实验四二极管大信号包络检波器资料
实验四二极管大信号包络检波器

实验总结:
二极管包络检波器主要由二极管和 RC 低通滤波电路组成。二极管导通时, 输入信号向 C 充电,充电时常数为 RC,充电快;二极管截止时,C 向 R 放电, 放 电 快 。在输入信号作用下,二极管导通和截止不断重复,直到充放电达到平 衡 后 , 输出信号跟踪了输入信号的包络。如果参数选择不当,二极管包络检波 器会产生惰性失真和负峰切割失真。惰性失真是由于 RC 过大而造成的,负峰切 割失真主要是由于交直流等效电阻不同造成的 。
u ui
u0
t
图(3) 惰性失真原理图 避免惰性失真的条件是
ma 1 1 (CRL ) 2
上式表明若 CRL 放电慢,将促成发生惰性失真。 (2)割底失真。如图(4)所示。
(a) (c) 图(4) 割底失真原理及波形图 设 d 1 ,不产生负峰切割失真的条件为
ma 1 ~ Ri RR RL R 1 i L L R L Ri R L Ri R L Ri R L R L
实验原理:
1、 二极管大信号包络检波工ቤተ መጻሕፍቲ ባይዱ原理
ui u2
maUcm
Ucm
ui t
u2
UΩ m
直流成分U0
U0
t
图(1) 大信号检波电路
图(2)大信号检波原理
图(1)是二极管大信号包络检波电路,图(2)表明了大信号检波的工作原理。 输入信号 u i (t ) 为正并超过 C 和 RL 上的 u 0 (t ) 时, 二极管导通, 信号通过二极管向 C 充电, 此时 u 0 (t ) 随充电电压上升而升高。当 u i (t ) 下降且小于 u 0 (t ) 时,二极管反向截止,此时 停止向 C 充电并通过 R L 放电,u 0 (t ) 随放电而下降。 充电时, 二极管的正向电阻 rD 较小,
包络检波及同步检波实验

载波信号不变,将调制信号 Vs 的峰值电压调 至 80mV ,调节 Rp1 使调制器输出为抑制载 波的双边带调幅信号,然后加至二极管包络检 波器输入端,观察记录检波输出波形,并与调 制信号相比较。
2、1496构成解调器
1、解调全载波信号
( 1 )将图 4 中的 C ' L 另一端接地, C5 另一 端接 A ,按调幅实验中实验内容 2 ( 1 )的条件获得 调制度分别为 30 %、 100 %及> 100 %的调幅波。 将它们依次加至解调器 V ^米的输入端,并在解调器 的载波输入端加上与调幅信号相同的载波信号,分别 记录解调输出波形,并与调制信号相比。 ( 2 )去掉 C4 、 C5 观察记录 m = 3o %的调幅波 输入时的调解器输出波形ボ并与调制信号相比较。
包络检波及同步检波实验
一、实验目的
1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率 4、观察各种波形失真的现象,分析产生的原因并思考克 服的方法。 5、将幅度调制器电路和解调器电路联合起来实验,进一 步掌握调制和解调的基本方法
二、实验原理
检波过程是一个解调过程,它与调制过程正好相反。 检波器的作用是从振幅受调制的高频信号中还原出原 调制的信号。常用的检波方法有包络检波和同步检波 两种。全载波振幅调制信号的包络直接反映了调制信 号的变化规律,用二极管包络检波的方法进行解调。 而抑制载波的双边带或单边带振幅调制信号的包络不 能直接反映调制信号的变化规律,无法用包络检波进 行解调,所以采用同步检波方法。
2、解调抑制载波的双边带调幅信号 ( 1 )按调幅实验中实验 3 ( 2 )的条件获 得抑制载波调幅波,并加至图 6-2 的 V ^* 输入端,其它连线均不变,观察记录解调输出 波形,并与调制信号相比较。 ( 2 )去掉滤波电容 C4 、 C5 观察记录输出 波形。
二极管包络检波实验报告

一、实验设计方案2.实验原理、试验流程或装置示意图实验原理:图6-1是二极管大信号包络检波电路 图6-2表明了大信号检波的工作原理。
输入信号)(U i(t)为正并超过C和LR上的)( U0(t)时二极管导通信号通过二极管向C充电 此时)( U0(t)随充电电压上升而升高。
当)( (U i(t)下降且小于)(0tu时二极管反向截止此时停止向C充电并通过LR放电)( U0(t)随放电而下降。
充电时二极管的正向电阻Dr较小充电较快)( U0(t)以近)(U i(t)上升的速率升高。
放电时 因电阻LR比Dr大得多通常kRL10~5放故)( U0(t)的波动小并保证基本上接近于)( (U i(t)的幅值。
如果)((U i(t)是高频等幅波且LR很大则)( U0(t)几乎是大小为U0的直流电压 这正是带有滤波电容的半波整流电路。
当输入信号)( (U i(t)的幅度增大或减少时 检波器输出电压)( U0(t)也将随之近似成比例地升高或降低。
当输入信号为调幅波时检波器输出电压)( U0(t)就随着调幅波的包络线而变化从而获得调制信号完成检波作用由于输出电压)( U0(t)的大小与输入电压的峰值接近相等故把这种检波器称为峰值包络检波器。
30实验设备及材料二、实验报告1.实验现象与结果试验得到输入的波形及数据如下输出的波形如下2.对实验现象、实验结果的分析及结论检波输出可能产生三种失真:第一由于检波二极管伏安特性弯曲引起的非线性失真;第二是由于滤波电容放电慢引起的惰性失真;第三是由于输出耦合电容上所充的直流电压引起的负峰值失真,其中第一种失真主要存在于小信号检波中并且是小信号检波器中不可避免的失真。
对于大信号检波器这种失真影像不大,主要是后两种失真。
(1)惰性失真(对角失真)(2)、割底失真三.实验总结1.本次试验成败及原因分析惰性失真(对角线切割失真)断开J1、J3 连接J2 由IN1端加入普通调幅波 AM 分别调节集成乘法器幅度调制实验电路板上产生的普通调幅波 AM 的调幅系数m a、调制信号频率Ω、二极管大信号包络检波实验电路上电位器RW1 在TP2点观测图6-3所示惰性失真波形图。
实验四 二极管包络检波实验

实验四二极管包络检波实验高频实验报告实验名称: 二极管包络检波实验姓名: 余丽芳学号: 110404213班级: 通信工程,2,班时间: 2013.12.30南京理工大学紫金学院电光系一、实验目的1(加深对二极管大信号包络检波工作原理的理解。
2(掌握用二极管大信号包络检波器实现普通调幅波(AM)解调的方法。
了解滤波电容数值对AM波解调影响。
3(了解电路参数对普通调幅波(AM)解调影响。
二、实验基本原理与电路二极管大信号包络检波工作原理uiu2mUacmuiUcmtu2直流成分U0UΩmU0t图4-1 大信号检波电路图4-2大信号检波原理图4-1是二极管大信号包络检波电路,图4-2表明了大信号检波的工作原理。
CC输入信号为正并超过和上的时,二极管导通,信号通过二极管向u(t)Ru(t)i10充电,此时随充电电压上升而升高。
当u(t)下降且小于时,二极管反u(t)u(t)0i0C向截止,此时停止向充电并通过放电,随放电而下降。
充电时,二极Ru(t)0Lru(t)管的正向电阻较小,充电较快,u(t)以接近上升的速率升高。
放电时,D0ir因电阻R比大的多(通常R,5~10k,),放电慢,故u(t)的波动小,并保D0LL 证基本上接近于u(t)u(t)u(t)U的幅值。
如果是高频等幅波,则是大小为的直ii00流电压(忽略了少量的高频成分),这正是带有滤波电容的整流电路。
当输入信号的幅度增大或减少时,检波器输出电压也将随之近似成比例地升高u(t)u(t)i0 或降低。
当输入信号为调幅波时,检波器输出电压就随着调幅波的包络线u(t)0而变化,从而获得调制信号,完成检波作用,由于输出电压的大小与输入u(t)0电压的峰值接近相等,故把这种检波器称为峰值包络检波器。
2.二极管大信号包络检波效率检波效率又称电压传输系数,用表示。
它是检波器的主要性能指标之一,,d 用来描述检波器将高频调幅波转换为低频电压的能力。
定义为: ,dUU检出的音频电压幅度()mm,, ,,,dmUmU调幅波包线变化的幅度()acmacm 当检波器输入为高频等幅波时,输出平均电压,则定义为 U,0d整出的直流电压(U)U00 ,,,d检波电压的幅值(U)Ucmcm这两个定义是一致的,对于同一个检波器,它们的值是相同的。
二极管包络检波实验

*课程设计报告题目:二极管包络检波实验学生姓名: **学生学号: ******** 系别:电气信息工程学院专业:通信工程届别: 2014届指导教师: ***电气信息工程学院制2013年5月二极管包络检波实验学生:**指导教师:***电气信息工程学院通信工程专业摘要:利用最新电子仿真软件 Multisim 进行二极管包络检波虚拟实验,具有组建电路快捷、波形生动直观、实验效果理想等优点。
计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。
关键词:调制信号;包络检波;低通滤波器;对角线失真;负峰切割失真引言众所周知,高频电子线路实验由于频率高,对实验板的设计和制作非常讲究,一般常采取诸如某些元件就近接地大面积敷铜板布地线振荡器加屏蔽合等措施,以尽可能减少高频干扰但在实际实验时,往往由于测量仪器和实验板之间的连线过长连线交叉平行等原因,仍然会存在窜入高频干扰问题,严重时影响观察波形和测量数据的准确性本文通过计算机用电子仿真软件Multisim进行高频电路仿真实验,不存在高频干扰现象,能达到理想的实验结果。
1实验原理分析调幅波的解调是从调幅信号中取出调制信号的过程,是调制的逆过程,通常称之为检波常用的解调方法有二极管包络检波和同步检波2种,一般的振幅调制信号,都可采用由相乘器和低通滤波器组成的同步检波电路进行解调但是,对于普通调幅信号来说,它的载波分量未被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络检波器。
目前应用最广的是二极管包络检波器。
二极管包络检波适合于解调含有较大载波分量的大信号的检波,它具有电路简单,易于实现的优点。
1.1二极管包络检波工作原理利用二极管的单向导电特性和检波负载RC的充放电过程来完成调制信号的提取。
还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。
二极管包络检波

任务名称:二极管包络检波1. 介绍二极管包络检波是一种常用的电子技术,用于将调制信号从高频载波中分离出来。
它广泛应用于无线通信、广播、电视等领域。
本文将详细介绍二极管包络检波的原理、应用和实现方法。
2. 原理二极管包络检波的原理基于二极管的非线性特性。
当二极管正向偏置时,它呈现出非线性的伏安特性曲线。
当输入信号的幅度较大时,二极管会在正半周将信号整流,而在负半周截断信号。
这样,输出信号就是输入信号的包络。
3. 实现方法二极管包络检波的实现方法主要有两种:简单包络检波和滤波包络检波。
3.1 简单包络检波简单包络检波是最基本的包络检波方法。
它通过将输入信号与直流偏置相连的二极管串联,然后通过一个负载电阻将输出信号提取出来。
这种方法实现简单,但对信号的频率和幅度有较大的限制。
3.2 滤波包络检波滤波包络检波通过在简单包络检波的基础上添加滤波电路,提高了对输入信号的适应性。
滤波电路可以是低通滤波器或带通滤波器,用于滤除高频噪声和杂散信号。
这种方法可以实现更好的包络检波效果,提高了信号的质量和稳定性。
4. 应用二极管包络检波在无线通信和广播领域有广泛的应用。
4.1 无线通信在无线通信系统中,二极管包络检波用于解调调制信号。
它可以将调制信号从高频载波中分离出来,用于音频信号的放大和处理。
例如,在调频调制中,包络检波器可以将调制信号从调频信号中提取出来,用于音频解调和放大。
4.2 广播和电视在广播和电视系统中,二极管包络检波用于解调广播信号和电视信号。
它可以将调幅和调频信号中的音频信息提取出来,用于音频放大和处理。
例如,在调幅广播中,包络检波器可以将调制信号从调幅信号中分离出来,用于音频解调和放大。
5. 优缺点二极管包络检波具有以下优点: - 简单、成本低廉 - 实现容易 - 适用于多种调制方式然而,它也存在一些缺点: - 对输入信号的频率和幅度有限制 - 对输入信号的失真较敏感 - 对高频噪声和杂散信号的抑制能力较弱6. 总结二极管包络检波是一种常用的电子技术,用于从高频载波中分离出调制信号。
二极管包络检波

总的输出电压 vo = (i1 − i2 )R 平衡调幅电路
a 2 2 a 0 + 2 (V 0 + V Ω ) 2
a 1V Ω +
a 1V 0 +
总的输出电流 i = i1 − i2
id1 − id2 = 2a1vΩ−4a2vΩvc
3 3 3 2 a 3V 0 + a 3V 0V Ω 4 2
a2 2 V0 2
上节内容回顾与扩展
几种调幅波的特点与实现方法
4.残留边带调幅的频谱 残留边带调幅的频谱
上节内容回顾与扩展
实现调幅波的电路
调幅电路的种类很多,有分立、集成调幅电路;有低电平、 调幅电路的种类很多,有分立、集成调幅电路;有低电平、高 电平调幅电路;有普通调幅、有其它调幅电路; 电平调幅电路;有普通调幅、有其它调幅电路;虽然电路形式 各异,但原理是相同的, 各异,但原理是相同的,都是采用非线性器件产生新的频率成 再加相应的滤波器得到相应的频率成分。另外, 分,再加相应的滤波器得到相应的频率成分。另外,高电平调 幅电路在调幅的同时具有功率增益。 幅电路在调幅的同时具有功率增益。
上节内容回顾与扩展
几种调幅波的特点与实现方法
1.普通调幅 普通调幅AM 普通调幅
uAM UΩ
Ma<1
ω Ω UC
t
Ma=1
ω UAM ωC
uAM
下边频
上边频
t ω ωCωC ωC+Ω
Ma>1
上节内容回顾与扩展
几种调幅波的特点与实现方法
2. 抑制载波的双边带调幅(DSB调幅) 抑制载波的双边带调幅( 调幅) 调幅 DSB调幅是在调幅电路中抑制掉载频只输出上下边频 调幅是在调幅电路中抑制掉载频只输出上下边频 (边带)。其数学表达式为 边带)。其数学表达式为 )。
二极管包络检波

二极管包络检波(原创实用版)目录1.二极管包络检波的原理2.二极管包络检波的优缺点3.二极管包络检波的应用范围4.二极管包络检波与其他检波方法的比较5.二极管包络检波的实际应用案例正文一、二极管包络检波的原理二极管包络检波是一种将高频调幅信号中的原始信号提取出来的方法,也称为振幅解调或振幅检波。
它通过检波二极管将输入信号的负半周削平,只保留正半周,从而得到原调制信号的包络。
这种检波方法的优点是检波效率高、失真小、输入电阻较高。
二、二极管包络检波的优缺点二极管包络检波的优点有:检波效率高、失真小、输入电阻较高。
然而,它也存在一些缺点,如包络检波适用范围小,只适用于 AM 波解调,并且会因参数选择不当产生各种失真(底部切割失真、对角切割失真等)。
三、二极管包络检波的应用范围二极管包络检波广泛应用于普通调幅收音机、通信设备等领域。
在调幅接收机中,二极管包络检波器用于从高频调幅信号中提取原调制信号,从而实现音频信号的解调。
四、二极管包络检波与其他检波方法的比较与二极管包络检波相比,同步检波适用范围更广,适用于 AM 波、DSB、SSB 信号,检波效率高、检波线性好。
然而,同步检波的解调电路相对较复杂。
此外,还有其他检波方法,如三极管检波电路、运放检波电路等。
选择合适的检波方法需要根据实际应用场景和需求来确定。
五、二极管包络检波的实际应用案例在实际应用中,例如一个调幅接收机工作频率为 10.7MHz,输入、放大、检波三部分可以采用二极管包络检波方法。
首先,输入信号通过天线接收,然后经过放大电路放大,最后通过二极管包络检波器进行检波,得到原始音频信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
成绩
班级电子112 学号1886110233 姓名张影课程名称
高频电子线路实验与课程设计实验日期2013\11\20 实验名称二极管大信号包络检波器
实验目的:
1、通过实验熟悉大信号检波的工作原理。
2、掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。
3、初步掌握包络检波器的工程估算方法和检波特性的测试方法。
4、了解电路参数对普通调幅波(AM )解调影响。
5、研究电路参数对检波特性的影响。
实验原理:
1、二极管大信号包络检波工作原理
u i
t
t
u 2
u 2u i
Ucm m a U cm
U 0
U Ωm直流成分U 0
图(1)大信号检波电路图(2)大信号检波原理
图(1)是二极管大信号包络检波电路,图(2)表明了大信号检波的工作原理。
输入信号)(t u i 为正并超过C 和L R 上的)(0t u 时,二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。
当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充电并通过L R 放电,)(0t u 随放电而下降。
充电时,二极管的正向电阻D r 较小,
充电较快,)(0t u 以接近)(t u i 上升的速率升高。
放电时,因电阻
L R 比D r 大得多(通常k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。
如果)(t u i 是高频等幅波,且L R 很大,则)(0t u 几乎是大小为0U 的直流电压,这正是带有滤波电容的半波整流电路。
当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将
随之近似成比例地升高或降低。
当输入信号为调幅波时,检波器输出电压)(0t u 就随着
调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压
)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。
2、二极管大信号包络检波器检波失真
检波输出可能产生三种失真:第一种,由于检波二极管伏安特性弯曲引起的非线性失真;第二种是由于滤波电容放电慢引起的惰性失真;第三种是由于输出耦合电容上所充的直流电压引起的负峰切割失真。
其中第一种失真主要存在于小信号检波器中,并且是小信号检波器中不可避免的失真,对于大信号检波器这种失真影响不大,主要是后两种失真。
(1) 惰性失真。
如图(3)电路所示。
t
u
u i u 0
图(3)惰性失真原理图
避免惰性失真的条件是
2
)(11L a CR m 上式表明若L CR 放电慢,将促成发生惰性失真。
(2)割底失真。
如图(4)所示。
(a )
(b )(c )
图(4)割底失真原理及波形图
设1d ,不产生负峰切割失真的条件为
L L L i L L i i L i i L L
a R R R R R R R R R R R R R m ~11
由该式可见,调制系数a m 愈大或检波器交直流电阻之比
L L R R ~愈小,则愈容易产生负峰
切割失真。
实验内容与步骤:
(一)、按照该实验所给电路在Multisim10软件中画出仿真电路。
电路如下所示:
(二)、进行仿真实验,得出输出和输入的仿真波形图,如下图所示:
从上图中可以看到,二极管包络检波器输出和输入波形一致,几乎没有失
真,非常成功。
实验总结:
二极管包络检波器主要由二极管和RC低通滤波电路组成。
二极管导通时,
输入信号向C充电,充电时常数为RC,充电快;二极管截止时,C向R放电,放电快。
在输入信号作用下,二极管导通和截止不断重复,直到充放电达到平
衡后,输出信号跟踪了输入信号的包络。
如果参数选择不当,二极管包络检波
器会产生惰性失真和负峰切割失真。
惰性失真是由于RC过大而造成的,负峰切割失真主要是由于交直流等效电阻不同造成的。