【鲁教版】高中数学必修五期末试题(含答案)(2)
【鲁教版】高中数学必修五期末试题(带答案)(2)

一、选择题1.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-2.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .323.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .64.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >n D .不确定5.在ABC 中,内角,A ,B C 的对边分别为,a ,b c,已知b =22cos c a b A -=,则a c +的最大值为( )AB.C.D6.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形7.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形8.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( )A .6π B .3π C.2π D .23π 9.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .90010.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .22C .34D .3211.设n S 是数列{}n a 的前n 项和,且()*2n n S a n n N =+∈,则{}na 的通项公式为na=( ) A .23n -B .23n -C .12n -D .12n -12.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=二、填空题13.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则22(4)z x y =++的最小值为__________.14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.16.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC 面积的最大值为____________.17.在三角形ABC 中,D 为BC 边上一点,且2BD CD =,AD BD =,则2tan cos BAC B ∠⋅的最大值为__________.18.已知实数x ,y 满足10,0,0,x y x y x +-≤⎧⎪-≤⎨⎪≥⎩则函数2z x y =-的最大值为__________.19.设数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,则n a =______. 20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米. 求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 22.已知2()(1)1f x ax a x =+-- (1)若()0f x >的解集为11,2⎛⎫-- ⎪⎝⎭,求关于x 的不等式301ax x +≤-的解集; (2)解关于x 的不等式()0f x ≥.23.在ABC 中,已知边长是5,7,8BC AC AB ===. (1)求角B ;(2)求ABC 的面积; (3)求ABC 外接圆面积.24.在ABC 中,角A ,B ,C 所对边分别为a ,b ,c,b =,sin 1c A =.点D 是AC的中点,BD AB ⊥,求c 和ABC ∠.25.已知等差数列{}n a 中,n S 为数列{}n a 的前n 项和,519a =,321S =. (1)求数列{}n a 的通项公式n a ; (2)令1n n b S n=+,求数列{}n b 的前n 项和n T . 26.在数列{}n a ,{}n b 和{}n c 中,{}n a 为等差数列,设{}n a 前n 项的和为n S ,{}n c 的前n 项和为n T ,11a =,410S a =,12b =,n n n c a b =⋅,22n n T c =-. (1)求数列{}n a ,{}n b 的通项公式;(2)求证:()()()()()()12122311111111nn n c c c c c c c c c ++++<------.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.2.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.3.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x ⎛⎫+=++=++≥+=⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.4.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥-- ()12242a a +-⋅=-,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综上可得m >n ,故选C .5.B解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c +的最大值为故选:B . 【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.6.D解析:D 【分析】根据角A 的平分线交BC 于E ,满足0AE BC ⋅=,得到ABC 是等腰三角形,再由2221sin 24+-==ABC a b c S ab C ,结合余弦定理求解. 【详解】因为0AE BC ⋅=, 所以AE BC ⊥,又因为AE 是角A 的平分线, 所以ABC 是等腰三角形, 又2221sin 24+-==ABCa b c Sab C ,所以2221sin cos 22a b c ab C C ab+-==,因为()0,C π∈, 所以4Cπ,所以ABC 是等腰直角三角形, 故选:D 【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.7.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 8.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.9.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 10.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.11.C解析:C 【分析】由()*2n n S a n n N =+∈结合11,1,2n nn S n a S S n -=⎧=⎨-≥⎩即可求出1a 和121n n a a -=-,通过构造法即可求出通项公式. 【详解】当1n =时,11121a S a ==+,解得1 1a =-;当2n ≥时,122(1)n n n a a n a n -=+---.∴121n n a a -=-,∴()1121n n a a --=-.∵112a -=-,∴12nn a -=-,∴12nn a =-.故选:C . 【点睛】本题考查了数列通项公式的求解,考查了,n n a S 的递推关系求通项公式,考查了等比数列的通项公式,考查了构造法求数列的通项公式,属于中档题.12.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可. 【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩ ∴点()3,2M ,()5,4N ,42153MN k -==- ∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=.故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.二、填空题13.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是解析:5【分析】画出满足条件的平面区域,结合z =z 的最小值即可. 【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由8445541d -+==+,得最小值是55, 45. 【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.14.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2 【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值. 【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积, 由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题. 15.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积 解析:3【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解.【详解】 四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31213423AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=- 则ABC 的面积2133sin 603cos 22AB AC θ=⋅⋅︒= OAB 的面积113sin 13222OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为:【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用. 16.【分析】先利用正弦定理将条件中的角转化为边的关系再利用余弦定理求解出角A 的值再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值【详解】因为所以根据正弦定理得:化简可得:即(A 为【分析】先利用正弦定理将条件()(sin sin )()sin a b A B c b C +-=-中的角转化为边的关系,再利用余弦定理求解出角A 的值,再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值.【详解】因为()(sin sin )()sin a b A B c b C +-=-,所以根据正弦定理得:(a b)()(c b)a b c +-=-,化简可得:222b c a bc +-=, 即2221cos 22b c a A bc +-==,(A 为三角形内角) 解得:60A ︒=,又224b c bc bc +-=≥,(b =c 时等号成立)故1sin 2ABC S bc A ∆=≤【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用,属于中档题目,解题的关键有两点,首先是利用正余弦定理实现边角之间的互化,其次是利用余弦定理和均值不等式求出三角形边的乘积的最大值.17.【分析】设则在△ABD 和△ACD 中由正弦定理化简可得由两角差的正弦公式化简可得根据正弦函数的值域即可求解的最大值【详解】如图由已知设则在△ABC 中由正弦定理可得:在△ACD 中由正弦定理可得:所以化简 解析:32 【分析】 设,BD x =则,2x AD x CD ==,在△ABD 和△ACD 中,由正弦定理化简可得3sin 2sin cos 22sin sin()x x B B B BAC BAC B ⋅⋅=∠∠-,由两角差的正弦公式,化简可得23tan cos sin 22BAC B B ∠⋅=,根据正弦函数的值域即可求解2tan cos BAC B ∠⋅的最大值. 【详解】如图,由已知,设,BD x =则,2x AD x CD ==, 在△ABC 中,由正弦定理可得: 32sin sin xb BAC B=∠, 在△ACD 中,由正弦定理可得: 2sin()sin 2xb BAC B B=∠-. 所以3sin 2sin cos 2sin cos 222=sin sin()sin cos cos sin x x x B B B B B BAC BAC B BAC B BAC B⋅⋅⋅=∠∠-∠-∠ 化简可得:tan cos 3sin BAC B B ∠⋅=,可得: 233tan cos sin 222BAC B B ∠⋅=≤. 可得2tan cos BAC B ∠⋅的最大值为32.【点睛】本题考查正弦定理在解三角形和化简中的应用,能借助公共边把两个三角形联系起来是解答本题的关键,属于中档题.18.【解析】作出不等式所表示的平面区域如图所示由得作出直线并平移由图象可知当直线经过点时纵截距最小此时最大联立得即故解析:12 【解析】 作出不等式所表示的平面区域,如图所示,由2z x y =-得2y y z --,作出直线2y x =,并平移,由图象可知,当直线经过点A 时,纵截距最小,此时z 最大,联立10x y y x +-=⎧⎨=⎩,得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,即11,22A ⎛⎫ ⎪⎝⎭,故1112222max z =⨯-=.19.【分析】构造求出由题意可得利用等差数列的通项公式可得利用累加法即可求得【详解】构造则由题意可得故数列是以4为首项2为公差的等差数列故所以以上n-1个式子相加可得解得故答案为:【点睛】本题考查等差数列 解析:()()*1n n n N+∈ 【分析】构造1n n n b a a +=-,求出1b ,由题意可得()()21112n n n n n n a a a a b b ++++---=-=,利用等差数列的通项公式可得n b ,利用累加法即可求得n a .【详解】构造1n n n b a a +=-,则1214b a a =-=,由题意可得()()21112n n n n n n a a a a b b ++++---=-=,故数列{}n b 是以4为首项2为公差的等差数列,故()*142(1)22n n n b a a n n n N+=-=+-=+∈, 所以21324314,6,8,2n n a a a a a a a a n --=-=-=-=, 以上n -1个式子相加可得1(1)(42)2n n n a a -+-=,解得()*(1)n a n n n N =+∈, 故答案为:()()*1n n n N+∈【点睛】本题考查等差数列,累加法求数列通项公式,属于基础题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+.故答案为:1m +【点睛】 本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式; (2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+; (2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()16991782917810029x x ⨯⎡⎤=-++≤-=⎢⎥+⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 22.(1)3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭;(2)当0a =时,解集为(,1]-∞-,当0a >时,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭,当1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦,当1a =-时,解集为{}1-,当10a -<<时,解集为1,1a⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据不等式的解与方程的根的关系,利用韦达定理列出方程组,求得a 的值,代入求得不等式的解集.(2)对参数a 分情况讨论,分别求得不等式的解集. 【详解】 解:(1)由题意得11121112a a a -⎧--=-⎪⎪⎨-⎛⎫⎪-⨯-= ⎪⎪⎝⎭⎩, 解得2a =-,故原不等式等价于2301x x -+-,即(23)(1)010x x x --⎧⎨-≠⎩所以不等式的解集为3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭.(2)当0a =时,原不等式可化为10x +≤,解集为(,1]-∞-; 当0a >时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭; 当0a <时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭, 当11a >-,即1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦; 当11a=-,即1a =-时,解集为{}1-;当11a<-,即10a-<<时,解集为1,1a⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查一元二次不等式的解法及分式不等式的解法,意在考查学生的分类讨论思想及数学运算的学科素养,属中档题.23.(1)3π;(2)103;(3)493π.【分析】(1)由余弦定理,求得1cos2B=,即可求得角B的大小;(2)由三角形的面积公式,即可求得ABCS的面积;(3)由正弦定理,求得2sin3ACRB==,进而取得外接圆面积.【详解】(1)由题意,在ABC中,5BC=,7AC=,8AB=,由余弦定理有2222225871cos22582BC AB ACBBC AB+-+-===⋅⨯⨯,因为(0,)Bπ∈,所以3Bπ=.(2)由三角形的面积公式,可得ABCS=113sin8510322AB BC B⋅=⨯⨯⨯=.(3)由正弦定理,可得72sin3sin3ACRBπ===,所以外接圆面积为249()33ππ⨯=. 24.5c=,34ABCπ∠=.【分析】由勾股定理求出BD,再由sinBDAAD=,sin1c A=,5b c=求出5c=,5b=,再由余弦定理求出a,最后由正弦定理求出ABC∠.【详解】解:在直角三角形ABD中,22222224b cBD AD AB c⎛⎫=-=-=⎪⎝⎭,所以2cBD=.所以sin BD A AD ==.又因为sin 1c A =,所以c =由b =得,5b =.因为sin 5A =,0,2A π⎛⎫∈ ⎪⎝⎭,所以cos 5A ==.在ABC 中,由余弦定理,得a ==由正弦定理,得sin sin a b A ABC =∠,即5sin ABC =∠sin ABC ∠=. 又因为,2ABC ππ⎛⎫∠∈ ⎪⎝⎭,所以34ABC π∠=. 【点睛】关键点睛:解决本题的关键在于正余弦定理的综合应用,综合利用两个定理求出c 和ABC ∠.25.(1)41n a n =-;(2)2(1)n n T n =+. 【分析】(1)由已知列方程求出首项和公差,可得答案;(2)求出n S 及n b 的通项公式,由裂项相消求和可得答案.【详解】(1)∵313321S a d =+=①,51419a a d =+=②由①②得13a =,4d =.∴1(1)41n a a n d n =+-=-;(2)由(1)知41n a n =-,13a =, ()234122n n n S n n +-∴==+; ∴111112(1)21n n b S n n n n n ⎛⎫===- ⎪+++⎝⎭, ∴11111111122233412(1)n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】本题考查了等差数列的通项公式、数列求和,解题关键点是求出数列的首项和公差以及裂项相消求和,考查了学生的基础知识、基本运算.26.(1)n a n =,2nn b n=;(2)证明见解析; 【分析】(1)设{}n a 的公差为d ,由410S a =,即可得到1d a =,从而求出{}n a 的通项公式,再由1122n n n n n c T T c c --=-=-,可得{}n c 是首项为2,公比为2的等比数列,即可求出{}n c 的通项,最后由n n n c a b =⋅,求出{}n b 的通项公式;(2)依题意可得()()1111112121n n n n n c c c ++=-----,利用裂项相消法求和即可得证;【详解】解:(1)因为{}n a 为等差数列,且{}n a 前n 项的和为n S ,设其公差为d , 因为410S a =,11a =,所以()11441492a d a d ⨯-+=+,所以11d a ==,所以n a n =,因为11a =,12b =,n n n c a b =⋅,所以1112c a b =⋅=,因为{}n c 的前n 项和为n T 且22n n T c =-,当2n ≥时,()()111222222n n n n n n n c T T c c c c ---=-=---=-,所以()122n n c c n -=≥,所以{}n c 是首项为2,公比为2的等比数列,所以2n n c =,因为n n n c a b =⋅,所以2nn n n c b a n== (2)因为()()()()1112111121212121n n n n n n n n c c c +++==-------所以()()()()()()1212231111111n n n c c c c c c c c c ++++------ 122311111111111111212121212121212121n n n n +++=-+-++-=-=-<--------- 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。
【鲁教版】高中数学必修五期末试卷及答案

一、选择题1.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .42.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( ) A.BC .1D .23.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .604.在△ABC中,若222a c b -+=,则C =( ). A .45°B .30°C .60°D .120°5.在ABC 中,内角,,A B C 所对应的边分别为,,a b c,若sin cos 0b A B =,且2b ac =,则a cb+ 的值为( ) ABC .2D .46.如果等腰三角形的周长是底边长的5倍,那么顶角的余弦值是 A .518B .34CD .787.在ABC 中,60A ∠=︒,1b =,ABCS =2sin 2sin sin a b cA B C++=++( )A.3BCD.8.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( )A .514z ≤≤B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤9.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a的所有“和谐项”的和为()A.1022 B.1023 C.2046 D.204710.设等差数列{}n a前n项和为n S,等差数列{}n b前n项和为n T ,若11 nnS nT n-=+.则55ab=()A.23B.45C.32D.5411.已知数列{}n a中,12a=,()*,Nn m n ma a a n m+=⋅∈,若1234480k k k ka a a a+++++++=,则k=()A.3 B.4 C.5 D.612.设{}n a为等比数列,给出四个数列:①{}2na,②{}2n a,③{}2n a,④{}2log||na.其中一定为等比数列的是()A.①③B.②④C.②③D.①②二、填空题13.已知0a>,0b>,182+1a b+=,则2a b+的最小值为__________.14.如图,点A是半径为1的半圆O的直径延长线上的一点,3OA=,B为半圆上任意一点,以AB为一边作等边ABC,则四边形OACB的面积的最大值为___________.15.在ABC中,60,12,183ABCA b S=︒==,则sin sin sina b cA B C____________.16.ABC中,a,b,c分别是,,A B C∠∠∠的对边,2224ABCa b cS+-=,则C=_________.17.已知变量,x y满足约束条件4010x yx yy-≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b=+>>的最小值为1,则28a b+的最小值为__________. 18.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.19.数列1,-2,2,-3,3,-3,4,-4,4,-4,5,-5,5,-5,5,…,的项正负交替,且项的绝对值为1的有1个,2的有2个,…,n 的有n 个,则该数列第2020项是__________.20.下图中的一系列正方形图案称为谢尔宾斯基地毯.在图中4个大正方形中,着色的正方形的个数依次构成一个数列{}n a 的前4项,则数列{}n a 的一个通项公式为______.三、解答题21.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省?22.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin A C b cB a c--=+.(1)求角A ;(2)若ABC 的外接圆半径为2,求ABC 周长的最大值. 23.如图,在ABC 中,6AB =,3cos 4B =,点D 在BC 边上,4=AD ,ADB ∠为锐角.(1)若62AC =DC 的长度; (2)若2BAD DAC ∠=∠,求sin C 的值.24.已知a ,b ,c 分别为锐角ABC 内角A ,B ,C 32sin 0a b A -=. (1)求角B ; (2)若7b =,5a c +=,求ABC 的面积.25.已知数列{}n a 满足1*111,33().n n n a a a n ++==+∈N(1)求证:数列{}3nna 是等差数列. (2)求数列{}n a 的通项公式.(3)设数列{}n a 的前n 项和为,n S 求证:37.324n n S n >- 26.在①119n n a a +-=-,②113n n a a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A ,220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方,由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min244z a ⎛⎫==+, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.2.D解析:D 【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值. 【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D. 【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.3.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以22949(3)(8)(4)(9)3737249b a b a a b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.4.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴22222a b c cosC ab +-==. 又∵C 为三角形内角 ∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.5.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.6.D解析:D【解析】设顶角为C,∵l=5c,∴a=b=2c,由余弦定理得:222222447 cos22228a b c c c cCab c c+-+-===⨯⨯.故答案为D.7.B解析:B【分析】由三角形的面积公式可得,4c=,再由余弦定理可得13a=,最后由正弦定理可得结果.【详解】131c sin60=3,42︒=⋅⋅⋅=∴=ABCS c c由余弦定理可得:22212cos1612413,132=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:213239sin sin sin2sin sin33++=====++a b c a b csinA B C A B C故选:B【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目.8.B解析:B【分析】画出不等式组对应的平面区域,由,x y都取最大值得出z的最小值,当z取最大值时,点(),x y落在直线250x y+-=上,再结合基本不等式得出z的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y ==时,112z x y =+取得最小值111442+= 当点(),x y 落在直线250x y +-=上时,112z x y=+取得最大值 此时25x y +=,2225224x y xy +⎛⎫≤=⎪⎝⎭ 112542225x y z x y xy xy +∴=+==≥ 当且仅当2x y =,即55,24x y ==时取等号,显然55,24⎛⎫ ⎪⎝⎭在可行域内即1524z ≤≤ 故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.9.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.10.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.11.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.12.D解析:D【分析】设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设11n n a a q -=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③,11112111211222=2,222n n n n n n n n a a q a a qa q a q a a q -------==不是一个常数,所以数列{}2n a不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列. 故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题13.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出解析:8 【解析】 由题意可得:()2111821211161102111029,a b a b a b a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛≥+ ⎝=则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可. 【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.16.【分析】由结合余弦定理得到求解【详解】因为所以即:因为所以故答案为:【点睛】本题主要考查三角形面积公式与余弦定理的应用还考查了运算求解的能力属于中档题解析:4π【分析】由2221sin 24+-==ABC a b c S ab C ,结合余弦定理得到tan 1C =求解.【详解】因为2221sin 24+-==ABCa b c Sab C , 所以222sin cos 2a b c C C ab+-==,即:tan 1C =, 因为()0,C π∈, 所以4Cπ,故答案为:4π 【点睛】本题主要考查三角形面积公式与余弦定理的应用,还考查了运算求解的能力,属于中档题.17.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10ak b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b aa b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b a a b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图. 由10y x y -=⎧⎨-=⎩ 可得点(1,1)B .当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=. 所以28282828()()101018b a b a a b a b a b a b a b+=++=++≥+⨯=. 当且仅当2810,0b aa b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号.所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b aa b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 18.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键 解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a q b b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号,所以p q . 故答案为:p q . 【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.19.【分析】将绝对值相同的数字分为一组则每组数字个数构成等差数列然后计算原第2020项在这个数列的第几项再根据题意可得【详解】将绝对值相同的数字分为一组则每组数字个数构成等差数列因为则2020项前共包含 解析:64-【分析】将绝对值相同的数字分为一组,则每组数字个数构成等差数列n a n =,然后计算原第2020项在这个数列的第几项,再根据题意可得. 【详解】将绝对值相同的数字分为一组,则每组数字个数构成等差数列n a n =, 因为(1)6364202063201622n n n +⨯⇒⇒=, 则2020项前共包含63个完整组,且第63组最后一个数字为第2016项,且第2016项的符号为负,故2020项为第64组第4个数字,由奇偶交替规则,其为64-. 故答案为:64-. 【点睛】本题考查数列创新问题,解题关键是把绝对值相同的数字归为一组,通过组数来讨论原数列中的项,这借助于等差数列就可完成,本题考查了转化思想,属于中档题.20.【分析】根据图象的规律得到前后两项的递推关系然后利用迭代法求通项并利用等比数列求和【详解】由图分析可知依次类推数列是首项为1公比为8的等比数列所以故答案为:【点睛】关键点点睛:本题的关键是迭代法求通解析:817n n a -= 【分析】根据图象的规律,得到前后两项的递推关系,然后利用迭代法求通项,并利用等比数列求和. 【详解】由图分析可知11a =,218181a a =⨯+=+,23281881a a =⨯+=++, 依次类推,1288...1n n n a --=+++,数列{}18n -是首项为1,公比为8的等比数列,所以1881187n n n a --==-, 故答案为:817n n a -=【点睛】关键点点睛:本题的关键是迭代法求通项,重点是得到前后两项的递推关系.三、解答题21.铁盒底面的长与宽均为5cm 时,用料最省. 【分析】法一:因为体积为350cm 高为2cm ,所以底面积是定值25,设长为xcm ,则宽为25x,列出表面积结合基本不等式即可;法二:列出表面积后,利用求导函数的方法求最值. 【详解】解法1:设铁盒底面的长为xcm ,宽为25x,则.. 表面积251002544425S x x x x=++⨯=++..2565≥=.. 当且仅当25x x=,即5x =时,表面积有最小值65. 所以这个铁盒底面的长与宽均为5cm 时,用料最省.答:这个铁盒底面的长与宽均为5cm 时,用料最省. 解法2:设铁盒底面的长为xcm ,宽为25x,表面积为2ycm ,则. ()2510025444250y x x x x x=++⨯=++> 22210041004x y x x -'=-=.. 令2241000x y x-'==得,5x =. 当()0,5x ∈时,0y '<,函数224100x y x -'=为减函数; 当()5,+∈∞x 时,0y '>,函数224100x y x-'=为增函数; 所以当5x =时,y 有最小值65.答:这个铁盒底面的长与宽均为5cm 时,用料最省.22.(1)3π;(2) 【分析】(1)正弦定理角化边可得a c b cb a c--=+,利用余弦定理,结合角A 的范围,即可得答案;(2)由(1)得3A π=,由正弦定理可得a 的值,利用余弦定理及均值不等式,即可求得b+c 的最大值,进而可得答案. 【详解】 (1)由sin sin sin A C b c B a c --=+及正弦定理得:a c b c b a c--=+,化简得222b c a bc +-=,∴2221cos 222b c a bc A bc bc +-===,又∵(0,)A π∈,∴3A π=.(2)∵ABC 的外接圆半径为2,3A π=,∴由正弦定理得324sinaR π==,解得a =∴由余弦定理得2222cos a b c bc A =+-⋅,∴2222212()3()32b c b c bc b c bc b c +⎛⎫=+-=+-≥+- ⎪⎝⎭,∴b c +≤b c =时,等号成立, ∴ABC的周长的最大值为a b c ++=【点睛】本题考查正弦定理、余弦定理、均值定理的应用,考查分析理解,求值化简的能力,属中档题.23.(1)7;(2【分析】(1)分别在△ABD 、△ABC 中,由余弦定理求BD ,BC ,即可求DC 的长度; (2)记DAC ∠θ=,则2BAD θ∠=,在△ABD 中由余弦定理求sin 2θ、sin θ、cos θ,法一:即可求sin3θ、cos3θ,由已知求sin B ,又()sin sin 3C B πθ=--即可求值;法二:由余弦定理求cos BDA ∠,sin BDA ∠,又()sin sin C BDA θ=∠-即可求值. 【详解】(1)在△ABD 中,由余弦定理得22223616312co 24s AB BD AD B AB B BD D BD +-⋅⋅=+-==,∴5BD =或4BD =.当4BD =时,161636cos 0244ADB +-∠=<⨯⨯,则2ADB π∠>,不合题意,舍去;当5BD =时,162536cos 0245ADB +-∠=>⨯⨯,则2ADB π∠<,符合题意.∴5BD =.在△ABC 中,22223672312co 24s AB BC AC B AB B BC C BC +-⋅⋅=+-==,∴12BC =或3BC =-(舍). ∴7DC BC BD =-=.(2)记DAC ∠θ=,则2BAD θ∠=.在△ABD 中,2229cos cos2216AB AD BD BAD AB AD θ+-∠===⋅,∴2θ为锐角,得21cos27sin 232θθ-==,sin 2θ=sin θ=,cos θ=,法一:sin3sin 2cos cos2sin θθθθθ=+=,同理cos3θ=由3cos 4B =知:sin 4B =,∴()()sin sin 3sin 3sin cos3cos sin332C B B B B πθθθθ=--=+=+=.法二:2221625361cos 22458AD BD AB BDA AD BD +-+-∠===⋅⨯⨯,sin BDA ∠.∴()sin sin sin cos cos sin 32C BDA BDA BDA θθθ=∠-=∠-∠= 【点睛】 关键点点睛:(1)应用余弦定理求三角形的边长,根据边的数量关系求DC ;(2)由余弦定理,利用诱导公式及两角和或差的正弦公式,求角的正弦值即可.24.(1)3B π=;(2 【分析】(12sin 0b A -=2sin sin 0A B A -=求解.(2)根据b =5a c +=,由余弦定理得到6ac =,代入三角形的面积公式求解.【详解】(1)∵2sin 0b A -=,∴2sin sin 0A B A -=,∵sin 0A ≠,∴sin 2B =, ∵B 为锐角, ∴3B π=.(2)由余弦定理得2222cos 3=+-b a c ac π,整理得2()37a c ac +-=, ∵5a c +=, ∴6ac =,∴ABC 的面积1sin 2S ac B ==. 【点睛】方法点睛:三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.25.(1)证明见解析;(2)233nn a n ⎫⎛=-⋅ ⎪⎝⎭;(3)证明见解析. 【分析】(1)利用已知条件通分计算或者直接整理,证明11133n nn n a a ++-=,即证结论; (2)利用(1)求得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,即求得{}n a 的通项公式; (3)结合(2)的结果,利用错位相减法求得n S ,并计算整理3n n S ,根据7043n>⨯即证得结论. 【详解】解:(1)解法1:由()1*133n n n a a n N ++=+∈,得111111333313333n n n n n n nn n n n a a a a a a ++++++-+--===. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. 解法2:由()1*133n n n a a n N ++=+∈,得11133n nn n a a ++=+,即11133n n n n a a ++-=. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. (2)由(1)得()111133n n a n =+-⨯,*N n ∈,即233n na n =-,故233n n a n ⎫⎛=-⋅ ⎪⎝⎭; (3)由(2)可知()121222213231333333n n n S n n -⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭①()2312222313231333333n n n S n n +⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭② 由①②得1112397723133262n n n n S n n +++-⎫⎫⎛⎛=-⨯--=-⨯+ ⎪ ⎪⎝⎝⎭⎭ 故17732124n n n S +⎫⎛=-⨯+ ⎪⎝⎭,从而1737377372123343244324n n n n n n n S n n +⎫⎛-⨯ ⎪⎫⎛⎝⎭=+=-+>- ⎪⨯⨯⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:利用等差数列和等比数列前n 项和公式进行计算即可;(2)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法;(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(4)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(5)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(6)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.26.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭. 由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选②因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列.所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =; 2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值.【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大.。
【鲁教版】高中数学必修五期末试卷带答案

一、选择题1.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .952.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+3.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >nD .不确定4.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .65.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c ,已知5c =,3b =,23A π=,则sin sin A C=( ) A .75 B .57C .37D .736.在△ABC中,若222a c b -+=,则C =( ).A .45°B .30°C .60°D .120°7.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形 8.在ABC 中,若2a =,b =30A =︒,则B 等于( )A .30B .30或150︒C .60︒D .60︒或120︒ 9.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .210.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .411.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②12.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .1024二、填空题13.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.在ABC 中,3B π=,AC =,则4AB BC +的最大值为_______. 16.在△ABC 中,若2,30,a b A ===︒则角B 等于______ .17.在ABC ∆中,60A ∠=︒,且最大边与最小边是方程2327320x x -+=的两个实根,则ABC ∆的外接圆半径R =外______________.18.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .19.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知函数2()31f x ax x =+-;(1)若()0f x <的解集为(1,)b -,求()f x 的零点, (2)若()f x 在(1,1)-内恰有1个零点,求a 的取值范围. 22.已知函数f (x )=ax 2﹣(4a +1)x +4(a ∈R ).(1)若关于x 的不等式f (x )≥b 的解集为{x |1≤x ≤2},求实数a ,b 的值; (2)解关于x 的不等式f (x )>0.23.a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,已知()()()222222222(2)2a b a b c a b c a b a c b ++-=+-++-.(1)若a =4,b =2,求△ABC 的面积;(2)证明:sin 2sin tan cos 2cos A BC A B+=+.24.在ABC 中,,,A B C 的对边分别为,,a b c 且2cos cos cos b B a C c A =+.(1)求B 的值;(2)求22sin cos()A A C +-的范围.25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式; (2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈. 26.在数列{}n a 中,已知12a =,且12(1)(1)n n na n a n n +=+-+,*n ∈N . (1)设1nn a b n=-,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x yzx+-=-,并理解z的几何意义,利用数形结合分析问题. 2.A解析:A 【分析】当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x9x+)min,利用基本不等式可求得(x9x+)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x9x+恒成立⇔m<(x9x+)min,当x>0时,x9x+≥9xx⋅=6(当且仅当x=3时取“=”),因此(x9x+)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.3.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥--24+=,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综 上可得m >n ,故选C .4.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1ba++1a b +=a b a b ab +++ =2()a b +≥ 4= .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.5.A解析:A 【分析】利用余弦定理求得a,再利用正弦定理即得结果. 【详解】由余弦定理:2222cos a b c bc A =+-,得7a =, 由正弦定理:sin 7sin 5A a C c ==. 故选A 【点睛】本题考查正弦定理和余弦定理公式的应用,属于基础题型.6.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴22222a b c cosC ab +-==. 又∵C 为三角形内角 ∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.7.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.8.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 30b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解.【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 10.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩, 又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.11.D解析:D 【分析】设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设11n n a a q -=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③,11112111211222=2,222n nn n n n n n a a q a a q a q a q a a q-------==不是一个常数,所以数列{}2n a 不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列.故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.12.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.二、填空题13.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯,所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.14.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常解析:4 【分析】 先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求. 【详解】作出可行域如图所示,11x z y -=+可以看做1PM k ,其中()1,1P -,M 为可行域(阴影区域)内一点, 因为()1121PA k --==-,()0.511314PA k ---==-, 所以(]1,2,4PM k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PM k ∈, 所以z 的最大值为4, 故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义: (1)y bz x a-=-:表示点(),x y 与点(),a b 连线的斜率; (2)()()22z x a y b =-+-(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C ++=22A B +倍.15.【分析】利用正弦定理可将表示关于角的三角函数求出角的取值范围利用正弦型函数的基本性质可求得的最大值【详解】由正弦定理可得则则其中为锐角且所以当时取最大值故答案为:【点睛】求三角形有关代数式的取值范围 21【分析】利用正弦定理可将4AB BC +表示关于角A 的三角函数,求出角A 的取值范围,利用正弦型函数的基本性质可求得4AB BC +的最大值. 【详解】由正弦定理可得321sin sin sin sin 3BC AB ACA CB π====,则sin BC A =,sin AB C =,3B π=,203A π∴<<,则()134sin 4sin sin 4sin sin 4sin 2AB BC C A A B A A A A+=+=++=++()93sin 21sin 2A A A ϕ=+=+, 其中ϕ为锐角,且3tan ϕ=,23A πϕϕϕ∴<+<+, 所以,当2A πϕ+=时,4AB BC +取 21【点睛】求三角形有关代数式的取值范围是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.16.或【解析】∵∴由正弦定理得:∵∴或故答案为或解析:060或0120 【解析】∵2,30a b A ===︒∴由正弦定理sin sin a b A B=得:1sin 2sin 2b A B a ===∵b a > ∴60B =︒或120︒ 故答案为060或012017.【分析】综合韦达定理与余弦定理可算得a 接着由正弦定理可得本题答案【详解】由题意得所以得因为即得故答案为:【点睛】本题主要考查正余弦定理及韦达定理的综合应用【分析】 综合韦达定理与余弦定理可算得a ,接着由正弦定理可得本题答案. 【详解】由题意得,329,3b c bc +==, 所以222264322cos ()22cos 814933a b c bc A b c bc bc A =+-=+--=--=,得7a =,因为2sin a R A =2R =,得R =故答案为:3【点睛】本题主要考查正余弦定理及韦达定理的综合应用.18.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.19.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+,故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)函数()f x 的零点为11,4-;(2)9[2,4]4a ⎧⎫∈-⋃-⎨⎬⎩⎭. 【分析】(1)由不等式解集与一元二次方程的根的关系得方程的根,由方程根的定义可求参数值,然后解方程可得零点.(2)可利用一元二次方程根的分布分类求解.注意分类0a =和0a ≠,在0a ≠时,()0f x =在(1,1)-上有一个解,还有1-是一个解,1是一个解分别求出另一解判断,另外0∆=时进行检验.从而可得结论.【详解】(1)依题意得方程2310ax x +-=的两根为-1,b , 将1x =-代入方程得4a =,于是方程2310ax x +-=可化为24310x x +-=,解得1x =-或14x =. 所以函数()f x 的零点为11,4-. (2)因为函数2()31f x ax x =+-在(1,1)-内恰有1个零点,所以该函数图象在(1,1)-内与x 轴只有一个公共点.(i )当0a =时,由()31=0f x x =-,得1=(1,1)3x ∈-,故0a =满足题意; (ii )当0a ≠时,①当函数()f x 的图象在x 轴两侧时,则由(1)(1)(4)(2)0f f a a -=-+<, 解得24a -<<,此时24a -<<且0a ≠,满足题意 当2a =-时,1(1,1)2x =∈-,满足题意;当4a =时,1(1,1)4x =∈-,满足题意. ②当函数()f x 的图象在x 轴同侧时,则由23-4(1)0a ∆=⨯⨯-=, 解得94a =-. 由29()31=04f x x x =+--即2912+4=0x x -解得()21,13x =∈-,故94a =-,满足题意. 综上所述,a 的取值范围是9[2,4]4⎧⎫-⋃-⎨⎬⎩⎭. 【点睛】易错点睛:本题考查一元二次不等式的解集、一元二次方程的根、二次函数的图象之间的关系,掌握三个“二次”的关系是解题关键.利用二次函数图象可得一元二次方程根的分布的知识.要注意根的分布结论都是在开区间(,)a b 有解,而实际解题时还要分类讨论a 或者b 是方程根的情形,否则可能漏解. 22.(1)-1,6;(2)答案见详解 【分析】(1)由f (x )≥b 的解集为{x |1≤x ≤2}结合韦达定理即可求解参数a ,b 的值;(2)原式可因式分解为()()()14f x ax x =--,再分类讨论即可0,0,0a a a =<>,对0a >再细分为111,0,,,444a a a ⎛⎫⎛⎫=∈∈+∞ ⎪ ⎪⎝⎭⎝⎭即可求解.【详解】(1)由f (x )≥b 得()24140ax a x b -++-≥,因为f (x )≥b 的解集为{x |1≤x ≤2},故满足4112a a ++=,412b a-⨯=,解得1,6a b =-=; (2)原式因式分解可得()()14f x a x x a ⎛⎫=-- ⎪⎝⎭, 当0a =时,()40f x x =-+>,解得(),4x ∈-∞;当0a <时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为1,4x a ⎛⎫∈ ⎪⎝⎭; 当0a >时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭, ①若14a =,即14a =,则()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为4x ≠;②若14a <,即14a >时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭;③若14a >,即104a <<时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭. 【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题.23.(12)证明见解析. 【分析】(1)由已知可得210c =,由余弦定理可求cos C ,进而求得sin C ,再由面积公式即可求出;(2)根据已知条件由余弦定理可得(2)cos (cos 2cos )a b C c A B +=+,再由正弦定理可得(sin 2sin )cos sin (cos 2cos )A B C C A B +=+,即可得证. 【详解】解:(1)因为a =4,b =2, 所以()()()222820412412ccc -=-++,解得210c =,则2225cos 28a b c C ab +-==,所以sin 8C =,故△ABC 的面积11sin 422282S ab C ==⨯⨯⨯=. (2)证明:因为()()()222222222(2)2a b a b ca bc a b a c b ++-=+-++-,所以2222222222(2)24222a b c b c a a c b ab a b abc abc ab bc ac+-+-+-+⋅=⋅+⋅, 即(2)cos (cos 2cos )a b C c A B +=+,由正弦定理得(sin 2sin )cos sin (cos 2cos )A B C C A B +=+, 故sin 2sin tan cos 2cos A BC A B+=+,得证.【点睛】本题考查正余弦定理的应用,解题的关键是正确利用条件结合正余弦定理进行化简,尤其是第二问需先利用余弦定理对条件进行转化化简.24.(1)3B π=;(2)1(,12-. 【分析】(1)根据等差数列的性质可知cos cos 2cos a C c A b B +=,利用正弦定理把边转化成角的正弦,化简整理得sin 2sin cos B B B =,求得cos B ,进而求得B ;(2)先利用二倍角公式及辅助角对原式进行化简整理,进而根据A 的范围和正弦函数的单调性求得()2sin cos A A C 2+-的范围.【详解】因为2cos cos cos b B a C c A =+由正弦定理得, 2sin cos sin cos sin cos B B A C C A =+即:()sin 2sin cos A C B B +=,则sin 2sin cos B B B =,因为sin 0B ≠ 所以1cos 2B =,又0B π<< 得3B π=(2)∵3B π=,∴23A C π+=∴2222sin cos()2sin cos(2)3A A C A A π+-=+-=131cos 2cos 2212cos 222A A A A A --+=-=1)3A π-,∵203A π<<,233A πππ-<-<∴sin(2)123A π-<-≤ 则()2sin cos A A C 2+-的范围为1,12⎛- ⎝ 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)()*1(1)2nn a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21n n a n N =-∈,化简可得11212222n n n n a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,n n a n ⎧=⎨⎩为奇数为偶数).(2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+, 即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 26.(1)12n n b -=;(2)22(1)22nn n n T n ++=-⋅+. 【分析】(1)由定义证明数列{}n b 是等比数列,得出数列{}n b 的通项公式;(2)由{}n b 的通项公式求出n a ,再由错位相减法以及分组求出法得出数列{}n a 的前n 项和n T . 【详解】解:(1)因为12(1)(1)n n na n a n n +=+-+,所以1211n n a an n+=⋅-+ 所以11211n n a a n n +⎛⎫-=- ⎪+⎝⎭,又1111a -=所以{}n b 是首项为1,公比为2的等比数列,所以12n nb -=.(2)由(1)知,()()111212n n n n n a b n n n --=+⋅=+=⋅+⋅所以()21(1)11223222n n n n T n -+=⨯+⨯+⨯++⋅+设211122322n n S n -=⨯+⨯+⨯++⋅① 232S 1222322n n n =⨯+⨯+⨯++⋅②①-②得211212222?212nn nn n S n n ---=++++-⋅=--所以(1)21n n S n =-⋅+所以22(1)22nn n n T n ++=-⋅+. 【点睛】关键点睛:在第二问中,对于求{}n a 的前n 项和,关键是利用错位相减法结合分组求和得出n T .。
【鲁教版】高中数学必修五期末试卷(含答案)(2)

一、选择题1.若,x y 满足条件11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-52.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B .42,2⎡⎤⎣⎦C .(][)1,24,⋃+∞D .([)41,22,⎤⋃+∞⎦3.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .54.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .3 B .36C .16D .3126.如图所示,在DEF 中,M 在线段DF 上,3DE =,2DM EM ==,3sin 5F =,则边EF 的长为( )A .4916B.16C .154D.47.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形8.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭( )A .1 B.2 C.4D.49.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .610.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 11.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .912.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .5二、填空题13.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.14.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.15.在ABC 中,角,,A B C 分别对应边,,a b c ,ABC 的面积为S ,若3cos cos 3S a B b A =+,cos sin 7tan cos sin 12A A A A π+=-,3c =,则a =__________. 16.在ABC 中,角,,A B C 的对边分别为,,a b c ,22b =且ABC ∆面积为()222312S b a c =--,则面积S 的最大值为_____. 17.已知实数,x y 满足11y xx y y ≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值是________________.18.如图,在四边形ABCD 中,已知AB BC ⊥,5AB =,7AD =,135BCD ∠=︒,1cos 7A =,则BC =________.19.已知数列{}n a ,11a =,12n n a a n +=+,则4a =_____.20.数列{}n a 中,若31()n na a n *+=∈N ,13a =,则{}n a 的通项公式为________. 三、解答题21.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 22.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价;(2)当x 为多少时,总造价最低?最低造价是多少? 23.a ,b ,c 分别为锐角ABC 内角A ,B ,C 的对边.已知2sin (2sin sin )(2sin sin )a A B C b C B c =-+-.(1)求A ;(2)若2c =,试问b 的值是否可能为5?若可能,求ABC 的周长;若不可能,请说明理由.24.请从下面三个条件中任选一个,补充在下面的横线上,并解答.()cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,a b c =+=ABC 的面积. 25.已知等差数列{}n a 的公差1d =,且()1212,,,,n k k k n a a a k k k <<<<成等比数列,公比为q .(1)若11k =,22k =,34k =,求n a 和n k ,并求{}n n a k 的前n 项和n T ; (2)当1a 为何值时,数列{}n k 为等比数列.26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】作出不等式组11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫---⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.3.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.4.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.5.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以13cos ,sin 22C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =, 所以13sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.6.D解析:D 【分析】利用余弦定理求得cos EMD ∠,由此求得cos EMF ∠,进而求得sin EMF ∠,利用正弦定理求得EF . 【详解】在三角形DEM 中,由余弦定理得2222231cos 2228EMD +-∠==-⨯⨯,所以1cos 8EMF ∠=,由于0EMF π<∠<,所以sin EMF ∠==. 在三角形EFM中,由正弦定理得283sin sin 45EF EMEF EMF F=⇒==∠. 故选:D 【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.7.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+,又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭, 所以23131cos 23sin sin sin sin 23244B B B B B B B π⎫-⎛⎫-=+=+=⎪⎪⎪⎝⎭⎝⎭, 32cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭,即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.8.D解析:D 【分析】根据()2243S a b c =+-3cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭122224=+⨯=. 故选:D. 【点睛】 本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.9.C解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n --=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=, ()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n n S n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥-⎪⎝⎭的n 的最大值为5. 故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.10.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S =∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩ ∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.11.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.12.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q -++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q qa a a a a -=-++=++, 两式相除得210551112(1)(1)(1)6111a q a q a q q q q--+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.二、填空题13.【解析】作可行域如图则直线z=x+2y 过点A (20)时z 取最小值2点睛:线性规划的实质是把代数问题几何化即数形结合的思想需要注意的是:一准确无误地作出可行域;二画目标函数所对应的直线时要注意与约束条解析:【解析】作可行域,如图,则直线z=x+2y 过点A (2,0)时z 取最小值2.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.14.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y xx y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.15.【分析】先根据三角形面积公式以及正弦定理化简条件得再利用弦化切以及两角和正切公式化简条件得即得最后根据余弦定理解得【详解】由可知根据正弦定理知又得因为所以故因此又故故答案为:【点睛】本题考查三角形面【分析】cos cos a B b A =+得sin b A =再利用弦化切以及两角和正切公式化简条件cos sin 7tan cos sin 12A A A A π+=-得3A π=,即得4b =,最后根据余弦定理解得a =. 【详解】cos cos S a B b A =+1sin cos cos 2ab C a B b A =+,1sin sin sin cos sin cos sin 2A b C AB B AC ⋅=+=,又0,sin 0C C π<<>,得sin b A =cos sin 1tan cos sin 1tan A A A A A A ++=--7tan tan 412A ππ⎛⎫=+= ⎪⎝⎭,因为()0,A π∈,所以7412A ππ+=,故3A π=,因此4b =,又2222cos 13a b c bc A =+-=,故a =.【点睛】本题考查三角形面积公式、正弦定理、余弦定理,考查综合分析求解能力,属中档题.16.【分析】利用三角形面积构造方程可求得可知从而得到;根据余弦定理结合基本不等式可求得代入三角形面积公式可求得最大值【详解】由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中解析:4-【分析】利用三角形面积构造方程可求得tan 3B =-,可知56B π=,从而得到sin ,cos B B ;根据余弦定理,结合基本不等式可求得(82ac ≤,代入三角形面积公式可求得最大值. 【详解】()()222312cos sin 12122S b a c ac B ac B =--=⋅-=sin tan cos B B B ∴==()0,B π∈ 56B π∴=cos 2B ∴=-,1sin 2B = 由余弦定理2222cos b a c ac B =+-得:(2282a c ac =++≥(当且仅当a c =时取等号)(82ac ∴≤= 11sin 424S ac B ac ∴==≤-本题正确结果:4- 【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.17.【分析】画出可行域再分析直线取最大值的最优解即可【详解】由约束条件作出可行域如图联立目标函数由图可知过A 时直线在y 轴上的截距最小z 有最大值为故答案为:【点睛】本题主要考查了线性规划求最大值的问题考查解析:12【分析】画出可行域,再分析直线2z x y =-取最大值的最优解即可. 【详解】由约束条件11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩作出可行域如图,联立11(,)122y x A x y =⎧⇒⎨+=⎩. 目标函数22z x y y x z =-⇒=-由图可知,过A 时,直线在y 轴上的截距最小,z 有最大值为12. 故答案为:12【点睛】本题主要考查了线性规划求最大值的问题,考查运算求解能力和数形结合思想,属于基础题.18.【分析】由余弦定理可得由诱导公式可得进而可得由三角恒等变换得再由正弦定理即可得解【详解】在中由余弦定理得所以所以又所以所以所以在中由正弦定理得所以故答案为:【点睛】本题考查了正弦定理和余弦定理解三角 解析:)431【分析】由余弦定理可得8BD =、1cos 2ABD ∠=,由诱导公式可得1sin 2CBD ∠=,进而可得3cos 2CBD ∠=,由三角恒等变换得sin BDC ∠,再由正弦定理即可得解. 【详解】在ABD △中,由余弦定理得2222cos 64BD AB AD AB AD A =+-⋅⋅=, 所以8BD =,所以2221cos 22AB BD AD ABD AB BD +-∠==⋅,又AB BC ⊥,所以1sin cos 2CBD ABD ∠=∠=,0,2CBD π⎛⎫∠∈ ⎪⎝⎭,所以cos CBD ∠==, 所以()sin sin sin cos cos sin BDC BCD CBD BCD CBD BCD CBD ∠=∠+∠=∠∠+∠∠1222=-=, 在BCD △中,由正弦定理得sin sin BC BD BDC BCD ===∠∠,所以)41BC BDC =∠==.故答案为:)41.【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题.19.【分析】由已知递推关系式利用累加法和等差数列前项和公式可求出通项即可得【详解】故答案为:【点睛】本题主要考查了累加法以及等差数列前项和公式求通项公式求数列中的项属于中档题 解析:13【分析】由已知递推关系式12n n a a n +-=,利用累加法和等差数列前n 项和公式,可求出{}n a 通项,即可得4a . 【详解】12n n a a n +-=,∴2121a a -=⨯ ,3222a a -=⨯,4323a a -=⨯,12(1)n n a a n --=⨯-, ∴ []1(11)(1)2123(1)2(1)2n n n a a n n n +---=++++-=⨯=- ,∴ 21n a n n =-+ ,2444113a ∴=-+= ,故答案为:13 【点睛】本题主要考查了累加法以及等差数列前n 项和公式求通项公式,求数列中的项,属于中档题.20.【分析】两边取对数化简整理得得到数列是以为首项公比为3的等比数列结合等比数列的通项公式即可求解【详解】由两边取对数可得即又由则所以数列是以为首项公比为3等比数列则所以故答案为:【点睛】本题主要考查了 解析:133()n n a n -*=∈N【分析】两边取对数,化简整理得313log 3log n na a +=,得到数列3{log }n a 是以1为首项,公比为3的等比数列,结合等比数列的通项公式,即可求解. 【详解】由31()n na a n *+=∈N ,两边取对数,可得313log 3log n n a a +=,即313log 3log n na a +=, 又由13a =,则31log 1a =,所以数列3{log }n a 是以31log 1a =为首项,公比为3等比数列,则113log 133n n n a --=⋅=,所以133()n n a n -*=∈N . 故答案为:133()n n a n -*=∈N 【点睛】本题主要考查了对数的运算性质,以及等比数列的通项公式的求解,其中解答中合理利用对数的运算性质,结合等比数列的通项公式求解是解答的关键,着重考查推理与运算能力.三、解答题21.(1)3|2x x ⎧<-⎨⎩或}2x a >+;(2)112a <-或51325a <<. 【分析】(1)对一元二次不等式分解因式,通过72a >-得出322a +>-,可得不等式的解集; (2)关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,可得0∆>,设()22(32)38g x x a x a =+--+,则有()10g >且对称轴小于1,解不等式可得实数a 的取值范围. 【详解】(1)∵()()()2346f x x a x x =-+>+∴22(12)3(2)0x a x a -+-+>,即()3202x x a ⎛⎫+--> ⎪⎝⎭73,222a a >-+>-3|2x x ⎧∴<-⎨⎩或}2x a >+(2)解法一:∵22(32)380x a x a +--+=在(–),1∞上有两个不相等实根 ∴2412550a a ∆=+->112a <-或52a > 设()22(32)38g x x a x a =+--+,则()10g > ∴()232380a a +--+> ∴135a <, 又()g x 的对称轴为324a x -=-,∴3214a--<,∴72a < ∴综上112a <-或51325a <<. 解法二:∵22(32)380x a x a +--+=在(,1)-∞上有两个不相等实根∴223823x x a x ++=+令2238()23x x g x x ++=+令()()23,00,5t x =+∈-∞则2316()2t t g t t-+=,即183()22g t t t =+-由图象可知,该题转化为y a =与18322y t t =+-有两个不同的交点 ∴112a <-或51325a << 【点睛】方法点睛:本题考查一元二次不等式的解法,考查一元二次方程根的分布,考查了学生计算能力,不妨设一元二次方程所对应的二次函数()f x 开口向上,则两根都小于k 时,则()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩; 2.两根都大于k 时,则()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ 3.一根小于k ,一根大于k 时,则()0f k <. 22.(1)16()36005800(0)f x x x x ⎛⎫=++> ⎪⎝⎭(2)当底面的长宽分别为4m ,3m 时,可使房屋总造价最低,34600元. 【分析】(1)设底面的长为x m ,表示出正面,侧面面积,可得总造价; (2)由基本不等式可得最小值. 【详解】解:(1)设底面的长为x m ,宽y m ,则12y x=m. 设房屋总造价为()f x , 由题意可得1216()3120038002580036005800(0)f x x x x x x ⎛⎫=⋅+⨯⨯⨯+=++> ⎪⎝⎭ (2)16()360058003600580034600f x x x ⎛⎫=++≥⨯= ⎪⎝⎭, 当且仅当16x x=即4x =时取等号. 答:当底面的长宽分别为4m ,3m 时,可使房屋总造价最低,总造价是34600元. 【点睛】本题考查函数的应用,解题关键是根据已知条件引入变量(长度x ),列出总造价的函数式,从而再由基本不等式求得最小值. 23.(1)3A π=;(2)不可能,理由见解析.【分析】(1)由正弦定理化角为边,再由余弦定理即可求出; (2)由余弦定理得出cos 0B <,得出B 为钝角,与已知矛盾. 【详解】解:(1)因为2sin (2sin sin )(2sin sin )a A B C b C B c =-+-,由正弦定理可得22(2)(2)a b c b c b c =-+-,即222a b c bc =+-. 再由余弦定理得2222cos a b c bc A =+-,所以1cos 2A =. 因为(0,)A π∈,所以3A π=.(2)假设5b =,则由余弦定理,得2222cos 19a b c bc A =+-=,所以22219425cos 022a c b B ac ac+-+-==<,所以B 为钝角,这与ABC 为锐角三角形矛盾, 故b 的值不可能为5.24.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=;方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c 的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A = 又()0,A π∈, 所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C =-=+-=+-所以2cos sin sin 0,A C C -=即2cos sin sin ,A C C = 又()0,C π∈, 所以sin 0,C ≠ 所以1cos 2A = 所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅-()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C = 又()0A B C π∈,,,, 所以tan 0,tan 0B C ≠≠,所以1tan ,2A A == 所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+-即()243b c bc +=+,又因为b c += 所以2bc =所以1sin 2ABC Sbc A ==【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.25.(1)n a n =,12n n k -=,()112n n T n =+-⋅;(2)11a =.【分析】(1)依题意可得124,,a a a 成等比数列,根据等比中项的性质,求出1a ,即可求出{}n a 的通项公式,又因为{}n k a 成等比数列,得到{}n k 的通项,再利用错位相减法求和即可;(2)由题意,可知{}n k 与{}n k a 都是等比数列,即可得到2132k k k a a a =⋅,2213k k k =,从而得到方程,求出1a ,即可得解; 【详解】解:(1)依据题意124,,a a a 成等比数列,有()()21113a d a a d +=+, 即()()211113a a a +=+,解得11a =,所以()111n a n n =+-⨯=,又因为{}n k a 成等比数列,且11k =,22k =,34k =,所以12n n k -=,所以12n n n a k n -=⋅,因为112233n n n T a k a k a k a k =++++, 所以121122322n n T n -=+⨯+⨯++⋅①()12312122232122n n n T n n -=⨯+⨯+⨯++-⋅+⋅②-①②,得()()()12111222212212112n n n n n n T n n n ---=++++-⋅=+--⋅=---⋅()112n n T n =+-⋅.(2)由题意,可知{}n k 与{}n k a 都是等比数列, 所以2132k k k a a a =⋅,2213k k k =,由2132k k k a a a =⋅,得()()()2121113111a k d a k d a k d +-=+-⋅+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,又1d =,所以得()()()2121113111a k a k a k +-=+-⋅+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,解得11a =.当11a =时,n a n =,所以n k n a k =,又因为1111n n n k k a a q k q --==,所以11n n k k q -=,所以1111nn n n k k q q k k q +-==,即数列{}n k 为等比数列. 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=, 若n n B k A <<,则+1nn nn A b b B ==, 若n k A ≥,则+1n n n nn A kb b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1nnA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =,此时01n n nn n n A a b q B a -===,即01n n n a a q -=,故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列.【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。
【鲁教版】高中数学必修五期末试题(含答案)

一、选择题1.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .42.不等式ax 2+bx+2>0的解集是,则a+b 的值是( ) A .10B .﹣10C .14D .﹣143.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝4.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c 5△ABC 的面积S 5cos A ,则a =( ) A .1 B .5 C .13D .175.已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若tan tan 1tan tan B C B C +=-⋅,且2bc =,则ABC 的面积为( )A .2B 2C 2D 2 6.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a B b A B =,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.ABC 的三个内角,,A B C 的对边分别为,,a b c ,若ABC 的面积为S ,且222()S a b c =+-,3a =tan C 等于( )A .34B .43C .34-D .43-8.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .139.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .236611.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( ) A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .5,6D .(],1-∞12.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题二、填空题13.已知x ,y 满足041x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为________.14.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 15.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.16.在ABC 中,3A π∠=,D 是BC 的中点.若34AD BC ≤,则sin sin B C 的最大值为____________.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.18.在ABC中,60,12,ABCA b S=︒==,则sin sin sin a b cA B C____________.19.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈.若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则当1212nS S S n+++取最大值时n 的值为______.20.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.三、解答题21.(1)若0x >,0y >,1x y +=,求证:114x y +≥.(2)已知实数0a >,0b >,且1ab =,若不等式()a bx y m x y+⋅+>(),对任意的正实数,x y 恒成立,求实数m 的取值范围. 22.已知函数()()231f x x a x b =-++.(1)当1a =,5b =-时,解不等式()0f x >;(2)当222b a a =+时,解关于x 的不等式()0f x <(结果用a 表示). 23.在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==,求c ;(2)求cos cos a C c Ab-的取值范围.24.在ABC 中,内角A ,B ,C 所对的边分别为a ,b,c .请在①cos sin b b CB +=;②()2cos cos b a C cA -=;③2223ABCa b c S +-=这三个条件中任选一个,完成下列问题 (1)求角C ;(2)若5a =,7c =,延长CB 到点D ,使cos ADC ∠=,求线段BD 的长度. 注:如果选择多个条件分别解答,按第一个解答计分.25.在数列{}n a 中,已知12a =,且12(1)(1)n n na n a n n +=+-+,*n ∈N . (1)设1nn a b n=-,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n T .26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2.D解析:D 【解析】试题分析:不等式ax 2+bx+2>0的解集是,说明方程ax 2+bx+2=0的解为,把解代入方程求出a 、b 即可. 解:不等式ax 2+bx+2>0的解集是即方程ax 2+bx+2=0的解为故则a=﹣12,b=﹣2.考点:一元二次方程的根的分布与系数的关系.3.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.4.A解析:A 【分析】由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cos A 25,运用余弦定理可求得边a . 【详解】因为b =2,c 5S 5cos A =12bc sin A 5A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A 25. 所以a 2=b 2+c 2-2bc cos A =4+5-525=9-8=1,所以a =1.故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.5.D解析:D 【分析】由两角和的正切公式可得()tan 1B C +=,即可得到34A π=,然后由面积公式可得结果. 【详解】因为tan tan 1tan tan B C B C +=-⋅,即()tan 1B C +=,在ABC 中,所以tan 1A =-,即34A π=,所以sin 2A =,所以11sin 22222ABCSbc A ==⨯⨯=. 故选:D . 【点睛】本题考查三角形的面积公式的应用,考查两角和的正切公式,属于基础题.6.B解析:B 【分析】根据正弦定理得到2sin sin sin cos cos A B B A B =,化简得到()sin cos 0B A B -+=,计算得到答案. 【详解】2sin cos cos a B b A B =,所以2sin sin sin cos cos A B B A B =,所以()sin sin sin cos cos 0B A B A B -=,即()sin cos 0B A B -+=. 因为0A π<<,0B π<<,所以2A B π+=,故ABC ∆是直角三角形.故选:B 【点睛】本题考查了正弦定理和三角恒等变换,意在考查学生对于三角公式的综合应用.7.D解析:D 【分析】首先根据正弦定理面积公式和余弦定理得到sin 2cos 2C C -=,再利用同角三角函数关系即可得到答案. 【详解】由题知:222()S a b c =+-,所以222sin 2=++-ab C a b ab c ,整理得:222sin 222-+-=C a b c ab,即sin 2cos 2C C -=.所以()2sin 2cos 4C C -=, 23cos 4sin cos 3-=C C C .2223cos 4sin cos 3sin cos -=+C C CC C,234tan 3tan 1-=+C C ,得23tan 4tan 0C C +=. 因为0C π<<,所以4tan 3C =-. 故选:D 【点睛】本题主要考查余弦定理解三角形,同时考查了正弦定理面积公式和同角的三角函数,属于中档题.8.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.C解析:C 【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 11.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围. 【详解】数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①, 当1n =时,11a =.当2n ≥时,1121n n a S --=+②, ①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立, 所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥, 所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C 【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.12.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增,先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.二、填空题13.6【分析】作出不等式组所表示的平面区域结合图象确定目标函数的最优解即可得到答案【详解】由题意作出不等式组所表示的平面区域如图所示因为目标函数可化为直线当直线过点A 时此时目标函数在轴上的截距最大此时目解析:6 【分析】作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案. 【详解】由题意,作出不等式组041x y x y x -≤⎧⎪+≤⎨⎪≥⎩所表示的平面区域,如图所示,因为目标函数2z x y =+,可化为直线2y x z =-+,当直线2y x z =-+过点A 时,此时目标函数在y 轴上的截距最大,此时目标函数取得最大值, 又由04x y x y -=⎧⎨+=⎩,解得(2,2)A ,所以目标函数2z x y =+的最大值为2226z =⨯+=. 故答案为:6.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出解析:8 【解析】 由题意可得:()211182*********211161102219,a b a b a b a b b a a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛⎫+≥+⨯ ⎪ ⎪+⎝⎭=则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学 解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c , 那么2243,169x a x a ≤∴≤, 因为cos cos 0ADB ADC ∠+∠= 所以2222422+=+x a b c ,故2222222213168849,8x b c a a b c a =+-≤∴+≤由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤255315sin sin sin =88432B C A ∴≤=⨯.故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.17.【分析】由题意利用正弦定理边化角求得∠B 的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力 解析:3-【分析】由题意利用正弦定理边化角,求得∠B 的值,然后结合数量积的定义求解AB BC ⋅的值即可. 【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+ ()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=,60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭故答案为3- 【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.18.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可. 【详解】11sin 12222ABC S bc A c ==⨯⨯⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.19.8或9【分析】根据等差等比数列的通项公式先求出数列和的通项公式再结合等差数列的求和公式求得进而得到再结合数列取值即可求解【详解】各项均为正数的等比数列中若所以解得所以解得或因为所以所以又由所以则当时解析:8或9 【分析】根据等差、等比数列的通项公式,先求出数列{}n a 和{}n b 的通项公式,再结合等差数列的求和公式,求得()92n n n S -=,进而得到92n nc -=,再结合数列{}n c 取值,即可求解.【详解】各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352656a a a a a a +=⎧⎨==⎩,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =或12q =-,因为()0,1q ∈,所以12q =, 所以55512n n n a a q --⎛⎫=⋅= ⎪⎝⎭.又由5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==,则92n n S nc n -==, 当9,n n N +<∈时,902n nc -=>;当9n =时,0n c =;当10,n n N +>∈时,0n c <,故当8n =或9n =时,1212nS S S n+++取最大值. 故答案为:8或9. 【点睛】本题主要考查了等差、等比数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差、等比数列的通项公式,以及等差数列的求和公式,准确计算是解答解答的关键,着重考查推理与运算能力.20.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+,又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.三、解答题21.(1)见解析;(2)(,4)-∞. 【详解】试题分析:(1)第(1)问,利用常量代换和基本不等式证明. (2)第(2)问,利用基本不等式求解. 试题(1)证明:∵1,0,0x y x y +=>>∴0,0y x x y >> ∴11224x y x y y xx y x y x y+++=+=++≥+= 当且仅当12x y ==时,等号成立. (2)因为,,,a b x y 为正实数,所以()a b ay bx x y a b a b x y x y ⎛⎫+⋅+=+++≥++≥= ⎪⎝⎭4=,当且仅当a b =,ay bxx y=,即a b =,x y =时等号成立,故只要4m <即可,所以实数m 的取值范围是(),4-∞22.(1)()(),15,-∞-+∞;(2)1a >时,解集为()1,2a a +,1a =时,解集为∅,1a <时,解集为()2,1a a +.【分析】(1)求出()0f x =的根(由因式分解完成),根据二次函数的图象写出结论. (2)化简变形表达式[]()(2)(1)f x x a x a =--+,然后根据2a 和1a +的大小关系分类讨论. 【详解】(1)当1a =,5b =-时()()()24515f x x x x x =--=+-,∴()0f x >的解集为()(),15,-∞-+∞.(2)当222b a a =+时,()()()()22312221f x x a x a a x a x a =-+++=--+⎡⎤⎣⎦,()0f x <即()()210x a x a --+<⎡⎤⎣⎦,①当1a >时,21a a >+,此时不等式的解集为()1,2a a +, ②当1a =时,21a a =+,此时不等式的解集为∅, ③当1a <时,21a a <+,此时不等式的解集为()2,1a a +. 【点睛】本题考查解一元二次不等式,掌握一元二次不等式的解,二次函数的图象,一元二次方程的根之间的关系是解题关键. 23.(1)2c =;(2)()1,1-. 【分析】(1)由正弦定理及二倍角公式可得1cos 2B =,进而得解; (2)根据正弦定理边角互化可得cos cos 223a C c A A b π-⎛⎫∴=-⎪⎝⎭,结合锐角三角形的范围可得解. 【详解】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=,由余弦定理2222cos b c a ac B =+-, 得27923cos3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍), 故2c =符合. (2)由(1)得3B π=,所以23C A π=-,cos cos sin cos cos sin 22sin 32a C c A A C A C Ab B π--⎛⎫∴===-⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫<-< ⎪⎝⎭, cos cos 11a C c Ab-∴-<<,故cos cos a C c Ab-的取值范围是()1,1-.【点睛】关键点点睛:本题的解题关键是熟练应用正余弦定理进行边角互化,正确分析锐角三角形中角的范围是解题的关键. 24.(1)条件选择见解析,3C π=;(2)5BD =.【分析】(1)利用所选条件,应用正余弦定理的边角关系、三角形面积公式,化简条件等式,结合三角形内角的性质,求角C ;(2)由正余弦定理,结合诱导公式及两角和正弦公式求CD ,进而求BD 的长度. 【详解】(1)若选①:∵cos sin b b C B +=,∴sin sin cos sin B B C C B +=,又sin 0B ≠, ∴1cos C C +=,即1sin62C π⎛⎫-= ⎪⎝⎭,又0C π<<,∴5666C πππ-<-<,即66C ππ-=,故3C π=. 若选②:∵()2cos cos b a C c A -=, ∴()2sin sin cos sin cos B A C C A -=,即()2sin cos sin cos sin cos sin sin B C A C C A A C B =+=+=, 又sin 0B ≠,∴1cos 2C =,又0C π<<, ∴3C π=,若选③:由2223ABCa b c S +-=⋅,则有12cos sin 32ab C ab C =⨯, ∴tan C =0C π<<,∴3C π=.(2)ABC 中,由余弦定理:22525cos 493AC AC π+-⋅⋅=,得8AC =或3AC =- (舍),由21cos7ADC∠=,可得27sin ADC∠=,△ACD中,()()32112757sin sin sin272714 CAD C ADC C ADCπ∠=--∠=+∠=⋅+⋅=,由正弦定理得:sin sinCD ACCAD ADC=∠∠,即5727=,解得10CD=,∴5BD CD BC=-=.【点睛】关键点点睛:(1)根据所选条件,应用正余弦定理的边角关系、三角形性质求角;(2)利用正余弦定理及三角恒等变换求边长.25.(1)12nnb-=;(2)22(1)22nnn nT n++=-⋅+.【分析】(1)由定义证明数列{}n b是等比数列,得出数列{}n b的通项公式;(2)由{}n b的通项公式求出n a,再由错位相减法以及分组求出法得出数列{}n a的前n项和nT.【详解】解:(1)因为12(1)(1)n nna n a n n+=+-+,所以1211n na an n+=⋅-+所以11211n na an n+⎛⎫-=-⎪+⎝⎭,又1111a-=所以{}n b是首项为1,公比为2的等比数列,所以12nnb-=.(2)由(1)知,()()111212n nn nna b n n n--=+⋅=+=⋅+⋅所以()21(1)11223222n n n n T n -+=⨯+⨯+⨯++⋅+ 设211122322n n S n -=⨯+⨯+⨯++⋅①232S 1222322n n n =⨯+⨯+⨯++⋅② ①-②得211212222?212n n nn n S n n ---=++++-⋅=-- 所以(1)21n n S n =-⋅+ 所以22(1)22nn n n T n ++=-⋅+. 【点睛】 关键点睛:在第二问中,对于求{}n a 的前n 项和,关键是利用错位相减法结合分组求和得出n T .26.见解析【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T .【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =,故等差数列的公差422d =-=,故()2212n a n n =+-=,所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯ 故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩, 同①可得131n n T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+.【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。
【鲁教版】高中数学必修五期末试卷(带答案)

一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6- 3.设a=3x 2﹣x+1,b=2x 2+x ,则( )A .a >bB .a <bC .a≥bD .a≤b4.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝5.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( ) A.2+B1C.2D16.在ABC 中,内角A ,B ,C 的对边是a ,b ,c,若sin sin CA=22b a -=,则cos C 等于( )A .12B .13C .14D .157.在ABC 中,若2a =,b =30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒8.设ABC 的三个内角,,A B C 的对边分别为,,a b c ,若6a =,8b =,12c =,若D 为AB 边的中点,则CD 的值为( ) A .7B .10CD.9.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞10.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n - 11.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问相逢时驽马行几里?( ) A .540B .785C .855D .95012.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >二、填空题13.若正数,x y 满足113122x y xy++=,则xy 的最小值为_________. 14.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.15.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.16.给出以下四个结论:①函数()211x f x x -=+的对称中心是()1,2-;②若关于x 的方程10x k x-+=在()0,1x ∈没有实数根,则k 的取值范围是2k ≥;③在ABC 中,若cos cos b A a B =则ABC 为等腰三角形;④若将函数()sin 23πf x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后变为偶函数,则ϕ的最小值是12π.其中正确的结论是________.17.设x ,y 满足约束条件33,1,0,x y x y y +≥⎧⎪-≥⎨⎪≥⎩则z x y =+的最小值为__________.18.对一切R θ∈,213sin cos 2m m θθ->恒成立,则实数m 的取值范围是_______. 19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.已知数列{}n a 中,11a =,()11*22,2n n n a a n N n a --=≥+∈,若1211145ma a a +++=,则m =________. 三、解答题21.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 22.已知函数2()21f x mx nx =++.(1)若不等式()0f x ≤的解集为[]1,2,求m ,n ;(2)设()0{|}A x f x =≥,且1,2A A -∈∉,求3m n +的取值范围. 23.在ABC 中,角,,A B C 的对边分别为,,a b c ,若1sin cos sin cos 2a B C c B Ab +=,且c b >.(1)求角B 的值;(2)若6A π=,且ABC的面积为BC 边上的中线AM 的长.24.ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,且3b =,2a c -=,23A π=. (1)求ABC 的面积; (2)求()sin A C -的值.25.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A . 26.在如图三角形数阵中第n 行有n 个数,ij a 表示第i 行第j 个数,例如,43a 表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m 为公差的等差数列,从第三行起每一行的数从左到右构成以m 为公比的等比数列(其中0m >).已知221141322112,2,2aa a a m a ==+=. 313233414241344515253545121322512 n n n a a a a a a a a a a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅nna ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅(1)求m 及53a ; (2)记112233n nn T a a a a =++++,求n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x ⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.C解析:C 【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可. 【详解】画出约束条件所表示的平面区域,如图所示, 由23z x y =-得到233z y x =-,平移直线233zy x =-,当过A 时直线截距最小,z 最大, 由04100y x y =⎧⎨--=⎩ 得到5(,0)2A , 所以23z x y =-的最大值为max 523052z =⨯-⨯=, 故选C .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.3.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.4.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.7.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C 【分析】由已知可求6AD BD ==,在ABC 中,由余弦定理可求cos B 的值,在BCD 中,利用余弦定理即可求得||CD 的值. 【详解】 解:6a =,8b =,12c =,若D 为AB 边的中点,6AD BD ∴==,∴在ABC 中,222222612829cos 2261236a cb B ac +-+-===⨯⨯,∴在BCD 中,可得222229||2cos 662661436CD BD BC BD CB B =+-=+-⨯⨯⨯=.故选:C . 【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.9.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.10.D解析:D 【分析】根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.【详解】 由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.11.C解析:C 【分析】由已知条件转化为两个等差数列的前n 项和为定值问题,进而计算可得结果. 【详解】由题可知,良马每日行程构成一个首项为103,公差13的等差数列{}n a , 驽马每日行程构成一个首项为97,公差为﹣0.5的等差数列{}n b ,则a n =103+13(n ﹣1)=13n +90,b n =97﹣0.5(n ﹣1)=97.5﹣0.5n , 则数列{a n }与数列{b n }的前n 项和为1125×2=2250, 又∵数列{a n }的前n 项和为2n ×(103+13n +90)=2n×(193+13n ), 数列{b n }的前n 项和为2n ×(97+97.5﹣0.5n )=2n ×(194.5﹣2n), ∴2n ×(193+13n )+2n ×(194.5﹣2n)=2250,整理得:25n 2+775n ﹣9000=0,即n 2+31n ﹣360=0,解得:n =9或n =﹣40(舍),即九日相逢,相逢时驽马行了92×(194.5﹣92)=855. 故选:C 【点睛】本题以数学文化为背景,考查等差数列及等差数列的前n 项和,考查转化思想,考查分析问题、解决问题的能力,属于中档题.12.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>, 76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.二、填空题13.【分析】将化为后利用基本不等式得再解一元二次不等式可得结果【详解】由得因为所以当且仅当时等号成立所以所以所以或所以或(舍)所以即的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必解析:92【分析】将113122x y xy++=化为232y x xy ++=后,利用基本不等式得23xy -≥一元二次不等式可得结果. 【详解】由113122x y xy++=得232y x xy ++=,因为0,0x y >>,所以232xy y x -=+≥2y x =时,等号成立.所以2302≥,所以2)22≥2-≥2≤,≥≤所以92xy ≥,即xy 的最小值为92. 故答案为:92. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.4【分析】先由正弦定理可得再由余弦定理可得即可由解出【详解】abc 为三个连续自然数由正弦定理可得即由余弦定理可得解得故答案为:4【点睛】本题考查正余弦定理的应用解题的关键是分别利用正弦定理和余弦定理解析:4 【分析】先由正弦定理可得2cos 2a Aa,再由余弦定理可得5cos 22a Aa ,即可由52222a a a a解出a .【详解】a ,b ,c 为三个连续自然数,1,2b a c a ∴=+=+, 由正弦定理可得sin sin a cA C =,即22sin sin 22sin cos a a a AA A A,2cos 2a Aa,由余弦定理可得22222212155cos 221221222a a a a abc a a Abca a a aa ,52222a a a a ,解得4a =.故答案为:4. 【点睛】本题考查正余弦定理的应用,解题的关键是分别利用正弦定理和余弦定理表示出cos A ,即可得出52222a a a a.15.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C . 【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-= 即222sin sin sin sin sin A B C A B +-= 根据正弦定理得222a b c ab +-=故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈得3C π=故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题.16.①③④【分析】将化成后可得图象的对称中心故可判断①的正误;参变分离后考虑在上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出的值从而可判断④的正误【详解】对于①因为故的图解析:①③④ 【分析】将()f x 化成()321f x x -=++后可得图象的对称中心,故可判断①的正误;参变分离后考虑1y x x=-在()0,1上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出ϕ的值,从而可判断④的正误. 【详解】对于①,因为()321f x x -=++,故()f x 的图象可以看出3y x-=向左平移1个单位,向上平移2个单位,故()f x 的图象的对称中心为()1,2-,故①正确. 对于②,考虑方程10x k x -+=在()0,1上有实数根即1k x x=-在()0,1上有实数根, 故(),0k ∈-∞, 故关于x 的方程10x k x-+=在()0,1x ∈没有实数根时,则[)0,k ∈+∞,故②错误. 对于③,由正弦定理得到sin cos sin cos =B A A B ,故()sin 0B A -=, 因为(),B A ππ-∈-,故0B A -=即B A =,故③正确.对于④,平移后得到的图象对应的解析式为sin 223πy x φ⎛⎫=-- ⎪⎝⎭,因为该函数为偶函数,故202,32ππφk πk Z ⨯--=+∈, 故5,212k ππφk Z =--∈,因为0ϕ>,故min 12πϕ=,故④正确. 故答案为:①③④. 【点睛】本题考查分式函数的图象性质、函数值域的求法、正弦定理和三角变换以及正弦型函数的图象特征,注意在三角形中,可利用正弦定理把边角的混合关系转化为边的关系或角的关系,而正弦型函数图象的性质,可利用整体法结合正弦函数的性质来讨论,本题属于中档题.17.2【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】画出表示的可行域如图由可得将变形为平移直线由图可知当直经解析:2【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出3310x y x y y +≥⎧⎪-≥⎨⎪≥⎩约束条件表示的可行域,如图,由10330x y x y --=⎧⎪⎨⎪+-=⎩可得3212x y ⎧=⎪⎪⎨⎪⎪=⎩, 将z x y =+变形为y x z =-+,平移直线y x z =-+, 由图可知当直y x z =-+经过点31,22⎛⎫⎪⎝⎭时, 直线在y 轴上的截距最小, 最大值为31222z =+=,故答案为2. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.18.【分析】求出的最大值然后解相应的不等式即可得【详解】由得或故答案为:【点睛】本题考查不等式恒成立问题根据参数出现的位置首先求出三角式的最大值然后只要解不等式即可得这实质上就是不等式恒成立问题中的分离解析:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】求出sin cos θθ的最大值,然后解相应的不等式即可得. 【详解】11sin cos sin 222θθθ=≤,由211322m m ->得13m <-或12m >. 故答案为:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查不等式恒成立问题,根据参数出现的位置,首先求出三角式sin cos θθ的最大值,然后只要解不等式即可得.这实质上就是不等式恒成立问题中的分离参数法,只是本题中不等式已经参变分离了.19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如解析:13313S【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下: (1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.12【分析】先取倒数得成等差数列再根据等差数列求和公式列式求得结果【详解】所以为以为首项为公差的等差数列故答案为:12【点睛】本题考查等差数列定义以及求和公式考查基本分析求解能力属基础题解析:12 【分析】先取倒数得1n a ⎧⎫⎨⎬⎩⎭成等差数列,再根据等差数列求和公式列式求得结果.【详解】()111*121111112,+222n n n n n n n N a a n n a a a a a ----=∴=∴∈≥-=+ 所以1n a ⎧⎫⎨⎬⎩⎭为以111a 为首项,12为公差的等差数列,1211111(1)4522m m m m a a a ∴+++=+-⋅= 2312150012m m m m ∴+-⨯=>∴=故答案为:12 【点睛】本题考查等差数列定义以及求和公式,考查基本分析求解能力,属基础题.三、解答题21.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a的取值范围为3,04⎡⎤-⎢⎥⎣⎦.【点睛】研究形如20ax bx c++>恒成立问题,注意先讨论0a=的情况,再研究0a≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果.22.(1)12m=,34n=-;(2)1,4⎛⎫-∞⎪⎝⎭.【分析】(1)由1x=和2x=是方程2210mx nx++=的解可得;(2)1,2A A-∈∉,得出,m n满足的关系,作出点(,)m n据平面区域,作直线30x y+=,平移该直线得3z x y=+的取值范围,也即3m n+的取值范围.【详解】(1)∵不等式()0f x≤的解集为[]1,2∴2104410m nm n++=⎧⎨++=⎩,解得1234mn⎧=⎪⎪⎨⎪=-⎪⎩;(2)∵()0{|}A x f x=≥,且1,2A A-∈∉,∴2104410m nm n-+≥⎧⎨++<⎩,作出不等式组2104410x yx y-+≥⎧⎨++<⎩表示的平面区域,如图阴影部分(含边界实线,不含虚线部分),由2104410x yx y-+=⎧⎨++=⎩解得1214xy⎧=-⎪⎪⎨⎪=⎪⎩,即11,24A⎛⎫-⎪⎝⎭,作直线:30l x y+=,平移直线l知,向下平移直线l,3z x y=+减小,而直线l过点11,24A⎛⎫-⎪⎝⎭时,134z x y=+=,∴14z<,∴3m n+的取值范围是1,4⎛⎫-∞⎪⎝⎭.【点睛】本题考查解一元二次不等式,考查简单的线性规划问题.解题关键是作出可行域,作出目标函数对应的直线,平移该直线可得结论,注意可行域中虚线部分不可取.23.(1)6π;(2) 【分析】(1)先由正弦定理边角互化,计算求得sin B ;(2)由(1)可知ABC 是等腰三角形,根据面积公式求边长a ,AMC 中,再根据余弦定理求中线AM 的长. 【详解】(1)∵1sin cos 2a B Ab =, 由正弦定理边角互化得1sin sin cos sin sin cos sin 2A B C C B A B +=, 由于(0,),sin 0B B π∈≠,∴1sin cos sin cos 2A C C A +=,即1sin()2A C +=,得1sin 2B =. 又c b >,∴02B π<<,∴6B π=.(2)由(1)知6B π=,若6A π=,故a b =,则2112sin sin 223ABC S ab C a π∆=== ∴4a =,4a =-(舍)又在AMC 中,22222cos 3AM AC MC AC MC π=+-⋅, ∴222221121()2cos 42242()282232AM AC AC AC AC π=+-⋅⋅⋅=+-⋅⋅⋅-=,∴AM =24.(1;(2. 【分析】(1)由余弦定理可得2219232a c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,又2a c -=,代入方程,可求得c 值,代入面积公式,即可求得答案.(2)根据题意,可求得sin ,cos A A 的值,根据正弦定理即可求得sin C 的值,根据同角三角函数的关系及角C 的范围,即可求得cos C 的值,代入两角差的正弦公式,即可求得答案. 【详解】(1)由余弦定理2222cos a b c bc A =+-,所以2219232a c c ⎛⎫=+-⨯⨯⨯-⎪⎝⎭. 因为2a c -=,所以()22129232c c c ⎛⎫+=+-⨯⋅- ⎪⎝⎭,解得5c =,则7a =.所以ABC的面积11sin 352224ABCS bc A ==⨯⨯⨯=. (2)由23A π=得sin 2A =.由正弦定理得sin sin 14c C A a ==. 在ABC 中,A 为钝角,所以C 为锐角.所以11cos 14C ==. 所以()sin sin cos cos sin 7A C A C A C -=-=. 25.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d ,若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅,所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算. 26.(1)2m =,5340a =;(2)1(1)22n n +-⨯+【分析】(1)根据题意以m 表示出313241,,a a a ,由4132122a a =+即可求出m ,进而求出53a ; (2)根据等差数列和等比数列的通项公式求出2n nn a n =⨯,再利用错位相减法即可求出n T .【详解】(1)由已知得3111(31)22a a m m =+-⨯=+, 23231(22)22a a m m m m m =⨯=+⨯=+, 4111(41)32a a m m =+-⨯=+,4132122a a =+, ()21322222m m m ∴+=++,即220m m -=, 又0m >,2m ∴=,51114210a a ∴=+⨯=,25351240a a ∴=⨯=;(2)由(1)得111(1)22n a a n n =+-⨯=,当3n ≥时,1122n n nn n a a n -=⨯=⨯,又211124a a =+=,2221248a ma ==⨯=, 11222,8a a ∴==满足2n nn a n =⨯,1234122232422n n T n ∴=⨯+⨯+⨯+⨯++⨯, 23412122232(1)22n n n T n n +=⨯+⨯+⨯++-⨯+⨯,两式相减得12341222222n n n T n +-=+++++-⨯ ()11112122222(1)2212n n n n n n n n ++++-=-⨯=--⨯=-⨯--, 1(1)22n n T n +∴=-⨯+.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解; (2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.。
【鲁教版】高中数学必修五期末试卷(附答案)

一、选择题1.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-12.某校的一个者愿者服务队由高中部学生组成,成员同时满足以下三个条件:(1)高一学生人数多于高二学生人数;(2)高二学生人数多于高三学生人数;(3)高三学生人数的3倍多于高一高二学生人数之和.若高一学生人数为7,则该志愿者服务队总人数为( ) A .15人B .16人C .17人D .18人3.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94C .52D .24.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .65.ABC ∆中,角,,A B C 所对的边分别为,,a b c.若3,60a b A ===︒,则边c =( ) A .1B .2C .4D .66.在ABC 中,,,a b c 分别是角,,A B C 的对边,以下四个结论中,正确的是( ) A .若a b c >>,则sin sin sin A B C >> B .若A B C >>,则sin sin sin A B C << C .cos cos sin a B b A c C +=D .若222a b c +<,则ABC 是锐角三角形7.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2aB c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 8.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2sin a A c C+=+,则ABC 的面积的最大值为( ) A.B.C.D9.在“全面脱贫”行动中,贫困户小王2020年1月初向银行借了扶贫免息贷款10000元,用于自己开发的农产品、土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底街缴房租800元和水电费400元,余款作为资金全部用于再进货,如此继续,预计2020年小王的农产品加工厂的年利润为( )(取111275=..,121.29=)A .25000元B .26000元C .32000元D .36000元10.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .411.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .212.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .8二、填空题13.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 14.若x ,y 满足约束条件210,10,2,x y x y x +-≥⎧-+≥≤⎪⎨⎪⎩则3z x y =-的最小值为______.15.已知1,1,1,x y x y ≤⎧⎪≤⎨⎪+≥⎩当z x y =+取到最小值时,xy 的最大值为________.16.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos 2c B a b =+,且ABC的面积为223a c +的最小值为__________.17.在三角形ABC 中,D 为BC 边上一点,且2BD CD =,AD BD =,则2tan cos BAC B ∠⋅的最大值为__________.18.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得DC =CE =A 、B 两点的距离为___________千米.19.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.20.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+⎪⎝⎭,则2018S =______. 三、解答题21.在平面直角坐标系中,圆C 是以(1,1)为圆心、半径为1的圆,过坐标原点O 的直线l 的斜率为k ,直线l 交圆C 于P ,Q 两点,点A 的坐标为(k ,﹣k). (1)写出圆C 的标准方程; (2)求△APQ 面积的最大值. 22.已知2()3(5)f x x a a x b =-+-+.(1)当不等式()0f x >的解集为(1,3)-时,求实数,a b 的值; (2)若对任意实数,(2)0a f <恒成立,求实数b 的取值范围. 23.如图,在ABC 中,6AB =,3cos 4B =,点D 在BC 边上,4=AD ,ADB ∠为锐角.(1)若62AC =DC 的长度; (2)若2BAD DAC ∠=∠,求sin C 的值.24.在①2222b ac a c =+,②cos sin a B b A =,③sin cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,2b =ABC 的面积.25.设数列{}n a 满足()*122222nn a a a n n +++=∈N . (1)求数列{}n a 的通项公式; (2)求数列21n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T . 26.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C.方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.2.D解析:D 【分析】设高二学生人数为x ,高三学生人数为y ,根据题意列不等式组,画出不等式组表示的平面区域,根据不等式的解为整数,可得结果. 【详解】设高二学生人数为x ,高三学生人数为y ,则737y x y x <<⎧⎨≥+⎩,画出不等式组表示的平面区域,如图阴影部分,根据不等式的解为整数,则阴影部分只有()6,5A 满足,6,5x y ∴==, 该志愿者服务队总人数为76518++=人. 故选:D. 【点睛】本题主要考查二元一次不等式组的解的问题,于基础题.3.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.4.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ =2()a b + ≥4= .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.5.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.6.A解析:A 【分析】由正弦定理2sin sin sin a b cR A B C===,可判定A 正确;由大边对大角定理和正弦定理可判定B 错误;由正弦定理,可判定C 错误;根据余弦定理,可判定D 错误. 【详解】对于A 中,由于a b c >>,由正弦定理2sin sin sin a b cR A B C===,可得sin sin sin A B C >>,故A 正确;对于B 中,A B C >>,由大边对大角定理可知,则a b c >>,由正弦定理2sin sin sin a b cR A B C===,可得sin sin sin A B C >>,故B 错误; 对于C 中,由正弦定理可得cos cos 2(sin cos sin cos )a B b A R A B B A +=+2sin()2sin()2sin R A B R C R C c π=+=-==,故C 错误;对于D 中,由222a b c +<,根据余弦定理可得222cos 02a b c C ab+-=<,因为(0,)C π∈,可得C 是钝角,故D 错误.故选:A. 【点睛】本题主要考查了以解三角形为背景的命题真假判定问题,其中解答中熟记解三角形的正弦定理、余弦定理,合理推算是解答的关键,着重考查推理与运算能力,属于基础题.7.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.8.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+,又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b cA B C R R R ===,∵2sin 2sin a A c C +4ac =,∴2sin 2sin 2sin 4a A c Cb B ac +-=,即222a b c R R R +-=2222cos a c b ac BR R +-==,∴3R =,又由正弦定理得2sin ,33a R A A c C ===,∴112sin sin sin()2233ABC S ac B A C A A ππ==⨯=-△21sin (cos sin )cos 2sin )3223A A A A A A =+=+21cos 2)3A A =+-)363A π=-+, ∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS 取得最大值+= 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力.本题属于中档题.9.C解析:C 【分析】设1月月底小王手中有现款为1(120%)10000120010800a =+⨯-=元,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +,由题意可知16000 1.2(6000)n n a a +-=-,所以数列{6000}n a -是首项为4800,公比为1.2的等比数列,求出12a 即得解. 【详解】设1月月底小王手中有现款为1(120%)1000080040010800a =+⨯--=元,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +,则1 1.21200n n a a +=-,即16000 1.2(6000)n n a a +-=-, 所以数列{6000}n a -是首项为4800,公比为1.2的等比数列,∴11126000480012a -=⨯,即1112480012600042000a =⨯+=,年利润为420001000032000-=元, 故选:C 【点睛】关键点睛:解答本题的关键是根据递推关系1 1.21200n n a a +=-构造数列{6000}n a -,求出新数列的通项关系.10.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.11.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.12.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值二、填空题13.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力解析:7 16【分析】变换得到22816132s ts ss t s s t+=++,利用均值不等式计算得到答案.【详解】24s t+=,2221172832116321616162s s ss t s t ss t ss tt+=+=++≥-+=+,当232t ss t=且0s<时,即23s=-,163t=时等号成立.故答案为:716.【点睛】本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力.14.【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:由约束条件作出可行域如图化目标函数为由图可知当直线过时直线在轴上的截距最大有最小解析:1-【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件210102x yx yx+-⎧⎪-+⎨⎪⎩作出可行域如图,化目标函数3z x y=-为3y x z=-,由图可知,当直线3y x z=-过(0,1)A时,直线在y轴上的截距最大,z有最小值为1-.故答案为:1-.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.15.【分析】根据约束条件作出可行域将目标函数变形为通过平移可知当直线与直线重合时取得最小值再利用基本不等式求解即可【详解】作出已知不等式组所表示的平面区域如图所示:将目标函数变形为由图可知当直线与直线重解析:14【分析】根据约束条件作出可行域,将目标函数变形为y x z =-+,通过平移可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,再利用基本不等式求解即可.【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数z x y =+变形为y x z =-+,由图可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,此时1x y +=, 所以21()24x y xy +≤=,当且仅当x y =且1x y +=,即12x y ==时等号成立. 所以xy 的最大值为14. 故答案为:14【点睛】本题主要考查简单线性规划问题中的目标函数最值问题及基本不等式,解决线性规划问题的关键是正确地作出可行域,准确地理解目标函数的几何意义.16.80【分析】由已知结合正弦定理以及三角形内角和性质有根据面积公式有再应用余弦定理可得结合目标式有利用基本不等式即可求最小值;【详解】由及正弦定理可得∴即又故故因为的面积为所以即故由余弦定理可得∴当且解析:80 【分析】由已知结合正弦定理,以及三角形内角和性质有23C π=,根据面积公式有16ab =,再应用余弦定理可得22216c a b =++,结合目标式有22223164a c a b +++=,利用基本不等式即可求最小值; 【详解】由2cos 2c B a b =+及正弦定理可得2sin cos 2sin sin C B A B =+,∴2sin cos 2sin()sin C B B C B =++,即2sin cos sin 0B C B +=,又sin 0B >, 故1cos 2C =-,故23C π=. 因为ABC的面积为1sin 2ab C =12ab =16ab =, 由余弦定理可得222222212cos 216162c a b ab C a b a b ⎛⎫=+-=+-⨯⨯-=++ ⎪⎝⎭, ∴2222233a c a a b +=++221641641680a b ab +=++≥+=,当且仅当2a b ==时等号成立,故223a c +的最小值为80. 故答案为:80. 【点睛】本题考查了正余弦定理,应用了三角形内角和性质、三角形面积公式以及基本不等式求最值;17.【分析】设则在△ABD 和△ACD 中由正弦定理化简可得由两角差的正弦公式化简可得根据正弦函数的值域即可求解的最大值【详解】如图由已知设则在△ABC 中由正弦定理可得:在△ACD 中由正弦定理可得:所以化简解析:32【分析】设,BD x =则,2xAD x CD ==,在△ABD 和△ACD 中,由正弦定理化简可得3sin 2sin cos 22sin sin()x x B B BBAC BAC B ⋅⋅=∠∠-,由两角差的正弦公式,化简可得23tan cos sin 22BAC B B ∠⋅=,根据正弦函数的值域即可求解2tan cos BAC B ∠⋅的最大值.【详解】如图,由已知,设,BD x =则,2x AD x CD ==, 在△ABC 中,由正弦定理可得: 32sin sin xb BAC B=∠,在△ACD 中,由正弦定理可得: 2sin()sin 2xb BAC BB=∠-. 所以3sin 2sin cos 2sin cos 222=sin sin()sin cos cos sin x x x B B B B BBAC BAC B BAC B BAC B⋅⋅⋅=∠∠-∠-∠ 化简可得:tan cos 3sin BAC B B ∠⋅=,可得: 233tan cos sin 222BAC B B ∠⋅=≤. 可得2tan cos BAC B ∠⋅的最大值为32.【点睛】本题考查正弦定理在解三角形和化简中的应用,能借助公共边把两个三角形联系起来是解答本题的关键,属于中档题.18.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得23AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,23CD =67.5CAD ∴∠=,则23AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,2CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得32sin 6023sin 4522CE BC ===在ABC 中,23AC =3BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.19.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q --⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=.所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩. 故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.20.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N*∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+=⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=, 201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.三、解答题21.(1)()()22111x y -+-=;(2)12+(1)根据圆心和半径,即可直接写出圆C 的方程;(2)联立直线l 方程和圆方程,求得k 的范围,结合弦长公式,求得PQ ,再利用点到直线的距离公式,即可求得点A 到直线l 的距离,结合基本不等式,即可求得面积的最大值. 【详解】(1)根据题意可得,圆C 的圆心为()1,1,半径1r =, 故圆方程为:()()22111x y -+-=;(2)设直线l 的方程为y kx =,联立圆C 方程可得:()()2212210k x k x +-++=,因为直线l 圆交于两点,故可得()()22Δ22410k k =+-+>,解得0k >;又圆心()1,1到直线l的距离d =故可得PQ ==;又点A 到直线l的距离h =故三角形APQ 的面积)()211121121k S PQ h k k k +=⨯⨯==≤=++++-+. 当且仅当1k=时取得面积的最大值1. 【点睛】本题考查圆方程的求解,涉及直线截圆的弦长求解,涉及基本不等式的应用,属综合中档题. 22.(1)29a b =⎧⎨=⎩或39a b =⎧⎨=⎩;(2)1,2⎛⎫-∞- ⎪⎝⎭.【分析】(1)由题意知,1x =-和3x =是方程23(5)0x a a x b -+-+=的两个根,即可得到方程3(5)0273(5)0a ab a a b +--=⎧⎨---=⎩,解得即可. (2)若()20f <恒成立,可根据二次不等式恒成立的条件,构造关于b 的不等式,解不等式可求出实数b 的取值范围;解:(1)由()0f x >,得23(5)0x a a x b -+-+>.23(5)0x a a x b ∴---<又()0f x >的解集为(1,3)-,所以1x =-和3x =是方程23(5)0x a a x b -+-+=的两个根3(5)0273(5)0a a b a a b +--=⎧∴⎨---=⎩29a b =⎧∴⎨=⎩或39a b =⎧⎨=⎩(2)由(2)0f <,得122(5)0a a b -+-+< 即2210120a a b -+->又对任意实数a ,(2)0f <恒成立,即2210120a a b -+->,对任意实数a 恒成立,2(10)42(12)0b ∴∆=--⨯-<,解得12b <-,∴实数b 取值范围为1,2⎛⎫-∞- ⎪⎝⎭. 【点睛】本题考查一元二次不等式的解法,一元二次不等式恒成立问题,属于中档题.23.(1)7;(2 【分析】(1)分别在△ABD 、△ABC 中,由余弦定理求BD ,BC ,即可求DC 的长度; (2)记DAC ∠θ=,则2BAD θ∠=,在△ABD 中由余弦定理求sin 2θ、sin θ、cos θ,法一:即可求sin3θ、cos3θ,由已知求sin B ,又()sin sin 3C B πθ=--即可求值;法二:由余弦定理求cos BDA ∠,sin BDA ∠,又()sin sin C BDA θ=∠-即可求值. 【详解】(1)在△ABD 中,由余弦定理得22223616312co 24s AB BD AD B AB B BD D BD +-⋅⋅=+-==,∴5BD =或4BD =. 当4BD =时,161636cos 0244ADB +-∠=<⨯⨯,则2ADB π∠>,不合题意,舍去;当5BD =时,162536cos 0245ADB +-∠=>⨯⨯,则2ADB π∠<,符合题意.∴5BD =.在△ABC 中,22223672312co 24s AB BC AC B AB B BC C BC +-⋅⋅=+-==,∴12BC =或3BC =-(舍). ∴7DC BC BD =-=.(2)记DAC ∠θ=,则2BAD θ∠=.在△ABD 中,2229cos cos2216AB AD BD BAD AB AD θ+-∠===⋅,∴2θ为锐角,得21cos27sin 232θθ-==,sin 2θ=sin θ=,cos θ=,法一:sin3sin 2cos cos2sin θθθθθ=+=,同理cos3θ= 由3cos 4B =知:sin 4B =, ∴()()sin sin 3sin 3sin cos3cos sin3C B B B B πθθθθ=--=+=+ 法二:2221625361cos 22458AD BD AB BDA AD BD +-+-∠===⋅⨯⨯,sin BDA ∠. ∴()sin sin sin cos cos sin C BDA BDA BDA θθθ=∠-=∠-∠= 【点睛】 关键点点睛:(1)应用余弦定理求三角形的边长,根据边的数量关系求DC ;(2)由余弦定理,利用诱导公式及两角和或差的正弦公式,求角的正弦值即可. 24.条件选择见解析;ABC【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积. 【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 222a cb B ac ac +-===, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭所以11sin 22ABC S ab C ===△. (2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以113sin 2244ABC S ab C +===△. (3)若选择③sin cos B B +=4B π⎛⎫+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭, 因为()0,B π∈,所以5,444B πππ⎛⎫+∈ ⎪⎝⎭, 所以42B ππ+=,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. 【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B 角,再求a 边和sin C ,从而得面积.25.(1)2n n a =;(2)2332n nn T +=-. 【分析】(1)当2n ≥时,112211222n n a a a n --+++=-与已知条件两式相减可得2n n a =,再令1n =,计算1a 即可求解;(2)由(1)得2nn a =,所以22211n n n n a --=,再利用乘公比错位相见即可求和. 【详解】(1)数列{}n a 满足122222n n a a a n +++= 当2n ≥时,112211222n n a a a n --+++=- 两式作差有12nn a =,所以2n n a = 当1n =时,12a =,上式也成立所以2n n a = (2)22211n n n n a --= 则211113(21)222n n T n ⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪⎝⎭⎝⎭, 231111113(21)2222n n T n +⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()2311111111111111131421221221231222222222212n n n n n n T n n n ++-+⎛⎫- ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⨯+++⋯+--⨯=+⨯--=-+⨯⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-所以2332n nn T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1n n a f n =-类型,可采用两项合并求解.26.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n nn S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N .【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ;(2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+;当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S ,∵0d <,∴1d =-,11n a n =-+23n nn b -= 当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=-- 整理可得11112423nn T ⎛⎫=+-⨯ ⎪⎝⎭,则511,2 12423n nnS n⎛⎫=+-⨯≥⎪⎝⎭且11 3S=满足上式,综上所述:51112423n nnS⎛⎫=+-⨯⎪⎝⎭,n*∈N.【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.。
【鲁教版】高中数学必修五期末模拟试卷带答案(2)

一、选择题1.已知()()22log 1log 24a b -++=,则+a b 的最小值为( ) A .8B .7C .6D .32.若实数x ,y 满足约束条件403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A .1B .20C .28D .323.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .104.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .85.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .34B .3 C .16D .3126.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos AOB ∠=-,则此山的高PO =( )A .1 kmB 2km C 3 km D 2 km7.在锐角△ABC中,角A,B,C的对边分别是a,b,c,若22b c ac=+,则角C的取值范围是()A.π(0,)4B.ππ(,)42C.ππ(,)43D.π,64π⎛⎫⎪⎝⎭8.如图,在离地面高400m的热气球上,观测到山顶C处的仰角为15,山脚A处的俯角为45,已知60BAC∠=,则山的高度BC为()A.700m B.640mC.600m D.560m9.已知数列{}n a满足11a=,24a=,310a=,1{}n na a+-是等比数列,则数列{}na的前8项和8S=()A.376 B.382 C.749 D.76610.在正项等比数列{}n a中,若3788a a a=,2105a a+=,则公比q=()A.122B.122或1212⎛⎫⎪⎝⎭C.142D.142或1412⎛⎫⎪⎝⎭11.记n S为等比数列{}n a的前n项和.若2342S S S=+,12a=,则2a=()A.2 B.-4 C.2或-4 D.412.已知椭圆2222x ya b+=1(a>b>0)与双曲线2222x ym n-=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a,m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是 ()A3B.22C.14D.12二、填空题13.123,,x x x为实数,只要满足条件123x x x>>>,就有不等式121233log20202log2020log2020x x xx x xk+≥恒成立,则k的最大值是__________.14.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.15.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续偶数,且2C A =,则a =______.16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若8cos 3ABC bc A S =△,则22cos sin 122sin cos B CA A A++-=-________. 17.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________.18.已知点(3,A ,O 是坐标原点,点(),P x y的坐标满足0200y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.19.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______. 20.已知正项等比数列{}n a ,12q =,若存在两项m a 、n a12a =,则9m n-的最小值为___________. 三、解答题21.某公司生产某种产品,其年产量为x 万件时利润为()R x 万元,当035x <≤时,年利润为21()2R x x =-20250x ++,当35x >时,年利润为()18005202R x x x=--+. (1)若公司生产量在035x <≤且年利润不低于400万时,求生产量x 的范围;(2)求公司年利润()R x 的最大值. 22.已知圆22:4210C x y x y +---=. (1)求y 轴被圆C 所截得的线段的长;(2)过圆C 圆心的直线与两坐标轴在第一象限内围成的三角形面积为S ,求S 的最小值.23.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积.24.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量(sin ,),(1,sin )m A a n B ==(1)当2sin m n A =时,求b 的值;(2)当//m n 时,且1cos 2C a =,求tan tan A B 的值.25.己知数列{}n a 中,11a =,点1(,)n n P a a +,n *∈N 在直线10x y -+=上. (1)求数列{}n a 的通项公式; (2)设1n nb a =,S n 为数列{}n b 的前n 项和,试问:是否存在关于n 的整式()g n ,使得121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立,若存在,写出()g n 的表达式,并加以证明,若不存在,说明理由.26.已知有序数列{}n a 的各项均不相等,将{}n a 的项从大到小重新排序后相应的项数构成新数列{}n p ,称{}n p 为{}n a 的“序数列”.例如:数列1a ,2a ,3a 满足132a a a >>,则其“序数列”{}n p 为1,3,2.(1)若数列{}n a 的通项公式为()()21,2,3,4nn a n =-=,写出{}n a 的“序数列”;(2)若项数不少于5项的有穷数列{}n b ,{}n c 的通项公式分别为35nn b n ⎛⎫=⋅ ⎪⎝⎭,2n c n tn =-+,且{}n b “序数列”与{}n c 的“序数列”相同,求实数t 的取值范围;(3)已知有序数列{}n a 的“序数列”为{}n p .求证:“{}n p 为等差数列”的充要条件是“{}n a 为单调数列”.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值. 【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦, 所以,()()1216a b -+=且有10a ->,20b +>, 由基本不等式可得()()()()122128a b a b -++≥-+=,所以,7a b +≥,所以(1)(2)16a b -+=,且10a ->,20b +>, 当且仅当124a b -=+=时等号成立. 因此,+a b 的最小值为7. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】画出可行域,向上平移基准直线320x y +=到可行域边界的位置,由此求得目标函数的最大值. 【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域,如下图所示的阴影部分:其三角形区域(包含边界),由40340x y x y -+=⎧⎨--=⎩得点(4,8)A ,由图得当目标函数=3+2z x y 经过平面区域的点(4,8)A 时,=3+2z x y 取最大值max 342828z =⨯+⨯=.故选:C.【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.B解析:B 【分析】结合题意画出可行域,然后运用线性规划知识来求解 【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法4.C解析:C 【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.5.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以13cos ,sin 2C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =, 所以13sin 2S ab C ==. 故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.6.A解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以AO =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯,所以)2222.5h h =+-⨯⎛ ⎝⎭⨯,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.7.D解析:D 【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.8.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin 2AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.9.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C关键点睛:解题关键在于利用累加法求出通项.10.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.11.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.12.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2,∴m=2c . ∵c 是a ,m 的等比中项, ∴2c am =, ∴22ac c =, ∴12c e a ==.选D . 二、填空题13.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛解析:3+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭, 又()1221233b a a b a b a b ⎛⎫++=+++≥+=+⎪⎝⎭2b a a b =时,等号成立,所以322k ≤+,即k 的最大值为322+. 故答案为:322+. 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是 解析:455【分析】画出满足条件的平面区域,结合22(4)z x y =++的几何意义以及点到直线的距离求出z 的最小值即可. 【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++()40-,的距离,显然()40-,到直线240x y -+=的距离是最小值,由5d ==,得最小值是5,. 【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.15.8【分析】根据大边对大角可得可设由已知条件利用正弦的二倍角公式和正余弦定理得到关于的方程求解即可【详解】由题意可得又角ABC 的对边abc 为三个连续偶数故可设由由余弦定理得所以即解得故故答案为:【点睛解析:8 【分析】根据大边对大角,可得a c <, 可设22,2,22a n b n c n =-==+,由已知条件,利用正弦的二倍角公式和正余弦定理得到关于n 的方程求解即可. 【详解】由题意可得A C <,a c ∴<,又角A ,B ,C 的对边a ,b ,c 为三个连续偶数,故可设22,2,22,a n b n c n =-==+由2,sin sin 2,sin 2sin cos ,C A C A C A A =∴=∴=sin sin a b A B=,()sin 1cos 2sin 221C c n A A a n +∴===-,由余弦定理得()()()()()()22222224414144cos 222222121n n n b c a n n n A bc n n n n n ++--+-++====+++. 所以()()142121n n n n ++=-+,即()()()2114,n n n +=-+ 解得5n =,故228a n =-=. 故答案为:8. 【点睛】本题考查正余弦定理在解三角形中的综合运用,关键是熟练使用二倍角公式,正弦定理角化边,正余弦定理联立得到方程求解.16.【分析】由三角形的面积公式结合等式可求得然后利用二倍角余弦公式结合弦化切可求得所求代数式的值【详解】因为所以则故故答案为:【点睛】本题考查利用三角形的面积公式二倍角余弦公式诱导公式以及弦化切求值考查解析:12-【分析】由三角形的面积公式结合等式8cos 3ABC bc A S =△,可求得3tan 4A =,然后利用二倍角余弦公式、结合弦化切可求得所求代数式的值. 【详解】因为881cos sin 332ABC bc A S bc A ==⨯△,所以4cos sin 3A A =,则3tan 4A =,故()()22cos sin 1cos sin sin cos sin cos 22sin cos 2sin cos 2sin cos 2sin cos B CA B C A A A A A A A A A A A A A π++-+++--===---- tan 112tan 12A A -==--. 故答案为:12-.【点睛】 本题考查利用三角形的面积公式、二倍角余弦公式、诱导公式以及弦化切求值,考查计算能力,属于中等题.17.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】 由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A . 所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦A AA A 218sin sin cos 4sin 2⎫=-=-⎪⎪⎝⎭A A A A A A ()()221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]-【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.18.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题 解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围. 【详解】作出可行域,如图所示cos 3OA OP z OA AOP AOP OP⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-. 【点睛】本题考查简单的线性规划和向量的投影,属于中档题.19.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.20.【分析】由等比数列的通项公式结合可得出利用基本不等式可求得的最小值【详解】由于则即则由已知可得因此当且仅当时等号成立所以的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的 解析:2【分析】12a =可得出4m n =-,利用基本不等式可求得9m n-的最小值. 【详解】12a =,则214m n a a a =,即221121111124m n m n a a q a q a +---⎛⎫⋅=⋅= ⎪⎝⎭,则22m n +-=, 4m n ∴=-,由已知可得m 、n *∈N ,因此,()9994442m n n n n n -=--=+-≥=, 当且仅当3n =时,等号成立,所以,9m n-的最小值为2. 故答案为:2. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.三、解答题21.(1)1030x ;(2)480. 【分析】(1)令21()202504002R x x x =-++,解之即可;(2)利用二次函数的最值和基本不等式分别求出()R x 两段函数的最大值,再比较大小即可. 【详解】(1)当035x <时,令21()202504002R x x x =-++,即2403000x x -+≤,解得1030x , 所以生产量x 的范围是1030x ; (2)当035x <时,222111()20250(40)250(20)450222R x x x x x x =-++=--+=--+,故此时()R x 在(0,20)上单调递增,在(20,35)上单调递减, 则此时()R x 最大值为(20)450R =;当35x >时,116001()()52052048022R x x x =-++≤-⨯=, 当且仅当160040x x==时,等号成立, 则此时()R x 最大值为(40)480R =, 综上公司年利润()R x 的最大值为480万元. 【点睛】本题考查了函数的应用,利用二次函数的性质和基本不等式求最值是解题的关键,考查了推理能力与计算能力,属于中档题.22.(1)2)4 【分析】(1)将0x =代入22:4210C x y x y +---=可得2210y y --=,将线段长为12y y -=和韦达定理相结合即可得出结果;(2)设:1(,0)x yl a b a b +=>,由直线过圆心可得211a b=+,利用基本不等式可得8ab ≥,最后根据三角形面积公式即可得出结果. 【详解】(1)设圆22:4210C x y x y +---=与y 轴的交点为()10y ,,()20,y , 将0x =代入22:4210C x y x y +---=可得2210y y --=, 即122y y +=,121y y ⋅=-,所以y 轴被圆C 所截得的线段的长为12y y -==(2)设:1(,0)x yl a b a b +=>,由于l 过(2,1)C ,∴211a b=+,利用基本不等式,得2118ab a b =+≥≥,∴142S ab =≥, 即S 的最小值为4, 此时4,2a b ==,:142x yl +=,即:240l x y +-= 【点睛】本题主要考查了直线截圆所得弦长问题,直线截距式的应用,利用基本不等式求最值,属于中档题.23.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 22ABCSac B ===. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件.24.(1)1;(2)2. 【分析】(1)由题意得sin sin 2sin m n A a B A =+=,即1sin sin a A B=,由正弦定理有:sin sin a bA B=,联立即可得解b 的值. (2)由平行条件得sin sin a A B =,由1cos 2C a =,则可得1cos cos 2A B a =,联立即可得解. 【详解】解:(1)由题意得:sin sin 2sin m n A a B A =+=, 即得1sin sin a A B=, 在三角形中由正弦定理有:sin sin a bA B=, 由以上两式可知:1b =.(2)由平行条件得sin sin a A B =,1cos cos()sin sin cos cos 2C A B A B A B a =-+=-=,则可得到:1cos cos 2A B a =,∴sin sin tan tan 2cos cos A BA B A B==.25.(1)n a n =;(2)存在,()g n n =,证明见解析. 【分析】(1)根据点1(,)n n P a a +在直线10x y -+=上,将点坐标代入方程,可得1n a +与n a 的关系,根据等差数列的定义,即可求得数列{}n a 的通项公式; (2)由(1)可得n b ,进而可求得n S 的表示式,化简整理,可得11(1)1n n n nS n S S ----=+,利用累加法,即可求得121n S S S -++的表达式,结合题意,即可得答案. 【详解】(1)因为点1(,)n n P a a +,n *∈N 在直线10x y -+=上, 所以110n n a a +-+=,即11n n a a +-=,且11a =, 所以数列{}n a 是以1为首项,1为公差的等差数列,所以1(1)1,()n a n n n *=+-⨯=∈N ;(2)11n n b a n ==,所以111123n S n=+++⋅⋅⋅+,所以11111111(1)(1)(2)23231n n S S n n n n--=+++⋅⋅⋅+-+++⋅⋅⋅+=≥-,即11n n nS nS --=,所以11(1)1n n n nS n S S ----=+,(2)n ≥122(1)(2)1n n n n S n S S ------=+, 233(2)(3)1n n n n S n S S ------=+⋅⋅⋅21121S S S -=+所以112311n n nS S S S S S n --=+++⋅⋅⋅++-所以1231(1)(2)n n n S S S S nS n n S n -+++⋅⋅⋅+=-=-≥, 根据题意121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立,所以()g n n =,所以存在关于n 的整式()g n n =,使得121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立, 【点睛】解题的关键是根据n S 表达式,整理得n nS 与1(1)n n S --的关系,再利用累加法求解,若出现1()n n a a f n +-=(关于n 的表达式)时,采用累加法求通项,若出现1()n na f n a +=(关于n 的表达式)时,采用累乘法求通项,考查计算化简的能力,属中档题. 26.(1)4,2,1,3;(2)()4,5;(3)证明见解析. 【分析】(1)由条件可得12342,4,8,16a a a a =-==-= ,4213a a a a >>>,得出答案. (2)通过作差法比较相邻两项的大小关系,即1323·()55nn n n b b +--=,得到当2n 时,1n n b b +<.所以需要比较第一项的大小,得出所在的位置,计算可以得出2314b b b b >>>的大小关系.则数列{}nc 大小关系为231451n n c c c c c c c ->>>>>⋯>>.分别算出11c t =-,224c t =-,339c t =-.由列231c c c >>列不等式并求解得t 的取值范围.(3)由题意,分别证明充分性和必要性.其中,充分性证明即若有穷数列{}n a 的序数列{}n P 为等差数列,则有穷数列{}n a 为单调数列,分别讨论{}n P 为递增数列时,数列{}n a 的特点是项由大到小依次排列,得到有穷数列{}n a 为单调递减数列;同理{}n P 为递减数列,有穷数列{}n a 为单调递增数列.必要性证明同样需将有穷数列{}n a 分为递增和递减来讨论,最后得出其序数列{}n P 为等差数列; 【详解】(1)由()()21,2,3,4n n a n =-=,可得12342,4,8,16a a a a =-==-=4213a a a a >>>,{}n a 的“序数列”为:4,2,1,3 (2)由题意得,因为*3·()()5n n b n n N =∈,所以1323·()55n n n n b b +--= 当2n 时,10n n b b 即1n n b b +<135b =,21825b =,381125b =,4324625b = 231451n n b b b b b b b ->>>>>⋯>>又因为2*()n c n tn n N =-+∈,且{}n b 的序数列与{}n c 的序数列相同所以231451n n c c c c c c c ->>>>>⋯>>又因为11c t =-,224c t =-,339c t =- 所以24391t t t ->->-所以45t <<即(4,5)t ∈(3)充分条件:因为有穷数列{}n a 的序数列{}n P 为等差数列 所以①{}n P 为1,2,3,⋯,2n -,1n -,n 所以有穷数列{}n a 为递减数列,②{}n P 为n ,1n -,2n -,⋯,3,2,1 所以有穷数列{}n a 为递增数列,所以由①②,有穷数列{}n a 为单调数列必要条件:因为有穷数列{}n a 为单调数列所以①有穷数列{}n a 为递减数列则{}n P 为1,2,3,⋯,2n -,1n -,n 的等差数列 ②有穷数列{}n a 为递增数列则{}n P 为n ,1n -,2n -,⋯,3,2,1的等差数列 所以由①②,序数列{}n P 为等差数列综上,有穷数列{}n a 的序数列{}n P 为等差数列的充要条件是有穷数列{}n a 为单调数列【点睛】 关键点点睛:解答本题的关键是1323·()55n n n n b b +--=得出其单调性,即231451n n b b b b b b b ->>>>>⋯>>,从而得到231451n n c c c c c c c ->>>>>⋯>>.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16B .25C .36D .492.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94C .52D .23.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 4.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .3 B .36C .16D .3126.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==,B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒7.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC. D.8.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭9.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,10.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或11.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4512.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②二、填空题13.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.14.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.15.如图,点A 是半径为1的半圆O的直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.16.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.17.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.18.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .19.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.20.在数列{}n a 中, 11a =,212(2)n n n a a n ---=≥,则n a =_____.三、解答题21.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 22.已知2()2(2)f x x a x a =-++,a R ∈. (1)解关于x 的不等式()0f x >;(2)若方程()1f x x =+有两个正实数根1x ,2x ,求2112x x x x +的最小值. 23.如图,在ABC 中,AB AC ⊥,2AB AC ==,点E ,F 是线段BC (含端点)上的动点,且点E 在点F 的右下方,在运动的过程中,始终保持π4EAF ∠=不变,设EAB θ∠=弧度.(1)写出θ的取值范围,并分别求线段AE ,AF 关于θ的函数关系式;(2)求EAF △面积S 的最小值.24.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若a =4b c +=,求ABC 的面积.25.已知数列{}n a 是首项12a =,且满足()212log log 1n n a a n N *+-=∈的正项数列,设()23log 2n n b a n N *=-∈.(1)求证:数列{}n a 是等比数列; (2)求数列{}n n a b 的前n 项和n S . 26.已知数列{}n a 满足112a =,1223241n n n a a n ++-=-,n *∈N . (1)设121n n b a n =+-,求证:数列{}n b 是等比数列; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:3n S <,n *∈N .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.2.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.3.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题4.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.5.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 2C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 2S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.6.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .7.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C .【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.8.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D. 【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.9.C解析:C 【分析】先利用1,1,2n n n S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=, 12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=.12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.10.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.11.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ===1n n =-+. 12n n S a a a ∴=++⋯+122=-+1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.12.D解析:D 【分析】设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设11n n a a q -=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③,11112111211222=2,222n n n n n n n n a a q a a qa q a q a a q -------==不是一个常数,所以数列{}2n a不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列. 故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题13.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.14.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是【分析】画出满足条件的平面区域,结合z =z 的最小值即可. 【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由8445541d -+==+,得最小值是55, 45. 【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.15.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积 解析:3【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31213423AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积2133sin 603cos 22AB AC θ=⋅⋅︒= OAB 的面积113sin 1322OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积333cos 2θθ=1333(sin )33sin(60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.16.4【分析】先由正弦定理可得再由余弦定理可得即可由解出【详解】abc 为三个连续自然数由正弦定理可得即由余弦定理可得解得故答案为:4【点睛】本题考查正余弦定理的应用解题的关键是分别利用正弦定理和余弦定理解析:4 【分析】先由正弦定理可得2cos 2a Aa,再由余弦定理可得5cos 22a Aa ,即可由52222a a a a解出a .【详解】a ,b ,c 为三个连续自然数,1,2b a c a ∴=+=+, 由正弦定理可得sin sin a cA C=,即22sin sin 22sin cos a a a A A A A,2cos 2a Aa,由余弦定理可得22222212155cos 221221222a a a a abc a a Abca a a aa ,52222a a a a ,解得4a =.故答案为:4. 【点睛】本题考查正余弦定理的应用,解题的关键是分别利用正弦定理和余弦定理表示出cos A ,即可得出52222a a a a.17.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π)【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.18.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.19.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.20.【分析】利用累加法可求得数列的通项公式【详解】当时符合上式则故答案为:【点睛】本题考查由累加法求数列的通项公式属于基础题 解析:12n -【分析】利用累加法可求得数列的通项公式. 【详解】11a =,212(2)n n n a a n ---=≥∴()()()121321=+n n n a a a a a a a a --+-+⋅⋅⋅+-0121+2+2++2n -=⋅⋅⋅()()2212122+2221212n n n ----==+-=-∴12nna ()2,*n n N ≥∈当=1n 时,11a =符合上式,则12n n a .故答案为:12n - 【点睛】本题考查由累加法求数列的通项公式,属于基础题.三、解答题21.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x=-在区间[]1,2上的最大值求解即可. 【详解】(1)由题意得()2102af x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤,解得44a -≤≤,∴实数a 的取值范围为[]4,4-. (2)由题意得[]21,2,122ax x x ∃∈-+≥成立, ∴[]11,2,2a x x x∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-. 【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替. 22.(1)答案见解析;(2)6. 【分析】(1)根据函数2()2(2)f x x a x a =-++的解析式,可将()0f x >化为(2)(1)0x a x -->,分类讨论可得不等式的解集.(2)由方程()1f x x =+有两个正实数根1x ,21x a ⇒>,利用韦达定理可得2222211212121212123()()21422141a x x x x x x x x a x x x x x x a a +++--+===-=+--,再结合均值不等式即可. 【详解】(1)由()0f x >得(2)(1)0x a x -->,当2a >时,原不等式的解集为(-∞,1)(2a⋃,)+∞,当2a =时,原不等式的解集为{|1}x x ≠,当2a <时,原不等式的解集为(-∞,)(12a⋃,)+∞;(2)方程()1f x x =+有两个正实数根1x ,2x , 等价于22(3)10x a x a -++-=有两个正实数根1x ,2x ,∴()()2121238103012102a a a x x a a x x ⎧⎪=+--≥⎪+⎪+=>⇒>⎨⎪-⎪=>⎪⎩,则2222211212121212123()()211622[(1)]21212a x x x x x x x x a a x x x x x x a +++-+===-=-++--12?62≥+= 当且仅当5a =时取等号,故2112x x x x +的最小值为6. 【点睛】本题考查了二次函数的性质、解含参数一元二次不等式、韦达定理、均值不等式,属于综合题.23.(1)π04θ≤≤,πsin 4AE θ=⎛⎫+ ⎪⎝⎭;AF =;(2))21.【分析】(1)依据直角三角形直接写出θ的范围,然后根据正弦定理可得AE ,AF 关于θ的函数关系式.(2)根据(1)的条件可得EAF S △,并结合辅助角公式,简单计算以及判断即可. 【详解】(1)由题意知π04θ≤≤,πππsin sin sin 444AE AB AE θθ=⇒=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ππcos sin sin 42AF AC AF θθ=⇒=⎛⎫- ⎪⎝⎭. (2)1π2cos 22sin 422EAF S θθ=⋅⋅⋅=⎛⎫+ ⎪⎝⎭⎝⎭△)122111cos 2πsin 221224θθθ==≥=+⎛⎫+++ ⎪⎝⎭.当且仅当π8θ=时,取“=”. 24.(1)23π;(2【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解. 【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=, 整理得sin cos sin cos 2sin cos 0A C C A B A ++=, 即:()sin 2sin cos 0A C B A ++=, 所以sin 2sin cos 0B B A +=,∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=. (2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-, ∴4bc =,∴ABC的面积为112sin 4sin223S bc A π==⨯⨯= 【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.25.(1)证明见解析;(2)135210nn S n .【分析】(1)利用对数的运算性质结合等比数列的定义可证得结论成立; (2)求出n n a b 的表达式,利用错位相减法可求得n S . 【详解】(1)对任意的n *∈N ,12122log log log 1n n n n a a a a ++-==,所以,12n naa +=, 所以,数列{}n a 是等比数列,且首项和公比均为2,1222n n n a -∴=⨯=;(2)23log 232n n b a n =-=-,()322n n n a b n ∴=-⋅,()123124272322n n S n ∴=⨯+⨯+⨯++-⨯,()()23121242352322n n n S n n +=⨯+⨯++-⨯+-⨯,上式-下式得()()()()212311321223222322232212n n n n n S n n -++⨯--=+⨯+++--⨯=+--⨯-()153210n n +=-⨯-,因此,135210nn S n .【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)证明见解析;(2)证明见解析. 【分析】(1)直接利用定义证明12n n b b +=即得证;(2)分析得到211321n n a -≤⋅-,再利用等比数列求和得证. 【详解】 解:(1)121n n b a n =+-,1223241n n n a a n ++-=-, 则1122123142222222141214121n n n n n n n n b a a a a b n n n n n ++++=+=++=+=+=+-+--, 又11312b a =+=, 所以数列{}n b 是等比数列; (2)由(1)得,1232322n n n b --=⋅=⋅,N n *∈, 213221n n a n -∴=⋅--,N n *∈, 211n -≥,23210n n a -∴≥⋅->,211321n n a -∴≤⋅-, 当2n ≥时,21231111111111222+23312222211112251132112n n n n n S ----⎛⎫- ⎪⎝⎭<++++=+<+=-<-++++⋅-, 又11123S a ==<, 综上,3n S <,n *∈N . 【点睛】方法点睛:证明数列不等式常用的方法有:(1)比较法;(2)综合法;(3)分析法;(4)数学归纳法;(5)放缩法;(6)反证法.要根据已知条件灵活选择方法求解.。