最新全国高三大联考金太阳大联考数学(理科)
2021届全国金太阳联考新高考模拟试卷(二)理科数学试题

2021届全国金太阳联考新高考模拟试卷(二)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{|24}A x x =-<<,{|2}B x x =≥,则()R A C B =( )A. (2,4)B. (2,4)-C. (2,2)-D. (2,2]-【答案】C 【解析】集合{}24A x x =-<<,{}2B x x =≥,R C B {}|2x x =< 则()()2,2R A C B ⋂=-. 故答案为C.2.已知复数z 满足()234i z i -=+,则z =( )A. 2i --B. 2i -C. 2i -+D. 2i +【答案】D 【解析】 【分析】把已知等式变形再由复数代数形式的乘除运算化简得答案. 【详解】由(2)z |34|5i i -=+=, 得55(2)z 22(2)(2)i i i i i +===+--+. 故选D .【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.函数()f x =( ) A. 3,4⎛⎫+∞⎪⎝⎭B. 3,14⎛⎤⎥⎝⎦C. 3,14⎛⎫⎪⎝⎭D. [1,)+∞【答案】B 【解析】 【分析】根据被开方数非负,以及真数大于零,即可求得结果. 【详解】要使得函数有意义, 则()0.5log 430,430x x -≥->,解得3,14x ⎛⎤∈ ⎥⎝⎦.故选:B.【点睛】本题考查复合函数定义域的求解,属基础题.4.已知(1,),(,4)a k b k ==,那么“2k =-”是“,a b 共线”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 非充分非必要条件 D. 充要条件【答案】A 【解析】 【分析】先求出,a b 共线时k 的值,再由充分必要条件的定义判断,即可得出结论.【详解】(1,),(,4)a k b k ==,当,a b 共线时得24,2k k ==±,所以“2k =-”是“,a b 共线”的充分不必要条件. 故选:A .【点睛】本题考查充分不必要条件的判断,利用共线向量的坐标关系是解题的关键,属于基础题. 5.古代数学著作《九章算术》有如下的问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,若要使织布的总尺数不少于50尺,则至少需要 A. 7天 B. 8天C. 9天D. 10天【答案】C 【解析】 【分析】设所需天数为n 天,第一天3为1a 尺,先由等比数列前n 项和公式求出1a ,在利用前n 项和n 50S ≥,便可求出天数n 的最小值.【详解】设该女子所需天数至少为n 天,第一天织布1a 尺,由题意得:()5512512S -==- ,解得1531a =, ()512315012nn S -=≥- ,解得2311n ≥,982=512,2=256,所以要织布总尺数不少于50尺,该女子所需天数至少为9天, 故选C.【点睛】本题考查等比数列的前n 项和,直接两次利用等比数列前n 项和公式便可得到答案. 6.a 、,其顶点都在一个球面上,则该球的表面积为( ) A. 23a π B. 26a πC. 212a πD. 224a π【答案】B 【解析】 【分析】由长方体的结构特征可得,长方体的外接球的直径为长方体的对角线,即可求解.【详解】长方体的长、宽、高分别为32a a a 、、, 则其对角线长为222326a a a a ++=, 又长方体的顶点都在一个球面上, 所求的球半径6a R =, 所以表面积为2246R a ππ=. 故选:B .【点睛】本题考查多面体与球的“接”“切”问题,对于常见几何体与球的关系要熟练掌握,属于基础题. 7.某班全体学生参加历史测试,成绩的频率分布直方图如图,则该班的平均分估计是( )A. 70B. 75C. 66D. 68【答案】D 【解析】 【分析】根据频率分布直方图求出各组的频率,按照平均数公式即可求解. 【详解】依题意该班历史平均数估计为300.1500.2700.4900.368⨯+⨯+⨯+⨯=.故选:D.【点睛】本题考查由频率分布直方图求样本的平均数,熟记公式即可,考查计算求解能力,属于基础题. 8.已知tan 3α=,则πcos 22α⎛⎫-=⎪⎝⎭( ) A.35 B.310C.34D.310【答案】A 【解析】 【分析】由题意得222π22cos 2222? 1sin cos tan sin sin cos sin cos tan αααααααααα⎛⎫-====⎪++⎝⎭,结合条件可得所求结果.【详解】由题意得2222π222363cos 2222? 1?31105sin cos tan sin sin cos sin cos tan αααααααααα⨯⎛⎫-======= ⎪+++⎝⎭, 故选A .【点睛】本题考查诱导公式和同角三角函数关系式,解题的关键是合理利用“1”的代换,将所求值转化为齐次式的形式,然后再根据条件求解.9.若sin a xdx π=⎰,则二项式6⎛⎝的展开式中含x 项的系数是( )A. 210B. 210-C. 240D. 240-【答案】C 【解析】 【分析】根据微积分基本定理求得a ,再利用二项式的通项公式,即可求得结果. 【详解】因为0sin a xdx π=⎰cos 02cos π=-+=.又6⎛ ⎝的通项公式为()63161r r r rr T C a x --+=-, 令2r =,故可得含有x 项的系数为4152240⨯=. 故选:C.【点睛】本题考查微积分基本定理,以及二项式定义,属综合基础题. 10.设l 是直线,α,β是两个不同的平面( ) A. 若//l α,l β//,则//αβ B. 若//l α,l β⊥,则αβ⊥ C. 若αβ⊥,l α⊥,则l β⊥ D. 若αβ⊥,//l α,则l β⊥【答案】B 【解析】 【分析】根据空间中线面、面面间的位置关系对选项逐一判断即可. 【详解】由l 是直线,α,β是两个不同的平面,可知:A 选项中,若//l α,l β//,则α,β可能平行也可能相交,错误;B 选项中,若//l α,l β⊥,由线面平行、线面垂直的性质和面面垂直的判定可知αβ⊥,正确;C 选项中,若αβ⊥,l α⊥,由面面垂直、线面垂直的性质可知l β//或l β⊂,错误;D 选项中,若αβ⊥,//l α,则l ,β可能平行也可能相交,错误. 故选:B.【点睛】本题考查了线面、面面间的位置关系的判断,考查了空间思维能力,属于基础题. 11.函数3()2x y x x =-的图像大致是( )A. B.C. D.【答案】B 【解析】 试题分析:由,得,则为奇函数,故其图象关于原点对称,排除C ;当时,,,故,故排除A 、D ,故选B.考点:函数的图象.12.斜率为2的直线l 过双曲线22221(0,0)x y a b a b-=>>的左焦点,且与双曲线的左、右支分别相交,则双曲线的离心率e 的取值范围是( ) A. 2) B. 3)C. 5)D. 5,)+∞【答案】D 【解析】 【分析】根据几何关系,求得,a b 的关系,即可求得离心率范围. 【详解】要满足题意,只需2ba>,故e =>故选:D.【点睛】本题考查双曲线离心率范围的求解,列出,a b 不等式关系是解题重点,属基础题.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.函数()2log 030x x x f x x >⎧=⎨≤⎩,则14f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦__________. 【答案】19【解析】 【分析】先求1()4f 的值,再求14f f⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值. 【详解】由题得211()=log 244f =-, 所以211(2)349f f f -⎡⎤⎛⎫=-==⎪⎢⎥⎝⎭⎣⎦. 故答案为19【点睛】本题主要考查指数对数运算和分段函数求值,意在考查学生对这些知识的理解掌握水平,属于基础题.14.在等差数列{}n a 中,1231819203,87a a a a a a ++=++=,则该数列前20项的和为_____. 【答案】300 【解析】 【分析】根据已知条件结合等差数列的性质可得129,a a ,求出120a a +,即可求解. 【详解】在等差数列{}n a 中,12232133,a a a a a ++=∴==,181920191987,329a a a a a +=∴==+,1202021920()10()3002a a S a a +∴==+=.故答案为:300.【点睛】本题考查等差数列的前n 项和,利用等差数列的性质是解题的关键,属于基础题. 15.计算410.53log 505252724ln lg 200lg 2168e π-⎛⎫⎛⎫+-+-+-= ⎪ ⎪⎝⎭⎝⎭_____. 【答案】2312【解析】 【分析】根据分数指数幂和对数的运算法则即可求解. 【详解】410.53log 505252724ln lg 200lg 2168e π-⎛⎫⎛⎫+-+-+- ⎪ ⎪⎝⎭⎝⎭11323252200()()255lg432⨯⨯=+-+-+ 52234312=+= 故答案:2312. 【点睛】本题考查指数幂和对数运算,熟记运算法则即可,属于基础题.16.已知函数()f x 的导函数为()f x ',且满足()2(1)ln f x xf x '=+,则(1)f =______. 【答案】2-. 【解析】 【分析】对函数()f x 的解析式求导,得到其导函数,把1x =代入导函数中,列出关于'(1)f 的方程,进而得到'(1)f 的值,确定出函数()f x 的解析式,把1x =代入()f x 解析式,即可求出(1)f 的值 【详解】解:求导得:''1()2(1)f x f x =+,令1x =,得''1(1)2(1)1f f =+,解得:'(1)1f =- ∴()2ln f x x x =-+,(1)202f ∴=-+=-,故答案为-2.【点睛】此题考查了导数的运算,以及函数的值.运用求导法则得出函数的导函数,求出常数'(1)f 的值,从而确定出函数的解析式是解本题的关键.三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤) (一)必考题(共60分)17.已知ABC ∆中,a 、b 、c 是三个内角A 、B 、C 的对边,关于x 的不等式2cos 4sin 60x C x C ++<的解集是空集.(Ⅰ)求角C 的最大值;(Ⅱ)若72c =,ABC ∆的面积332S =,求当角C 取最大值时+a b 的值. 【答案】(1)(2)112【解析】【详解】试题分析:(1)若解集为空,则,解得.则C 的最大值为.(2)332S ==,得, 由余弦定理得:, 从而得则.考点:解三角形及不等式点评:解三角形的题目常用到正弦定理sin sin sin a b cA B C==,余弦定理2222cos a b c bc A =+-, 2222222cos ,2cos b a c ac B c a b ab C =+-=+-,三角形面积公式111sin sin sin 222S ab C ac B bc A === 18.为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两项:①到各班做宣传,倡议同学们积极捐献冬衣;②整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示: 到班级宣传 整理、打包衣物 总计 20人 30人50人(Ⅰ)如果用分层抽样的方法从参与两项工作的志愿者中抽取5人,再从这5人中选2人,那么“至少有1人是参与班级宣传的志愿者”的概率是多少?(Ⅱ)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用X 表示所选志愿者中的女生人数,写出随机变量X 的分布列及数学期望. 【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)由分层抽样方法得参与到班级宣传的志愿者被抽中的有2人,参与整理、打包衣物者被抽中的有3人,由此能求出至少有1人是参与班级宣传的志愿者的概率.(Ⅱ)女生志愿者人数X=0,1,2,分别求出其概率,由此能求出随机变量X 的分布列及数学期望. 【解答】(Ⅰ)解:用分层抽样方法,每个人抽中的概率是,∴参与到班级宣传的志愿者被抽中的有20×=2人,参与整理、打包衣物者被抽中的有30×=3人,故“至少有1人是参与班级宣传的志愿者”的概率为:P=1﹣=.(Ⅱ)解:女生志愿者人数X=0,1,2, 则,,,∴X 的分布列为:∴X 的数学期望EX==.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.19.如图,在三棱柱111ABC A B C -中,AB ⊥平面11BB C C ,E 是1CC 的中点,1BC =,12BB =,160BCC ∠=︒.(1)证明:1B E AE ⊥;(2)若2AB =,求二面角11A B E A --的余弦值.【答案】(1)证明见解析;(2)6. 【解析】 【分析】(1)证明:连接1BC ,BE ,发现1⊥BC BC ,求出BE 和1B E ,并证得1B E BE ⊥,又AB ⊥平面11BB C C ,所以1B E AB ⊥,所以1B E ⊥平面ABE ,证得1B E AE ⊥;(2)以B 为原点建立如图所示空间直角坐标系,写出各点坐标,求出平面1AB E 的法向量为n ,设平面11A B E 的法向量为m ,然后计算夹角即可.【详解】解:(1)证明:连接1BC ,BE ,因为在中,1BC =,112CC BB ==,160BCC ∠=︒.所以1⊥BC BC .所以1112BE CC ==, 因为2211111112cos1203B E EC B C EC B C =+-⨯⨯︒=所以1B E BE ⊥,又AB ⊥平面11BB C C ,且1B E ⊂平面11BB C C ,所以1B E AB ⊥,AB BE B =,所以1B E ⊥平面ABE ,因为AE ⊂平面ABE ,所以1B E AE ⊥.(2)以B 为原点建立如图所示空间直角坐标系,则(2A ,()13,0B -,132E ⎛⎫ ⎪ ⎪⎝⎭,(13,2A -, 所以133,2B E ⎛⎫= ⎪ ⎪⎝⎭,(13,2AB =--,133,22A E ⎛=- ⎝,设平面1AB E 的法向量为(),,n x y z =,设平面11A B E 的法向量为(),,m a b c =,则1130{ { 0320x y B E n AB n x z -=⋅=⇒⋅=+=,取(1,3,2n =, 则11300{ { 033220a y B E m A m a b c E -=⋅=⇒⋅=-=, 取()1,3,0m =.所以6cos ,326m n n m m n ⋅〈〉===⋅⨯, 即二面角11A B E A --6. 【点睛】本题考查了直线与平面垂直的证明,空间向量求解二面角的平面角,属于中档题.20.已知椭圆中心在原点,焦点在x 轴上,离心率32e =,它与直线10x y ++=交于P 、Q 两点,若OP OQ ⊥,求椭圆方程.(O 为原点).【答案】2215528x y += 【解析】【分析】先设出椭圆的标准方程,根据离心率的范围求得a 和c 的关系,进而表示出b 和a 的关系,代入椭圆方程,根据OP OQ ⊥判断出1212x x y y =-,直线与椭圆方程联立消去y ,进而根据表示出12x x 和12y y ,根据1212x x y y =-求得b 的值.进而可得椭圆的方程. 【详解】解:设椭圆方程为22221x y a b+=,由2c a =得12c b a ⎧=⎪⎪⎨⎪=⎪⎩ ∴椭圆方程为222214x y b b+=,即22244x y b +=设()11,P x y ,()22,Q x y , 则由22121222215844044y x OP OQ x x y y x x b x y b=--⎧⊥⇒=-⇒++-=⎨+=⎩由212180,55b x x >⇒>+=-,212445b x x -= ()()2212121212448141111555b b y y x x x x x x --⎛⎫=++=+++=+-+= ⎪⎝⎭224414055b b --∴+= 25185b => ∴椭圆方程为2215528x y += 【点睛】本题主要考查了椭圆的简单性质.直线与圆锥曲线的关系,以及平面向量的几何意义.考查了基本知识的识记和基本的运算能力.21.函数()x f x xe ax b =-+的图象在0x =处的切线方程为:1y x =-+.(1)求a 和b 的值;(2)若()f x 满足:当0x >时,()ln f x x x m -+,求实数m 的取值范围.【答案】(1) 2,1a b ==;(2)(],2-∞.【解析】【分析】(1)根据切线斜率,以及导数值,即可求得参数;(2)分离参数,利用导数求解函数值域,即可容易求得结果.【详解】(1)因为()x f x xe ax b =-+,故可得()()1x f x ex a '=+-, 又因为在0x =处的切线方程为:1y x =-+,故可得()011f a =-'=-,解得2a =;又()0,1在函数()f x 的图像上,故可得1b =;综上所述:2,1a b ==.(2)因为当0x >时,()ln f x x x m -+,等价于1x xe lnx x m --+≥在区间()0,+∞上恒成立.令() 1xh x xe lnx x =--+,则只需()min h x m ≥即可. 故可得()()()11x x xe h x x+'-=,令()1x m x xe =-, 容易知()m x 其在()0,+∞为单调增函数,且()10,102m m ⎛⎫ ⎪⎝⎭, 故存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00010x m x x e =-=.且()0h x '=,即001x x e =, 则()h x 在区间()00,x 单调递减,在()0,x +∞单调递增. 故()()0000000001112x min h x h x x e lnx x x x x x ==--+=⨯+-+=, 故要满足题意,只需2m ≥, 即(],2m ∈-∞. 【点睛】本题考查导数的几何意义,以及利用导数求解恒成立问题,属综合中档题. (二)选考题(共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分) 选修4-4:参数方程与极坐标 22.在极坐标系中,过曲线2:sin 2cos (0)L a a外的一点)A (其中tan 2θ=,θ为锐角)作平行于()4R πθρ=∈的直线l 与曲线分别交于,B C .(Ⅰ) 写出曲线L 和直线l 的普通方程(以极点为原点,极轴为x 轴的正半轴建系);(Ⅱ)若||,||,||AB BC AC 成等比数列,求a 的值.【答案】(Ⅰ) 曲线L 和直线l 的普通方程分别为22y ax ,=2y x(Ⅱ)1a =【解析】【分析】(Ⅰ)根据极坐标方程与直角坐标系下的普通方程的互化公式可求曲线方程及直线方程.(Ⅱ)写出直线l 的参数方程,代入曲线L 的普通方程得222(4)8(4)0t a t a -+++= ,利用韦达定理以及题设条件化简得到a 的值.【详解】(Ⅰ)由2sin 2cos a ρθθ=两边同乘以ρ得到2(sin )2(cos )a ρθρθ= 所以曲线L 的普通方程为22yax 由tan 2θ=,θ为锐角,得sin ,cos 55θθ==所以(25,)A 的直角坐标为25cos()2,25sin()4x y πθπθ=+=-=+=-,即(2,4)A -- 因为直线l 平行于直线()4πθρ=∈R ,所以直线l 的斜率为1即直线l 的方程为42=2y x y x +=+⇒-所以曲线L 和直线l 的普通方程分别为22y ax ,=2y x(Ⅱ)直线的参数方程为222{24x t y =-+=- (t 为参数),代入22y ax 得到22(4)8(4)0t a t a -+++= ,则有121222(4),8(4)t t a t t a +=+⋅=+因为2||BC AB AC = ,所以()()22121212124t t t t t t t t -=+-⋅=⋅即22(4)32(4)8(4)a a a ⎡⎤+-+=+⎣⎦解得1a =【点睛】本题考查了极坐标方程与直角坐标方程的互化以及直线参数方程中参数的几何意义,属于中档题.选修4-5:不等式选讲23.设函数()|1||2|f x x x a =++-+.(1)当5a =-时,求函数()f x 的定义域;(2)若函数()f x 的定义域为R ,试求实数a 的取值范围.【答案】(1)(,2][3,)-∞-⋃+∞;(2)3a -.【解析】【分析】(1)令|1||2|50x x ++--≥,在同一坐标系中作出函数|1||2|y x x =++-和5y =的图象,结合图象可得,求得不等式的解集,即可求解;(2)由题意转化为|1||2|x x a ++-≥-,由(1)求得|1||2|3x x ++-≥,即可求解.【详解】(1)由题意,令|1||2|50x x ++--≥,在同一坐标系中作出函数|1||2|y x x =++-和5y =的图象,如图所示,结合图象可得,不等式的解集为(,2][3,)-∞-⋃+∞,函数()f x 的定义域为(,2][3,)-∞-⋃+∞.(2)由题设知,当x ∈R 时,恒有|1||2|0x x a ++-+≥,即|1||2|x x a ++-≥-,又由(1)知|1||2|3x x ++-≥,∴3a -≤,即3a ≥-.【点睛】本题主要考查了函数的定义域,以及函数的恒成立问题的求解,其中解答中合理转化,正确作出函数图象,结合函数点的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.。
【新结构】湖北省2024届高三金太阳5月联考数学试卷+答案解析

【新结构】湖北省2024届高三金太阳5月联考数学试卷❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.抛物线的焦点坐标为()A. B. C. D.2.在菱形ABCD中,,则向量与的夹角为()A. B. C. D.3.已知为等比数列,,且,则的公比q的取值范围是()A. B.C. D.4.若集合,,则()A. B. C. D.5.已知,,某体育器材厂生产一批篮球,单个篮球的质量单位:克服从正态分布,从这一批篮球中随机抽检300个,则被抽检的篮球的质量不小于596克的个数约为()A.286B.293C.252D.2466.在四面体ABCP中,平面平面PAC,是直角三角形,,,则二面角的正切值为()A. B. C.2 D.7.某地博物馆所展示的甲骨文十二生肖图如图所示,其中,马、牛、羊、鸡、狗、猪为六畜,若从图中每行任意选取1个生肖,则所选的3个生肖中至少有1个属于六畜的概率为()A. B. C. D.8.设函数的定义域为R,为奇函数,为偶函数,若,则()A.1B.C.0D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知函数,则()A.的定义域为B.的值域为RC. D.的单调递增区间为10.将函数的零点按照从小到大的顺序排列,得到数列,且,则()A. B.在上先增后减C. D.的前n项和为11.已知曲线,曲线,下列结论正确的是()A.M与N有4条公切线B.若A,B分别是M,N上的动点,则的最小值是3C.直线与M,N的交点的横坐标之积为D.若是M上的动点,则的最小值为8三、填空题:本题共3小题,每小题5分,共15分。
12.在复数范围内,方程的解集为__________.13.若一组数据,,,的中位数为16,方差为64,则另一组数据,,,的中位数为__________,方差为__________.14.在空间直角坐标系中,已知,,,,,,则几何体的体积为__________.四、解答题:本题共5小题,共77分。
广西壮族自治区金“金太阳联考”2025届高三上学期11月联考数学试题(含答案)

广西壮族自治区金“金太阳联考”2025届高三上学期11月联考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若集合A={x||x|≤2},B={x|x2<4x},则A∪B=A. [0,2]B. [−2,4]C. [−2,4)D. (0,2]2.已知复数z满足z(1+i)=2i2,则z的虚部为A. −1B. 1C. −iD. i3.已知a=0.30.2,b=0.20.3,c=0.20.4,则A. a>c>bB. c>a>bC. c>b>aD. a>b>c4.在长方体ABCD−A1B1C1D1中,AB=2,AD=3,AA1=6,则该长方体外接球的表面积为A. 49πB. 49π4C. 50π D. 25π25.已知向量a=(3,m),b=(2,m+1),若a//b,则|a−2b|=A. 2B. 3C. 2D. 16.如图,对A,B,C,D,E五块区域涂色,现有5种不同颜色的颜料可供选择,要求每块区域涂一种颜色,且相邻区域(有公共边)所涂颜料的颜色不相同,则不同的涂色方法共有A. 480种B. 640种C. 780种D. 920种7.已知函数f(x)的定义域为R,f(2)=−2+2,且f(xy)=f(x)f(y)+2x+2y−6,则f(−2)=A. −2B. −4C. 22−2D. −22+28.已知F是双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点,过原点O的直线与C相交于M,N两点,若|FM|=2|FN|,|OM|=|OF|,则C的离心率为A. 5B. 2C. 3D. 2二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知一组数据68,75,69,77,m,71,下列结论正确的有A. 若m<71,则该组数据的第40百分位数为mB. 该组数据的第60百分位数不可能是77C. 若该组数据的极差为10,则m=67或78D. 若m=60,则该组数据的平均数为7010.若函数f(x)=x(x−1)(x+1),则下列结论正确的有A. f(x)为奇函数B. 若x>x2,则f(x)>f(x2)C. f(x)的所有极值点的和为0D. f(|sin x|)∈[−239,0]11.如图,在六面体ABCD−A1B1C1D1中,四边形ABCD为菱形,四边形AA1D1D为正方形,平面AA1D1D⊥平面ABCD,若AA1=2BB1=2,则下列说法正确的是A. 四边形A1B1C1D1为平行四边形B. 平面BCC1B1⊥平面ABCDC. 若过A1B的平面与平面AD1C平行,则该平面与B1C1的交点为棱B1C1的中点D. 三棱锥B−A1B1D1体积的最大值为223三、填空题:本题共3小题,每小题5分,共15分。
广东省“金太阳联考”2025届高三11月数学试题(含答案)

广东省“金太阳联考”2025届高三11月数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知双曲线C:x2−y211=1的离心率为( )A. 23B. 11C. 10D. 2112.已知集合A={x|y=ln(x+3)},B={x|x2+2x−3≥0},则A∩B=( )A. [3,+∞)B. [1,+∞)C. (3,+∞)D. (1,+∞)3.曲线y=(x2−2)e x在x=0处的切线方程为( )A. x−2y−4=0B. x+2y+4=0C. 2x−y−2=0D. 2x+y+2=04.如图,在下列正方体中,M,N,P,Q分别为正方体的顶点或所在棱的中点,则在这四个正方体中,M,N,P,Q四点共面的是( )A. B.C. D.5.我们把向量a=(11+k2,k1+k2)叫做直线l:y=kx+b的正交单位方向向量.设m,n分别是直线l1:2x−y+1=0与直线l2:mx+y+2=0的正交单位方向向量,且m⊥n,则m=( )A. 2B. 2C. 12D. 226.已知a,b∈R,则( )A. log2(2a−1+2b−1)≥a+b2B. log2(2a−1+2b−1)≥a+b+1C. log2(2a−1+2b−1)≤a+b2D. log2(2a−1+2b−1)≤a+b+17.某景区新开通了A ,B ,C3个游玩项目,并邀请了甲、乙、丙、丁4名志愿者体验游玩项目,每名志愿者均选择1个项目进行体验,每个项目至少有1名志愿者进行体验,且甲不体验A 项目,则不同的体验方法共有( )A. 12种B. 18种C. 24种D. 30种8.将函数f(x)=sin (ωx +π3)(ω>0)的图象向右平移π6个单位长度,再将所得图象上所有点的横坐标缩短为原来的12,纵坐标不变,得到函数g(x)的图象.若g(x)在(0,π3)上单调递增,则ω的取值范围为( )A. (0,12]B. (0,13]C. (0,π2]D. (0,π3]二、多选题:本题共3小题,共18分。
湖南省2023-2024学年高三10月金太阳联考(电话角标)数学试题(含答案)

湖南省2023-2024学年高三10月金太阳联考(电话角标)高三数学试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:小题考查集合、常用逻辑用语、不等式、函数、导数、三角函数、数列、平面向量,大题考查高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题():0,1p x ∃∈,33x =,则p 的否定是( )A .()0,1x ∀∈,3x ≠B .()0,1x ∃∈,3x ≠C .()0,1x ∀∈,3x =D .()0,1x ∀∉,3x ≠ 2.定义集合,,xA xB z z A y y B ⎧⎫==⎨⎬⎩⎭÷∈∈.已知集合{}4,8A =,{}1,2,4B =,则A B ÷的元素的个数为( )A .3B .4C .5D .6 3.已知函数()3132f x x x x=--的图象在()0x a a =>处的切线的斜率为()k a ,则( ) A .()k a 的最小值为6 B .()k a 的最大值为6 C .()k a 的最小值为4 D .()k a 的最大值为44.已知某公司第1年的销售额为a 万元,假设该公司从第2年开始每年的销售额为上一年的1.2倍,则该公司从第1年到第11年(含第11年)的销售总额为(参考数据:取111.27.43=)A .35.15a 万元B .33.15a 万元C .34.15a 万元D .32.15a 万元 5.设函数()f x 的定义域为R ,且()1f x +是奇函数,()23f x +是偶函数,则( ) A .()00f = B .()40f = C .()50f = D .()20f -=6.设0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且1tan tan cos αββ+=,则( ) A .22παβ+=B .22παβ-=C .22πβα-=D .22πβα+=7.已知函数()cos 12f x x π⎛⎫=-⎪⎝⎭,()sin 46g x x π⎛⎫=+⎪⎝⎭,则“曲线()y f x =关于直线x m =对称”是“曲线()y g x =关于直线x m =对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.对称性是数学美的一个重要特征,几何中的轴对称,中心对称都能给人以美感,激发学生对数学的兴趣.如图,在菱形ABCD 中,120ABC ︒=∠,2AB =,以菱形ABCD 的四条边为直径向外作四个半圆,P 是四个半圆弧上的一动点,若DP DA DC λμ=+,则λμ+的最大值为( )A .52 B .3 C .5 D .32二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()241lg 4f x x x ⎛⎫=-+⎪⎝⎭,则( ) A .()f x 的最小值为1 B .x ∃∈R ,()()12f f x += C .()92log 23f f ⎛⎫>⎪⎝⎭ D .0.10.18119322f f ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭10.若正项数列{}n a 是等差数列,且25a =,则( )A .当37a =时,715a =B .4a 的取值范围是[)5,15C .当7a 为整数时,7a 的最大值为29D .公差d 的取值范围是()0,511.若函数()f x 的定义域为D ,对于任意1x D ∈,都存在唯一的2x D ∈,使得()()121f x f x =,则称()f x 为“A 函数”,则下列说法正确的是( )A .函数()ln f x x =是“A 函数”B .已知函数()f x ,()1f x 的定义域相同,若()f x 是“A 函数”,则()1f x 也是“A 函数” C .已知()f x ,()g x 都是“A 函数”,且定义域相同,则()()f x g x +也是“A 函数”D .已知0m >,若()sin x f x m =+,,22x ππ⎡⎤∈-⎢⎥⎣⎦是“A 函数”,则m = 12.定义在()0,+∞上的函数()f x 的导函数为()f x ',()0f x >且()()()()232x x f x f x f x f x ''-<⎡⎤⎡⎤⎣⎦⎣⎦恒成立,则( )A .()()()()()()11212122f f f f f f ⎡⎤->-⎢⎥⎣⎦B .()0,a ∀∈+∞,函数()()()0f x ay x x f x =+>有极值 C .()()()()()()11212122f f f f f f ⎡⎤-<-⎢⎥⎣⎦D .()0,a ∃∈+∞,函数()()()0f x ay x x f x =+>为单调函数 三、填空题:本题共4小题,每小题5分,共20分.13.设向量(),2AB x x =在向量()3,4AC =-上的投影向量为15AC -,则x =________. 14.若0,2πα⎛⎫∈ ⎪⎝⎭,1cos 23α=,则sin3α=________. 15.若关于x 的不等式()277x a a x +<+的解集恰有50个整数元素,则a 的取值范围是________,这50个整数元素之和为________.16.如图,已知平面五边形ABCDE 的周长为12,若四边形ABDE 为正方形,且BC CD =,则当BCD △的面积取得最大值时,AB =________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2a b b B A c -=+. (1)求tan A ;(2)若a =ABC △的面积为ABC △的周长.18.(12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为正方形,PA AB =,E ,F ,M 分别是PB ,CD ,PD 的中点.(1)证明://EF 平面P AD .(2)求平面AMF 与平面EMF 的夹角的余弦值. 19.(12分)已知数列{}n a 满足12312121223n na a a a a a a a a n n++++++++++=⋅.(1)求{}n a 的通项公式; (2)求数列n a n ⎛⎫⎪⎝⎭的前n 项和n S . 20.(12分)某商场在6月20日开展开业酬宾活动.顾客凭购物小票从6~20这15个号码中依次不放回地抽取2个号码,第1个号码为a ,第2个号码为b .设X 是不超过ba的最大整数,顾客将获得购物金额X 倍的商场代金券(若0X =,则没有代金券),代金券可以在活动结束后使用. (1)已知某顾客抽到的a 是偶数,求该顾客能获得代金券的概率; (2)求X 的数学期望.21.(12分)以坐标原点为对称中心,坐标轴为对称轴的椭圆过点()0,1C -,83,55D ⎛⎫-- ⎪⎝⎭. (1)求椭圆的方程.(2)设P 是椭圆上一点(异于C ,D ),直线PC ,PD 与x 轴分别交于M ,N 两点,证明在x 轴上存在两点A ,B ,使得MB NA ⋅是定值,并求此定值. 22.(12分)已知函数()1ln a xf x e a x -=+-有两个零点1x ,2x .(1)求a 的取值范围; (2)证明:122x x a +>.高三数学试卷参考答案1.A p 的否定是()0,1x ∀∈,3x ≠. 2.B 因为{}4,8A =,{}1,2,4B =,所以{}1,2,4,8A B =÷,故A B ÷的元素的个数为4.3.C ()2219224f x x x '=+--=,当且仅当419x =时,等号成立,所以()k a 的最小值为4. 4.D 设第()i i 1,2,,11=年的销售额为i a 万元,依题意可得数列{}()i i 1,2,,11a =是首项为a ,公比为1.2的等比数列,则该公司从第1年到第11年的销售总额为()()()11111 1.2 1.21102.2210.27.433.151.a a a a---===-万元.5.C 因为()1f x +是奇函数,所以()()11f x f x -+=-+,则()10f =.又()23f x +是偶函数,所以()()2323f x f x -+=+,所以()()510f f ==.6.A 因为1tan tan cos αββ+=,所以sin sin 1cos cos cos αβαββ+=,所以sin cos cos sin cos αβαβα+=,即()sin sin 2παβα⎛⎫+=-⎪⎝⎭.又0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,所以2παβα+=-,即22παβ+=或2παβαπ++-=,即2πβ=(舍去). 7.A 令()1112m k k ππ-=∈Z ,得()1112m k k ππ=+∈Z ,所以曲线()y f x =关于直线()1112x k k ππ=+∈Z 对称.令()22462m k k πππ+=+∈Z ,得()22124k m k ππ=+∈Z ,所以曲线()y g x =关于直线()22124k x k ππ=+∈Z 对称.因为()1112k m m k ππ⎧⎫=+∈⎨⎬⎩⎭Z 真包含于()22124m k k m ππ⎭=+∈⎧⎫⎨⎬⎩Z ,所以“曲线()y f x =关于直线x m =对称”是“曲线()y g x =关于直线x m =对称”的充分不必要条件. 8.A 如图,设DE kDA =,DF kDC =,设P 是直线EF 上一点,令DP xDE yDF =+,则1x y +=,()k x y k λμ+=+=.因为P 是四个半圆弧上的一动点,所以当EF 与图形下面半圆相切时,λμ+取得最大值.设线段AB 的中点为M ,线段AC 的中点为1O ,连接MP ,连接1DO 并延长使之与EF 交于点2O ,过M作2MN DO ⊥,垂足为N .因为120ABC =︒∠,2AB =,所以11DO =,1212132O O O N NO O N MP =+=+=,则252DO =. 由DAC DEF △∽△,得2152DO DE k DA DO ===,故λμ+的最大值为52.9.ACD ()21lg 10lg1012f x x ⎡⎤⎛⎫=-+≥=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,A 正确.因为当且仅当12x =时,()f x 取得最小值,且最小值为1,所以()11f >,所以()()12f f x +>,B 错误.因为9lg 2lg 210log 2lg9lg83<=<=,所以911log 226->,又211326-=,且()f x 在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()92log 23f f ⎛⎫> ⎪⎝⎭,C 正确.因为0.10.20.189331=>>,所以0.10.1811193222->->,所以,D 正确.10.ABC 当37a =时,公差2d =,7347815a a d =+=+=,A 正确.因为{}n a 是正项等差数列,所以150a d =->,且0d ≥,所以公差d 的取值范围是[)0,5,D 错误.因为452a d =+,所以4a 的取值范围是[)5,15,B 正确.[)7555,30a d =+∈,当7a 为整数时,7a 的最大值为29,C 正确.11.BD 对于选项A ,当11x =时,()10f x =,此时不存在2x ,使得()()121f x f x =.A 不正确.对于选项B ,由()f x ,()1f x 的定义域相同,若()f x 是“A 函数”,则对于任意1x D ∈,都存在唯一的2x D ∈,使得()()121f x f x =,则对于任意1x D ∈,都存在唯一的2x D ∈,使得()()12111f x f x ⋅=,所以()1f x也是“A 函数”.B 正确.对于选项C ,不妨取()f x x =,()1g x x=,()0,x ∈+∞,令()()()12F x f x g x x x=+=+≥,则()()124F x F x ≥,故()()f x g x +不是“A 函数”.C 不正确.对于选项D ,因为()sin f x m x =+,,22x ππ⎡⎤∈-⎢⎥⎣⎦,是“A 函数”,所以sin 0m x +≠在,22ππ⎡⎤-⎢⎥⎣⎦上恒成立.又0m >,所以10m ->,且()()12sin sin 1m m x x ++=,即对于任意1,22x ππ⎡⎤∈-⎢⎥⎣⎦,都存在唯一的2,22x ππ⎡⎤∈-⎢⎥⎣⎦,使得21sin s 1in m m x x =-+,因为11sin 1m x m m -≤+≤+,所以1n 1i 1111s m m m x m m m -≤-≤-++-,由111111m m m m ⎧-≥-⎪⎪+⎨⎪-≤⎪-⎩,解得m =D 正确. 12.AD 设函数()()()()10f x g x x x f x =+>,则()()()()()()()()()()23222220xf x f x f x x f x xf x f x f x g x x f x x f x ''--⎡⎤⎡⎤''-⎣⎦⎣⎦'=-=<⎡⎤⎣⎣⎦⎡⎤⎦, 所以()g x 在()0,+∞上单调递减,B 错误,D 正确. 从而()()12g g >,即()()()()12111122f f f f +>+,因为()0f x >,所以()10f >,()20f >,所以()()()()()()11212122f f f f f f ⎡⎤->-⎢⎥⎣⎦,C 错误,A 正确.光速解法:取()()0f x x x =>,满足()0f x >且()()()()232xf x f x x f x f x ''-<⎡⎤⎡⎤⎣⎦⎣⎦,则()()()()()()11212122f f f f f f ⎡⎤->-⎢⎥⎣⎦,()0,a ∃∈+∞,函数()()()0f x a y x x f x =+>为单调函数.13.1 向量(),2AB x x =在向量()3,4AC =-上的投影向量为3825AB AC AC x xAC AC AC⋅-⋅=,则138525x x--=,解得1x =.14 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以()20,απ∈,所以sin 23α==,因为21cos 22cos13αα=-=,0,2πα⎛⎫∈ ⎪⎝⎭,所以cos α=sin α=,所以()sin 3sin 2sin 2cos cos 2sin 9ααααααα=+=+= 15.[)(]44,4357,58--;925-或1625 不等式()277x a a x +<+等价于不等式()()70x a x --<.当7a =时,()()70x a x --<的解集为∅,不合题意;当7a <时,()()70x a x --<的解集为(),7a ,则50个整数解为43-,42-,…,5,6,所以4443a <-≤-,这50个整数元素之和为()436509252-+⨯=-;当7a >时,()()70x a x --<的解集为()7,a ,则50个整数解为8,9,…,56,57,所以5758a <≤,这50个整数元素之和为()8575016252+⨯=.综上,a 的取值范围是[)(]44,4357,58--,这50个整数元素之和为925-或1625.16 过点C 作CF BD ⊥,垂足为F .设()0A B x x =>,则B D A E D E x ===,因为BC CD =,所以3212AB BC +=,则362BC x =-.由0BC >,BC CD BD +>,得03x <<.在BCF △中,CF ===.记BCD △的面积为S ,则12S BD F C ⋅==()432918f x x x x =-+,则()()3224273642736f x x x x x x x '=-+=-+,令()0f x '=,得0x =或x =.当0x <<()0f x '>3x <<时,()0f x '<.故当x =时,()f x 取得最大值,则S 取得最大值,此时278AB -=.17.解:(1)因为cos cos 2a b b B A c -=+,所以sin cos 2sin cos sin sin A B B A B C -=+. 2分 又()sin sin sin cos cos sin C A B A B A B =+=+,所以3sin cos sin B A B -=. 3分 因为sin 0B ≠,所以cos 13A =-. 4分 又()0,A π∈,所以sin A =,tan A =- 5分 (2)ABC △的面积n 12si 3A S bc bc ===6bc =. 7分 由22222c 23s 2o a b c bc b c bc A =+-=++,得()224253b c a bc +=+=, 9分 所以5b c +=,故ABC △的周长为5+ 10分18.(1)证明:取P A 的中点N EN ,DN ,因为E 是PB 的中点,所以//EN AB ,12EN AB =.1分 又底面ABCD 为正方形,F 是CD 的中点,所以//EN DF ,EN DF =,所以四边形ENDF 为平行四边形,所以//EF DN . 3分因为EF ⊂/平面P AD ,DN ⊂平面P AD ,所以//EF 平面P AD . 4分(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,令2AB =,则()1,0,1E ,()1,2,0F ,()0,0,2P ,()0,2,0D ,()0,1,1M . 5分 从而()1,1,0EM =-,()1,1,1MF =-,()1,2,0AF =. 6分设平面AMF 的法向量为()111,,m x y z =,则11111200x y x y z +=⎧⎨+-=⎩,令11y =,得()2,1,1m =--. 8分设平面EMF 的法向量为()222,,n x y z =,则222220x y z x y +-=⎧⎨-+=⎩,令21y =,得()1,1,2n =. 10分1cos ,2m nm n m n⋅==-. 11分故平面AMF 与平面EMF 的夹角的余弦值为12. 12分19.解:(1)当1n =时,12a =. 1分 当2n ≥时,()()111221212n n n na a a n n n n--+++=⋅--⋅=+⋅, 3分即()11212n n a a a n n -+++=+⋅, 4分当1n =时,上式也成立, 所以()()()()1221212322n n n n a n n n n n n n ---=+⋅--⋅=+⋅≥. 5分当1n =时,也符合()232n n a n n -=+⋅,所以()232n n a n n -=+⋅. 6分(2)由(1)知()232n na n n-=+⋅. 7分 ()102425232n n S n --=⨯+⨯+++⋅, 8分 ()0112425232n n S n -=⨯+⨯+++⋅, 9分则()()()()()012111122223222132221n n n n n n S n n n ------=++++-+⋅=+--+⋅=-+⋅+, 11分所以()1221n n S n -=+⋅-. 12分20.解:(1)当b a >时,该顾客能获得代金券.设“a 是偶数”为事件A ,,“b a >”为事件B ,则()()()()215206208201856421015P AB A -+-++-===, 2分 ()215814815P A A ⨯==, 3分所以()()()41158215P AB P B P A A ===,所以当顾客抽到的a 是偶数时,该顾客能获得代金券的概率为12. 4分 (2)X 可能的取值为0,1,2,3.当0X =时,b a <,则()102P X ==. 5分 当1X =时,121a b a ≤+-≤,若11a ≥,则120a b +≤≤.对每一个a ,b 有20a -种不同的取值,则(),a b 共有98145+++=种可能的取值. 6分 若610a ≤≤,对每一个a ,b 有1a -种不同的取值,则(),a b 共有5678935++++=种可能的取值,所以()215453581 21P X A +===. 7分 当2X =时,231b a a ≤-≤.若7a ≥,则220a b ≤≤.对每一个a ,b 有212a -种不同的取值,则(),a b 共有753116+++=种情况. 若6a =,则1217b ≤≤,(),a b 共有6种可能的取值.所以()215166112 105P X A +===. 9分 当3X =时,341b a a ≤-≤,(),a b 只有()6,18,()6,19,()6,20这3种情况,所以()31321070P X ===. 10分 所以()181111331901232211057021030E X =⨯+⨯+⨯+⨯==. 12分 21.(1)解:设椭圆方程为221px qy +=, 1分 则164912525q p q =⎧⎪⎨+=⎪⎩,解得141p q ⎧=⎪⎨⎪=⎩, 3分 所以椭圆的方程为2214x y +=. 4分 注:若直接设22221x y a b+=得到2214x y +=,扣1分. (2)证明:设()00,P x y ,(),0A m ,(),0B n ,直线003385:8555y PD y x x +⎛⎫+=+ ⎪⎝⎭+,令0y =,得000385535N x y x y -=+. 5分 直线001:1y PC y x x +=-.令0y =,得001M x x y =+. 6分 ()()()()00000000000038583355311535x y ny n x my y m x x MB NA n m y y y y ⎛⎫- ⎪+-++-⎛⎫⋅=--= ⎪ ⎪+++⎝⎭ ⎪+⎝⎭. 8分 令00058333my y m ny n ++=--,令583m n +=-,33m n =-,得4n =,4m =-, 10分则()()()()()()()()222220000002000000344344441258312153153583y x y y y y MB NA y y y y y y ⎡⎤⎡⎤-+--+---++⎣⎦⎣⎦⋅====-++++++. 故存在()4,0A -和()4,0B ,使得MB NA ⋅是定值,且定值为12-. 12分22.(1)解:令()0f x =,得10ln a x e x a -+-=,则11ln 11ln a x x e a e x x-+-=+. 2分 令函数()x g x e x =+,则11ln g a g x x ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭, 因为()g x 在R 1ln a x x -=,即n 1l a x x=+. 3分 令函数()n 1l h x x x =+,则()21x h x x -'=,则()h x 在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 11h x h ==. 4分因为当0x →时,ln l 11n x x x x x ++=→+∞,当x →+∞时,1ln x x+→+∞, 5分 依题意可得方程n 1l a x x =+有两个不相等的正根,所以1a >,即a 的取值范围是()1,+∞. 6分 (2)证明:令函数()2ln 11x x x x ϕ⎛⎫=-- ⎪⎝⎭,则()()22102x x x ϕ-'=<-, 所以()x ϕ在()0,+∞上单调递减. 7分因为()10ϕ=,所以当()0,1x ∈时,()0x ϕ>;当()1,x ∈+∞时,()0x ϕ<. 8分 不妨假设12x x <,则由(1)知1201x x <<<,所以()10x ϕ>,()20x ϕ<,所以111111111111l 2n 22x a x x x x x x ⎛⎫=+>+-=+ ⎪⎝⎭,则21121ax x >+, 9分222222211111l 2n 22x a x x x x x x ⎛⎫=+<+-=+ ⎪⎝⎭,则22221ax x <+, 10分 所以()()()22121212122a x x x x x x x x ->-=+-, 11分因为120x x -<,所以122x x a +>. 12分。
2024-2025学年贵州省金太阳联考高三上学期10月考数学试题及答案

高三联考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}045,ln A xx B x y x =-==∣∣……,则A B ⋂=( )A.[]0,4B.(]0,1C.(]0,4D.[]0,12.某同学记录了当地2月最后8天每天的最低气温(单位:C ),分别为6,8,6,10,6,5,9,11,则该组数据的第60百分位数为()A.6B.7C.8D.93.已知焦点在y 轴上的椭圆()222:104x y C m m+=>的焦距为2,则其离心率为( )D.4.已知()3sin2,0,π4αα=-∈,则sin cos αα-=( )A.12B.12- D.5.已知圆台甲、乙的上底面半径均为r ,下底面半径均为3r ,圆台甲、乙的母线长分别为3,4r r ,则圆台甲与乙的体积之比为()6.已知平面向量,a b 均为非零向量,则“a ∥b ”是“a b b a ++= ”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知0a >且1a ≠,若函数()1,0,log 1,a x a f x x x x a⎧<⎪=⎨⎪+>⎩…的值域为R ,则a 的取值范围是( )A.10,2⎛⎤ ⎥⎝⎦ B.1,12⎡⎫⎪⎢⎣⎭ C.(]1,2 D.[)2,∞+8.已知函数()sin2cos2f x x a x =+的图象关于直线π12x =对称,则当[]0,2πx ∈时,曲线()y f x =与cos y x =的交点个数为( )A.3B.4C.5D.6二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足13i 3i z =+-,则( )A.10z =B.86iz =-C.z 的虚部为8D.z 在复平面内对应的点位于第一象限10.已知F 是抛物线2:4C y x =的焦点,l 是C 的准线,点N 是C 上一点且位于第一象限,直线FN 与圆22:670A x y x +-+=相切于点E ,点E 在线段FN 上,过点N 作l 的垂线,垂足为P ,则( )A.EF =B.直线FN 的方程为10x y --=C.4NF =+D.PFN的面积为6+11.已知奇函数()f x 的定义域为R ,其导函数为()f x ',若()()222f x f x x =-+-,且()32f =,则( )A.()56f -=-B.()()4f x f x +=C.()101101f =' D.1001()5050i f i ==∑三、填空题:本题共3小题,每小题5分,共15分.12.已知等比数列{}n a 的公比不为1,且324,,a a a 成等差数列,则数列{}n a 的公比为__________.13.有红色、黄色2套卡片,每套3张,分别标有字母A ,B ,C ,若从这6张卡片中随机抽取4张,这4张卡片的字母恰有两个是相同的,则不同的取法种数为__________.14.若直线2y kx =-与曲线()2e xy x =-有3个交点,则k 的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知ABC 的内角,,A B C 的对边分别为,,a b c ,且2cos cos cos 0c C a B b A ++=.(1)求C ;(2)若2a c b +=,求cos A .16.(15分)如图,在三棱柱111ABC A B C -中,ABC 的等边三角形,111π2,4AA B BC B BA ∠∠===.(1)证明:1AC BB ⊥.(2)求平面ABC 与平面1ACC 夹角的余弦值.17.(15分)已知甲、乙两人参加某档知识竞赛节目,规则如下:甲、乙两人以抢答的方式答题,抢到并回答正确得1分,答错则对方得1分,甲、乙两人初始分均为0分,答题过程中当一人比另一人的得分多2分时,答题结束,且分高者获胜,若甲、乙两人总共答完5题时仍未分出胜负,则答题直接结束,且分高者获胜.已知甲、乙两人每次抢到题的概率都为12,甲、乙两人答对每道题的概率分别为35,412,每道题两人答对与否相互独立,且每题都有人抢答.(1)求第一题结束时甲获得1分的概率;(2)记X 表示知识竞赛结束时,甲、乙两人总共答题的数量,求X 的分布列与期望.18.(17分)已知y =是双曲线()2222:10x y C a b a b-=>>的一条渐近线,点()2,2在C 上.(1)求C 的方程.(2)已知直线l 的斜率存在且不经过原点,l 与C 交于,A B 两点,AB 的中点在直线2y x =上.(i )证明:l 的斜率为定值.(ii )若()1,1,M MAB ,求l 的方程.19.(17分)定义:对于函数()(),f x g x ,若()()()(),,0,,a b c f a f b g c ∞∀∈++>,则称“()()f x g x -”为三角形函数.(1)已知函数()ln f x x x =-,若()g x 为二次函数,且()()2g x g x -=,写出一个()g x ,使得“()()f x g x -”为三角形函数;(2)已知函数()()2,0,22x x t f x x ∞+=∈++,若“()()f x f x -”为三角形函数,求实数t 的取值范围;(3)若函数()()()ln ,ln 1ln f x x x g x x x x x =-=+-+,证明:“()()f x g x -”为三角形函数.(参考数据:3ln 0.4052≈)高三联考数学参考答案1.C {}[]{}()0451,4,ln 0,A xx B x y x ∞=-=-===+∣∣……,则(]0,4A B ⋂=.2.C 将这8个数据从小到大排列为5,6,6,6,8,9,10,11,因为60%8 4.8⨯=,所以该组数据的第60百分位数为8.3.B 因为椭圆C 的焦点在y 轴上,所以22415m =+=,故椭圆C的离心率e ==.4.C 因为()0,πα∈,且3sin22sin cos 04ααα==-<,所以π,π2α⎛⎫∈ ⎪⎝⎭,所以sin cos αα->0.因为27(sin cos )12sin cos 4αααα-=-=,所以sin cos αα-=.5.A圆台甲的高为==,所以V h V h ====甲甲乙乙.6.B 由a b b a ++= 可得a b a b +=- ,平方可得22222||2||||||a a b b a a b b +⋅+=-+ ,解得a b a b ⋅=- ,所以,a b 反向.故“a ∥b ”是“a b b a ++= ”的必要不充分条件.7.B ()f x 在(]0,a 上的值域为1,a ∞⎡⎫+⎪⎢⎣⎭.因为函数()f x 的值域为R ,所以()log 1a f x x =+在(),a ∞+上的值域包含1,a ∞⎛⎫- ⎪⎝⎭,则01a <<,且1log 1a a a +…,解得112a <…,所以a 的取值范围是1,12⎡⎫⎪⎢⎣⎭.8.B 由题可知()π06f f ⎛⎫= ⎪⎝⎭,则2a a =+,解得a =()πsin22sin 23f x x x x ⎛⎫==+ ⎪⎝⎭.在坐标系中结合五点法画出()y f x =与cos y x =的图象,如图所示.由图可知,共有4个交点.9.ACD 由题可知()()213i 3i 38i 3i 68i z =+-=+-=+,则10,68i z z ===-,z 的虚部为8,z 在复平面内对应的点为()6,8,位于第一象限.故选ACD.10.BC 22670x y x +-+=可化为22(3)2x y -+=,所以圆心()3,0A.由题知焦点()1,0F,准线为直线1,x EF =-==A 错误.易知直线FN 的斜率存在,设直线FN 的方程为()1y k x =-,=,解得1k =±.因为切点E 在线段FN 上,所以1k =,故直线FN 的方程为10x y --=,B 正确.联立24,10,y x x y ⎧=⎨--=⎩可得2610x x -+=,所以3N x =+或3-(舍去),2134N y NF NP =+==++=+,C 正确.((1142822PFN N S NP y =⋅⋅=⨯+⨯+=+ ,D 错误.11.AD 因为()()222f x f x x =-+-,所以()()()22f x x f x x -=---.令()()g x f x x =-,则()()2g x g x =-,所以()g x 的图象关于直线1x =对称.因为()f x 与y x =都为奇函数,所以()g x 也是奇函数,则()g x 是以4为周期的周期函数,所以()()4g x g x +=.由()32f =,可得()()3331g f =-=-,所以()()531g g -==-,则()551f -+=-,解得()56f -=-,A 正确.()()()()44444f x g x x g x x f x +=+++=++=+,B 错误.由()()222f x f x x =-+-,求导可得()()22f x f x '=--+',所以()()112f f '=-+',即()11f '=.由()()44f x f x +=+,求导可得()()4f x f x ='+',所以()()10111f f ='=',C 错误.100100100111()[()]5050i i i f i g i i i ===∑=∑+=∑=D 正确.12.2- 设等比数列{}n a 的公比为q ,由324,,a a a 成等差数列,得3422a a a +=,整理得220q q +-=,则2q =-.13.12 从这6张卡片中随机抽取4张,这4张卡片的字母恰有两个相同的情况共有1232C C =3种,字母不相同的2张卡片均有2种选择,所以不同的取法种数为23212⨯=.14.()1,0- 由()2e x y x =-,可得()1e x y x '=-,则()2e x y x =-在(),1∞-上单调递减,在()1,∞+上单调递增,且当2x <时,()0f x <.直线2y kx =-恒过点()0,2-,当直线2y kx =-与曲线()2e xy x =-相切于点()00,x y 时,()()000002e 2,1e ,x x x kx x k ⎧-=-⎪⎨-=⎪⎩即()020022e 2x x x -+=.令()()222e x f x x x =-+,则()2e 0x f x x ='…,所以()f x 在R 上单调递增.因为()02f =,所以00,1x k ==-,结合图象(图略)可知,若直线2y kx =-与曲线(2)e x y x =-有3个交点,则k 的取值范围为()1,0-.15.解:(1)由正弦定理可得2sin cos sin cos sin cos 0C C A B B A ++=,所以()2sin cos sin 0,2sin cos sin 0C C A B C C C ++=+=,得1cos 2C =-.因为()0,πC ∈,所以2π3C =.(2)由余弦定理可得222222cos c a b ab C a b ab =+-=++,因为2a c b +=,所以222(2)b a a b ab -=++,化简可得53b a =,则723c b a a =-=,所以222222571333cos 57214233a a abc a A bc a a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===⨯⨯.16.(1)证明:过A 作1BB 的垂线,垂足为O ,连接OC .因为ABC 为等边三角形,所以AB BC =.因为11π,4BO BO B BC B BA ∠∠===,所以BOA BOC ≌,则1,AO CO BO CO ==⊥.又CO AO O ⋂=,所以1BB ⊥平面AOC ,因为AC ⊂平面AOC ,所以1AC BB ⊥.(2)解:由(1)可知1AO OC ==,所以222AO CO AC +=,故AO CO ⊥,所以,,OB OA OC 两两垂直,则以O 为原点,建立如图所示的空间直角坐标系.()()()()10,0,1,1,0,0,0,1,0,2,1,0A B C C -,则1CC =(2,0,0),(0,1,1),(1,1,0),(1,0,1)CA BC AB -=-=-=- .设平面ABC 的法向量为(),,m x y z =,则0,0,m AB m BC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,0,x z x y -=⎧⎨-+=⎩令1x =,得()1,1,1m = .设平面1ACC 的法向量为(),,n a b c = ,则10,0,n CA n CC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20,b c a -+=⎧⎨-=⎩令1b =,得()0,1,1n =.cos ,m n m n m n ⋅<>== ,所以平面ABC 与平面1ACC.17.解:(1)第一题结束时甲获得1分的概率为131521242123⎛⎫⨯+⨯-= ⎪⎝⎭.(2)由(1)知,在每道题的抢答中,甲、乙得1分的概率分别为21,33,X 的可能取值为2,4,5.()22115233339P X ==⨯+⨯=,()12212211204C 33333381P X ⎛⎫==⨯⨯⨯⨯+⨯= ⎪⎝⎭,()()()16512481P X P X P X ==-=-==,()520162502459818181E X =⨯+⨯+⨯=.18.(1)解:因为y =是双曲线2222:1x y C a b-=的一条渐近线,所以b a =,因为点()2,2在C 上,所以22441a b-=,解得222,4a b ==,即C 的方程为22124x y -=.(2)(i )证明:设():0l y kx t t =+≠,由22,1,24y kx t x y =+⎧⎪⎨-=⎪⎩得()2222240k x ktx t ----=,由题意得()22220,Δ8240k t k -≠=-+>.设()()1122,,,,A x y B x y AB 中点的坐标为()00,x y ,则12221222,24,2kt x x k t x x k ⎧+=⎪⎪-⎨+⎪=-⎪-⎩所以12000222,222x x kt t x y kx t k k +===+=--.因为AB 的中点在直线2y x =上,所以002y x =,即222222t kt k k =--,因为0t ≠,所以1k =.(ii )解:2AB x =-==点M 到l 的距离d所以12MAB S AB d =⋅== ,解得1t =±,所以l 的方程为10x y -±=.19.(1)解:由()ln f x x x =-,可得()11f x x'=-,令()0f x '>,解得1x >,令()0f x '<,解得01x <<,可知()f x 在()0,1上单调递减,在()1,∞+上单调递增,所以()f x 的最小值为()11f =.因为“()()f x g x -”为三角形函数,所以()()0,,2c g c ∞∀∈+<.因为()()2g x g x -=,所以()g x 的图象关于直线1x =对称,又()g x 为二次函数,所以()22g x x x =-+.(答案不唯一,只需满足()22g x ax ax c =-+,且2,0c a a -<<即可)(2)解:()222221222222x x x x x t t t f x +++--===++++.当20t -=,即2t =时,()1f x =,此时()()()1f a f b f c ===,满足()()()f a f b f c +>,符合题意;当20t ->,即2t >时,()f x 是()0,∞+上的减函数,所以()f x 的值域为11,3t +⎛⎫ ⎪⎝⎭,因为()()()(),,0,,a b c f a f b f c ∞∀∈++>,所以1113t ++…,得25t <…;当20t -<,即2t <时,()f x 是()0,∞+上的增函数,所以()f x 的值域为1,13t +⎛⎫ ⎪⎝⎭,因为()()()(),,0,,a b c f a f b f c ∞∀∈++>,所以11133t t +++…,得1 2.2t <…综上,实数t 的取值范围是1,52⎡⎤⎢⎥⎣⎦.(3)证明:由题可知()1ln 1g x x x =-+'.设()()1ln 1h x g x x x ==-+',则()2110(1)h x x x =--<+'在()0,∞+上恒成立,所以()g x '在()0,∞+上单调递减.又()132310,ln 0.40.40502252g g ⎛⎫=>='-≈-⎪⎝⎭'< ,所以存在031,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,即001ln 1x x =+①当()00,x x ∈时,()0g x '>,则()g x 在()00,x 上单调递增;当()0,x x ∞∈+时,()0g x '<,则()g x 在()0,x ∞+上单调递减.故当0x x =时,()g x 取得唯一极大值,也是最大值,令()g x 的最大值为M ,则()()00000ln 1ln M g x x x x x ==+-+.将①式代入上式,可得()()()200000000ln 1ln 111x x M g x x x x x x ==+-+=++++.令()()23ln 1,1,12x u x x x x ⎛⎫=++∈ ⎪+⎝⎭,则由()221201(1)x x u x x x +=+>++',可知()u x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()()()()20009355994ln 1ln ln 12,25122210102x M x u g c f a f b x ⎛⎫=++<=+=+<+<<+ ⎪+⎝⎭…成立.故“()()f x g x -”为三角形函数.。
金太阳试卷数学高三联考
一、选择题1. 已知函数$f(x) = 2x^3 - 3x^2 + 2x - 1$,则$f'(1)$的值为()A. 2B. 3C. 4D. 5【答案】A解析:$f'(x) = 6x^2 - 6x + 2$,将$x=1$代入得$f'(1) = 6 - 6 + 2 = 2$。
2. 若$a > b > 0$,则下列不等式中正确的是()A. $\frac{1}{a} > \frac{1}{b}$B. $a^2 > b^2$C. $\sqrt{a} > \sqrt{b}$D. $\log_2 a > \log_2 b$【答案】C解析:选项A、B、D均不成立,只有选项C成立,因为平方根函数在$(0,+\infty)$上是增函数。
3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n = 4n^2 - 5n$,则$a_1$的值为()A. 1B. 2C. 3D. 4【答案】A解析:由等差数列前$n$项和公式$S_n = \frac{n(a_1 + a_n)}{2}$,得$a_1 +a_n = 8n - 10$,又$a_n = a_1 + (n - 1)d$,代入得$a_1 + a_1 + (n - 1)d = 8n - 10$,即$2a_1 + (n - 1)d = 8n - 10$。
取$n=1$,得$2a_1 = 8 - 10$,解得$a_1 = -1$。
但题目要求$a_1 > 0$,故排除D选项,选A。
4. 已知函数$f(x) = \frac{1}{x} + \frac{1}{x-1}$,则$f(x)$的极值点为()A. $x=0$B. $x=1$C. $x=2$D. $x=-1$【答案】B解析:函数$f(x)$的定义域为$x \neq 0, 1$。
求导得$f'(x) = -\frac{1}{x^2} + \frac{1}{(x-1)^2}$,令$f'(x) = 0$,得$x=1$。
云南省金太阳2024届高三10月联考(24-66C)数学答案
'
槡-$! &%&
#面积为!&!"-!$9/"+:'
!-*%"槡1$%& &
%-槡&!当 7
与#
重合时#截面为矩
形"#,!-!#面积为-槡&!故平面7"-! 截正方体"#,-*"!#!,!-! 所得截面积的最大值
为-槡正确!对于 # 选项#因为"-,7'! &"--,!#所以 7 为"-! 的中
!"!&(!如图#由0";!;& 的面积是0#;!;& 面积的&倍#可得
'";&''&'#;&'#不妨设'";&''&%#'#;&''%#';!;&''
&<#则'";!''&$*&%#'#;!''&$*%!在0";!;& 中#由 '";&'&$';!;&'&*'";!'&'&'";&'';!;&'47?"+A#得
由图可知#二面角"*,?*7 为锐角#则二面角"*,?*7 的余弦值为((槡0(0!…… !&分
2023-2024学年金太阳重庆市部分学校高三上学期12月联考数学试卷+答案解析
2023-2024学年金太阳重庆市部分学校高三上学期12月联考数学试卷❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.在复平面内,对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.曲线在点处的切线的斜率为()A.2B.3C.6D.74.已知向量,满足,,则()A. B.2 C.15 D.195.若某圆锥的母线与底面所成的角为,且其母线长为4,则该圆锥的体积为()A. B. C. D.6.若数列的满足,,则()A. B. C.6 D.7.已知,,则()A. B. C. D.8.已知函数,若函数有4个零点,且其4个零点,,,成等差数列,则()A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.根据国家统计局发布的数据,我国今年3月份至10月份社会消费品零售额总额同比增速如图所示,则()A.我国今年3月份至10月份社会消费品零售额总额同比增速最高为B.我国今年3月份至10月份社会消费品零售额总额同比增速的中位数为C.我国今年3月份至10月份社会消费品零售额总额同比增速的分位数为D.我国今年3月份至10月份社会消费品零售额总额同比增速的平均值为10.在正四棱柱中,,,则()A.该正四棱柱外接球的表面积为B.异面直线与所成的角为C.该正四棱柱外接球的表面积为D.异面直线与所成的角大于11.下列函数中,存在两个极值点的是()A. B.C. D.12.已知函数的定义域为,若,则()A. B. C.为奇函数 D.没有极值点三、填空题:本题共4小题,每小题5分,共20分。
13.已知直线l:与n:平行,则__________.14.已知展开式的二项式系数之和为256,则其展开式中的系数为__________用数字作答15.已知圆C:,直线l:,P为l上的动点,过点P作圆C的切线,切点为M,则的最小值为__________.16.已知函数,的图象关于直线对称,且在上单调,则的最大值为__________.四、解答题:本题共6小题,共70分。
2021金太阳高三9月联考(1004)理数试题及参考答案_高清打印版
解能力!
当#+1时&*-##$$*#&%*$*##)!$##%!$!令*-##$$1&得#$!)令*-##$&1&得
1&#&!!则*##$在#1&!$上单调递减&在#!&)<$上单调递增&且*#1$$1&*#!$$
%&&*#&$$&&*#*$$!2!结合*##$与5##$的图象&因为*##$#5##$恰有两个不同
!
!高三数学试卷"参考答案!第!! 页#共"页$理科%
设*##$的最小正周期为
1&由*##$的图象可得"23":(4$
! 01&即
! 0
9&$
0Βιβλιοθήκη &解得$&!
!!!+!!解析%本题考查双曲线的离心率&考查运算求解能力!
设双曲线+ 的左焦点为)-&连接.)-#图略$!因为(/.) 为等边三角形&所以"/."$".)"$ !&"))-"$4&
/&!)<$%-& 由题意可得.0.&!).9&0<$%*1&…………………………………………………………………………… !分
解得&!$%2&<$!! ………………………………………………………………………………………… *分 故&;$&!)#;%!$<$;%,!………………………………………………………………………………… .分 #&$由#!$可知&;$;%,&则由&;+1&得;+,! …………………………………………………………… "分 当 6#,时&1,#%=,$%,9#%&2)1$$*"&.!&则 6#,不符合题意) ……………………………… 2分 当 6$,时&16 $=6 %&=,$6#6&%!-$)&9*"$.!&即 6&%!-6)0&$1&…………………………… !1分 解得 6$!0或 6$*#舍去$! ……………………………………………………………………………… !!分 综上&6$!0!………………………………………………………………………………………………… !&分 评分细则/ #!$在第一问中&也可以由=.$%*1&得到&*$%"&从而求出公差<&再由&;$&6 )#;%6$< 求出&;) #&$在第二问中&当6$,时&设7;$&;),&得到'7;(是以!为首项&!为公差的等差数列&求出前.项和为!.& 从而得到 6$,).$!0) #*$若用其他解法&参照评分标准按步给分! !,!#!$证明/取"$ 的中点,&连接.,&+,! 因为."$.$&所以"$-.,!……………………………………………………………………………… !分 因为底面"$+ 是等边三角形&所以"+$$+&所以"$-+,!…………………………………………… &分