阀20是关闭的,油液不能流回油箱37),进入测力油缸22,压迫测力活塞23,使它带动拉杆24向下移动,从而迫使摆杆26和摆锤25联同推杆27绕支点偏转。
推杆偏转时,推动齿杆28作水平移动,于是驱动示力盘的指针齿轮,使示力指针29绕示力度盘30的中心旋转。
示力指针旋转的角度与测力油缸活塞上的总压力(即拉杆24所受拉力)成正比。
因为测力油缸和工作油缸中油压压强相同,两个油缸活塞上的总压力成正比(活塞面积之比)。
这样,示力指针的转角便与工作油缸活塞上的总压力,亦即试样所受载荷成正比。
经过标定便可使指针在示力度盘上直接指示载荷的大小。
试验机一般配有重量不同的摆锤,可供选择。