工程力学实验指导
工程力学实验指导书.

第一章绪论§1.1 工程力学实验的内容实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。
例如材料力学中应力应变的线性关系就是虎克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。
不仅如此,实验对材料力学有着更重要的一面。
因为材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。
在解决工程设计的强度,刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数。
这些常数只有靠材料试验测试才能得到。
有时实际工程中构件的几何形状和载荷都十分复杂,构件中的应力单纯靠计算难以得到正确的数据,这种情况下必须借助于实验应力分析的手段才能解决。
因此,材料力学实验是学习材料力学课程不可缺少的重要环节。
材料力学实验包括以下三个方面的内容:1.测定材料的力学性能材料的力学性能是指在力或能的作用下,材料在变形、强度等方面表现出的一些特性,如弹性极限、屈服极限(屈服强度)、强度极限、弹性模量、疲劳极限、冲击韧性等。
这些强度指标或参数都是构件强度、刚度和稳定性计算的依据,而它们一般要通过实验来测定。
此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。
随着材料科学的发展,各种新型合金材料、合成材料不断涌现,力学性能的测定,是研究每一中新型材料的重要任务。
2.验证理论公式的正确性材料力学的一些理论是以某些假设为基础的,例如杆件的弯曲理论就以平面假设为基础。
用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。
至于新建立的理论和公式,用实验来验证更是必不可少的。
实验是验证、修正和发展理论的必要手段。
3.实验应力分析某些情况下,例如因构件几何形状不规则,受力复杂或精确的边界条件难以确定等,应力分析计算难于获得准确结果。
非常经典的工程力学实验指导书+题.

《工程力学》实验指导书主编:2011年11月目录实验一拉伸和压缩实验 (3)实验二梁弯曲正应力实验 (8)实验三金属材料扭转实验 (12)实验一 拉伸和压缩实验 拉伸实验一、实验目的1.观察与分析低碳钢、灰铸铁在拉伸过程中的力学现象并绘制拉伸图。
2.测定低碳钢的σs 、σb 、δ、ψ 和灰铸铁的σb 。
3.比较低碳钢与灰铸铁的机械性能。
二、实验内容 1.低碳钢拉伸实验材料的机械性能指标σs 、σb 、δ 和ψ 由常温、静载下的轴向拉伸破坏试验测定。
整个试验过程中,力与变形的关系可由拉伸图表示,被测材料试件的拉伸图由试验机自动记录显示。
低碳钢的拉伸图比较典型,可分为四个阶段 :直线阶段OA ——此阶段拉力与变形成正比,所以也称为线弹性变形阶段,A 点对应的载荷为比例极限载荷Fp ;屈服阶段BC ——曲线常呈锯齿形,此阶段拉力的变化不大,但变形迅速增加,此段内曲线上的最高点称为上屈服点B ,,最低点称为下屈服点B ,因下屈服点B 比较稳定,工程上一般以B 点对应的力值作为屈服载荷Fs ;强化阶段CD ——此阶段拉力增加变形也继续增加,但它们不再是线性关系,其最高点D 对应的力值为最大载荷Fb ;颈缩阶段DE ——过了D 点,试件开始出现局部收缩(颈缩),直至试件被拉断。
图1-1为低碳钢拉伸图。
图1-1 图1-2F2.灰铸铁拉伸实验对于灰铸铁,由于拉伸时的塑性变形极小,在变形很小时就达到最大载荷而突然断裂,没有明显的屈服和颈缩现象,其强度极限即为试件断裂时的名义应力。
图1-2为铸铁拉伸图。
三、实验仪器、设备1.600KN 微机屏显式液压万能试验机; 2.游标卡尺。
四、实验原理1.根据低碳钢拉伸载荷F s 、F b 计算屈服极限σs 和强度极限σb 。
2.根据测得的灰铸铁拉伸最大载荷F b 计算强度极限σb 。
3.根据拉断前后的试件标距长度和横截面面积,计算低碳钢的延伸率δ和截面收缩率ψ。
%100001⨯-=L L L δ %100010⨯-=A A A ψ五、实验步骤(一)实验准备1.打开计算机,双击计算机桌面上的TestExpert 图标,试验软件启动。
《工程力学A》实验指导书.DOC

重庆工商大学机械与包装工程学院工程力学A实验指导书学院班级学号姓名日期实验一、 材料的拉伸实验与压缩实验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
(一) 材料的拉伸试验一、实验目的1. 测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。
2. 测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。
3. 测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。
4. 比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。
二、实验设备和仪器1. 液压式万能试验机。
2. 电子式万能试验机。
3. 游标卡尺。
三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )圆形截面试样(b )矩形截面试样 图1-1-1 拉伸试样四、实验原理与方法1.测定低碳钢拉伸时的强度和塑性性能指标(1)强度性能指标屈服应力(屈服点)s σ——试样在拉伸过程中载荷基本不变而试样仍能继续产生变形时的载荷(即屈服载荷)s F 除以原始横截面面积A 所得的应力值,即AF s s =σ抗拉强度b σ——试样在拉断前所承受的最大载荷b F 除以原始横截面面积A 所得的应力值,即AF b b =σ(2)塑性性能指标延伸率δ——拉断后的试样标距部分所增加的长度与原始标距长度的百分比,即%1001⨯-=ll l δ式中:l 为试样的原始标距;1l 为将拉断的试样对接起来后两标点之间的距离。
工程力学实验指南

工程力学实验指导书仲恺农业工程学院机电工程系2008.1前言材料力学是研究工程材料力学性能和构件强度、刚度和稳定性计算理论的科学,主要任务是按照安全、适用与经济的原则,为设计各种构件(主要是杆件)提供必要的理论和计算方法以及实验研究方法。
要合理地使用材料,就必须了解材料的力学性能,各种工程材料固有的力学性质要通过相应的试验测得,这是材料力学实验的一个主要任务。
另外,材料力学的理论是以一定的简化和假设为基础。
这些假设多来自实验研究,而所建立理论的正确性也必须通过实验的检验,这是材料力学实验的第二个任务。
材料力学实验的第三个任务是通过工程结构模型或直接在现场测定实际结构中的应力和变形,进行实验应力分析,为工程结构的设计和安全评估提供可靠的科学依据。
从以上所述各项任务中,不难看到材料力学实验的重要性,它与材料力学的理论部分共同构成了这门学科的两个缺一不可的环节。
学生在学习并进行材料力学实验时,应注意学习实验原理、试验方法和测试技术,逐步培养科学的工作习惯和独立分析、解决问题的能力,要善于提出问题,勤于思考,勇于创新。
这样才能牢固地掌握材料力学课程的基本内容,为将来参加祖国社会主义现代化建设打下坚实的基础。
指导书中将实验内容分为“基本实验”和“选做实验”两个层次,这样既可保证实验教学的基本要求,又可根据不同的需求进行选择,以期在培养学生的综合分析能力和创新能力方面发挥重大作用。
本实验指导书中难免存在缺点和错误之处,请师生们指正,以便今后进一步修改和完善。
基本实验 1低碳钢和灰口铸铁的拉伸、压缩实验一、实验目的1.试样在拉伸或压缩实验过程中,观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。
2.测定该试样所代表材料的P S、P b和ΔL等值。
3.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。
4.学习、掌握电子万能试验机的使用方法及其工作原理。
工程力学实验指导书(建环)

工程力学实验指导书(建环、给排水、包装工程)2016年 9月目录实验一金属材料的拉伸实验 (2)实验二金属材料的压缩实验 (5)实验三弯曲正应力电测实验 (8)实验一金属材料的拉伸实验一、实验目的和要求1、 观察低碳钢和铸铁在拉伸过程中的力与变形的关系。
2、测定低碳钢拉伸时的屈服极限s σ;强度极限b σ,伸长率δ和截面收缩率φ3、测定铸铁的强度极限b σ。
4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。
5、了解CMT 微机控制电子万能实验机的构造原理和使用方法。
二、实验装置和原理实验仪器设备:CMT 微机控制电子万能实验机、游标卡尺、拉伸试件。
试件制备:实验采用的圆截面短比例试件按国家标准(GB/T 228-2002)制成,如图1-1所示。
这样可以避免因试件尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。
图中:d 0为试件直径,L 0为试件的标距,并且短比例试件要求L 0=5d 0。
图1-1实验原理:试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。
试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。
试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。
低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、颈缩四个阶段。
铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。
抗拉强度σb 较低,无明显塑性变形。
与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs 。
、最大载荷Fb 和铸铁试件的最大载荷Fb 。
图1—2三、实验步骤和数据处理实验步骤:1.测量试件的初始直径d0和初始标距长度l0:在试件标距段的两端和中间三处测量试件直径,每处直径取两个相互垂直方向的平均值,做好记录。
工程力学实验指导书(机制-材料-汽车)

工程力学实验指导书主编:高波副主编:黄士涛实验一 金属材料的拉伸实验一、试验目的1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度s u σ(eH R ),下屈服强度sL σ(eL R )和抗拉强度b σ(m R )。
2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率δ(A )和断面收缩率ψ(Z )。
3.测定灰铸铁(HT200)的强度性能指标:抗拉强度b σ(m R )。
4.观察、比较低碳钢(Q235 钢)和铸铁两种材料的力学性能、拉伸过程及破坏现象。
5. 学习试验机的使用方法。
二、设备和仪器1.WES-600S 型电液式万能试验机。
2.Q235钢和HT200铸铁试样,游标卡尺,钢直尺,划线笔。
三、试样国标GB/T228-2002采用直径d 0=10mm (名义尺寸)的圆形截面长比例试样。
四、实验原理1)低碳钢(Q235 钢)的拉伸实验将试样安装在试验机的上下夹头中,连接试验机和计算机的数据线,启动试验机对试样加载,计算机自动绘制出载荷位移曲线。
观察试样的受力、变形直至破坏的全过程。
屈服阶段反映在F l -∆曲线图上为一水平波动线。
上屈服力su F 是试样发生屈服而载荷首次下降前的最大载荷。
下屈服力sL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。
最大力b F 是试样在屈服阶段之后所能承受的最大载荷。
相应的强度指标由以下公式计算:上屈服强度s u σ(eH R ) :susU 0F A σ=(1-1)图1-1 试样图1-2 低碳钢的拉伸曲线下屈服强度sL σ(eL R ): sLsL 0F A σ=(1-2) 抗拉强度b σ(m R ): bb 0F A σ=(1-3) 测量断后的标距部分长度u l 和颈缩处最小直径d u ,按以下两式计算其主要塑性指标:断后伸长率δ(A ):100%u l l l δ-=⨯ (1-4) 式中0l 为试样原始标距长度,l 为试样断后的标距部分长度。
《工程力学》实验指导书

《工程力学》实验指导书上海海洋大学金属材料拉伸实验一、实验目的1.测定低碳钢(如Q 235钢这种典型塑性材料)的下列力学性能指标:下屈服强度R ec (或称屈服极限、屈服点σs )、抗拉强度R m (或强度极限σb )、断后伸长率A 和断面收缩率z 。
2.测定铸铁(典型脆性材料)的抗拉强度R m (或强度极限σb )。
3.观察塑性与脆性两种材料在拉伸过程中的各种现象。
4.比较并分析低碳钢和铸铁的力学性能特点与断口破坏特征。
二、实验仪器和设备1.万能材料试验机,拉力试验机,电子式拉力试验机。
2.电子引伸计。
3.游标卡尺。
4.试样划线器。
三、实验试样大量实验表明,实验时所用试样的形状、尺寸、取样位置和方向、表面粗糙度等因素,对其性能测试结果都有一定影响。
为了使金属材料拉伸实验的结果具有符合性与可比性,国家制订有统一标准。
本实验按照GB/T228-2002 eqv ISO6892—1998《金属材料 室温拉伸试验方法》第六章试样的要求制备试样。
拉伸试样系由夹持、过渡和平行三部分构成。
试样两端较粗段为夹持部分,其形状和尺寸可依实验室现有使用试验机夹头情况而定;试样两夹持段之间的均匀部分为实验测试的平行部分;而夹持与平行二部分之间为过渡部分,通常用圆弧进行光滑连接,以减少应力集中。
拉伸试验可分为机加工试样和不经机加工的原状全截面试样。
通常采用机加工的圆形截面试样如图1(a )所示,亦可采用矩形截面试样如图1(b )所示。
图中L c 为试样平行段长度,L 0为试样原始标距(或称测量伸长变形的工作长度),d 为圆形试样平行部分的原始直径,a 为矩形试样平行部分的原始厚度,b 为矩形试样平行部分的原始宽度,S 0为试样平行部分原始横截面面积,r 为过渡弧半径。
拉伸试样分为比例和非比例标距两种。
比例试样系按公式0S K L =计算确定的试样,式中系数K 通常为5.65或11.3,前者称为短试样,后者称为长试样。
工程力学实验指导书

工程力学实验指导书武汉科技学院机电工程学院目录实验一低碳钢和铸铁的拉伸、压缩实验 (1)实验二梁弯曲的正应力实验 (5)实验三薄壁圆筒在弯扭组合变形下主应力测定 (8)实验四纯扭转实验 (11)附录..................................................1、组合式材料力学多功能实验台 (13)2、电测法的基本原理 (15)实验一低碳钢和铸铁的拉伸、压缩实验一.实验目的1.用引伸计测定塑性材料的弹性模量;2.测定塑性材料的上下屈服强度R eH ,R eL 、抗拉强度Rm 、断后伸长率A和截面收缩率Z;3.测定脆性材料的抗拉强度Rm ;4.观察和分析上述两种材料在拉伸过程中的各种现象,并比较它们力学性质的差异;5.绘制两种材料的应力-伸长率曲线;6.了解材料试验机微机数据采集系统的构造和工作原理,掌握其使用方法。
二.实验仪器、设备万能材料试验机,引伸计,力传感器,材料试验机微机数据采集系统、游标卡尺等。
试件最常见的拉伸试件的截面是圆形和矩形,如图1-1a、b所示。
夹持过渡夹持过渡hbl0 dl0 l0(a) (b)图1 试件的截面形式试样分为夹持部分、过渡部分和待测部分(l)。
标距(l0)是待测部分的主体,其截面积为S0。
按标距(l0)与其截面积(S0)之间的关系,拉伸试样可分为比例试样和非比例试样。
按国家标准GB228-2002的规定,比例试样的有关尺寸如下表1-1。
表1-1试样标距l0,(mm) 截面积S0,(mm2)圆形试样直径d,(mm)延伸率比例长11.30S或10d 任意任意A短 5.65S或5 d A三.实验原理(一)塑性材料弹性模量的测试:在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
因此金属材料拉伸时弹性模量E地测定是材料力学最主要最基本的一个实验。
测定材料弹性模量E一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:00ES FL L ∆=∆若已知载荷ΔF 及试件尺寸,只要测得试件伸长ΔL 或纵向应变即可得出弹性模量E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉伸实验是测定材料力学性能的最基本最重要的实验之一。
由本实验所测得的结果,可以说明材料在静拉伸下的一些性能,诸如材料对载荷的抵抗能力的变化规律、材料的弹性、塑性、强度等重要机械性能,这些性能是工程上合理地选用材料和进行强度计算的重要依据。
一、实验目的要求
1)测定低碳钢的流动极限、强度极限、延伸率、截面收缩率和铸铁的强度极限。
2)观察低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(曲线)。
3)比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和仪器
材料试验机、游标卡尺、两脚标规等
三、拉伸试件
金属材料拉伸实验常用的试件形状如图所示。
图中工作段长度称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。
为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即或。
对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。
其截面面积和试件标距关系为或,为标距段内的截面积。
四、实验方法与步骤
1、低碳钢的拉伸实验:
1)试件的准备:在试件中段取标距或在标距两端用脚标规打上冲眼作为标志,用游标卡尺
在试件标距范围内测量中间和两端三处直径(在每处的两个互相垂直的方向各测一次取其平均值)取最小值作为计算试件横截面面积用。
2)试验机的准备;首先了解材料试验机的基本构造原理和操作方法,学习试验机的操作规
程。
根据低碳钢的强度极限及试件的横截面积,初步估计拉伸试件所需最大载荷,选择合适的测力度盘,并配置相应的摆锤,开动机器,将测力指针调到“零点”,然后调整试验机下夹头位置,将试件夹装在夹头内。
3)进行实验:试件夹紧后,给试件缓慢均匀加载,用试验机上自动绘图装置,绘出外力和
变形的关系曲线(曲线)如图所示。
从图中可以看出,当载荷增加到点时,拉伸图上段是直线,表明此阶段内载荷与试件的变形成比例关系,即符合虎克定律的弹性变形范围。
当载荷增加到点时,测力计指针停留不动或突然下降到点,然后在小的范围内摆动,这时变形增加很快,载荷增加很慢;这说明材料产生了流动(或者叫屈服)与点相应的应力叫上流动极限,与相应的应力叫下流动极限,因下流动极限比较稳定,所以材料的流动极限一般规定按下流动极限取值。
以点相对应的载荷值除以试件的原始截面积即得到低碳钢的流动极限,流动阶段后,试件要承受更大的外力,才能继续发生变形若要使塑性变形加大,必须增加载荷,如图形中点至点这一段为强化阶段。
当载荷达到最大值(点)
时,试件的塑性变形集中在某一截面处的小段内,此段发生截面收缩,即出现“颈缩”
现象。
此时记下最大载荷值,用除以试件的原始截面积,就得到低碳钢的强度极限。
在试件发生“颈缩”后,由于截面积的减小,载荷迅速下降,到点试件断裂。
关闭机器,取下拉断的试件,将断裂的试件紧对到一起,用游标卡尺测量出断裂后试件标距间的长度,按下式可计算出低碳钢的延伸率。
将断裂的试件的断口紧对在一起,用游标卡尺量出断口(细颈)处的直径,计算出面积;按下式可计算出低碳钢的截面收缩率,
图1-2 图1-3
从破坏后的低碳钢试件上可以看到,各处的残余伸长不是均匀分布的。
离断口愈近变形愈大,离断口愈远则变形愈小,因此测得的数值与断口的部位有关。
为了统一值的计算,规定以断口在标距长度中央的区段内为准,来测量的值,若断口不在区段内时,需要采用断口移中的方法进行换算,其方法如下:
设两标点到之间共刻有格,如图1-4所示,拉伸前各格之间距离相等,在断裂试件较长的右段上从邻近断口的一个刻线起,向右取格,标记为,这就相当于把断口摆在标距中央,再看点至点有多少格,就由点向左取相同的格数,标以记号,令表示到的长度,则的长度中包含的格数等于标距长度内的格数,故。
当断口非常接近试件两端,而与其头部之距离等于或小于直径的两倍时,一般认为实验结果无效,需要重作实验。
2、铸铁的拉伸实验:
1)试件的准备:用游标卡尺在试件标距范围内测量中间和两端三处直径取最小值计算试件
截面面积,根据铸铁的强度极限,估计拉伸试件的最大载荷。
2)试验机的准备;与低碳钢拉伸实验相同
3)进行实验:开动机器,缓慢均匀加载直到断裂为止。
记录最大载荷,观察自动绘图装置
上的曲线,如图1-3所示。
将最大载荷值除以试件的原始截面积,就得到铸铁的强度极限。
因为铸铁为脆性材料在变形很小的情况下就会断裂,所以铸铁的延伸率和截面收缩率很小,很难测出。
实验二压缩实验
在工程实际中,有些构件承受压力,而材料由于载荷形式的不同其表现的机械性能也不同,因此除了通过拉伸实验了解金属材料的拉伸性能外,有时还要作压缩实验来了解金属材料的压缩性能,一般对于铸铁、水泥、砖、石头等主要承受压力的脆性材料才进行压缩实验,而对于塑性金属或合金进行压缩实验是主要目的是为了材料研究。
例如灰铸铁在拉伸和压缩时的强度极限不相同,因此工程上就利用铸铁压缩强度较高这一特点用来制造机床底座、床身、汽缸、泵体等。
一、实验目的和要求
1)测定在压缩时低碳钢的流动极限,及灰铸铁的强度极限。
2)观察它们的破坏现象,并比较这两种材料受压时的特性。
二、实验准备:
材料试验机、游标卡尺
三、试件
金属材料的压缩试件一般制成圆柱形,如图所示,并制定
四、实验方法与步骤
1、低碳钢的压缩实验
1)试件准备:用游标卡尺测量试件的直径。
2)试验机的准备:首先了解试验机的基本构造原理和操作方法,学习试验机的操作规程。
选择合适的测力刻度盘,配置相应的摆锤,开动机器,将刻度盘指针调到零点,然后将试件尽量准确地放在机器活动承垫中心上,使试件承受轴向压力。
3)进行实验:开动机器,使试件缓慢均匀加载,低碳钢在压缩过程中产生流动以前基本情
况与拉伸时相同,载荷到达时,测力盘指针停止不动或倒退,这说明材料产生了流动,当载荷超过点后,塑性变形逐渐增加,试件横截面积逐渐明显地增大,试件最后被压成鼓形而不断裂,故只能测出产生流动时的载荷,由得出材料受压时的流动极限而得不出受压时的强度极限。
图2-2 图2-3
2、铸铁的压缩实验
铸铁压缩与低碳钢的压缩实验方法相同,但铸铁受压时在很小的变形下即发生破坏,只能测出,由得出材料强度极限。
铸铁破坏时的裂缝约与轴线成角左右。
五、注意事项
1)试件一定要放在压头中心以免偏心影响
2)在试件与上压头接触时要特别注意减小油门,使之慢慢接触,以免发生撞击,损坏机器。
3)铸铁压缩时,应注意安全,以防试件破坏时跳出打伤。
六、讨论题
1)低碳钢压缩图与拉伸图有何区别?说明什么问题?
2)铸铁的破坏形式说明什么问题?
3)低碳钢压缩后为什么成鼓形?
实验三扭转实验
在实际工程机械中,有很多传动轴是在扭转情况下工作,设计扭转轴所用的许用剪应力,是根据材料在扭转破坏实验时,所测出的剪切流动极限,或剪切强度极限而求得的。
一、实验目的要求
1)低碳钢的剪切流动极限、剪切强度极限、及铸铁的剪切强度极限。
2)观察断口情况,进行比较和分析。
二、实验设备和仪器
扭转试验机、划线仪、游标卡尺等
三、扭转试件
根据国家标准,一般采用圆截面试件,标距,标距部分直径。
如图4-1所示。
图4-1
四、实验方法与步骤
1、低碳钢试件的扭转:
1)试件的准备:在试件标距内的中间和两端三处测量直径,取最小值作为直径尺寸,计算
抗扭截面系数。
2)试验机的准备;首先了解扭转机的基本构造原理和操作方法,学习掌握扭转机的操作规
程。
根据材料性质,初步估所需最大扭矩,选择合适的测力表盘,配置相应的摆锤,测力指针调到“零点”。
图4-2
图4-3
3)进行实验:将低碳钢试件装夹到试验机上,用“手动”对试件缓慢均匀地加扭矩,加在
试件上的扭矩和扭转角的关系曲线,如图4-2所示。
当扭矩增加到点,(即)时,图4-2中段为直线,表明此阶段内载荷与试件变形之间成比例关系,扭矩超过后。
试件截面的外缘外处,材料发生流动形成环形塑性区,同时图曲线稍微上上升,达到点趋于平坦,这时测力指针几乎不动,这说明塑性区已扩展为整个截面,材料发生流动,记录下此时
的扭矩。
在达到时,假定截面上各点的剪应力同时达到流动极限(理想塑性),断面上均匀分布,从而推导计算流动极限的近似公式如下:
因
式中是常数,
所以
故屈服极限,
式中:
若试件继续变形,材料进一步强化,当达到<v:shape id="_x0000_i1057" type="#_x0000_t75"。