新教材高中数学4函数的奇偶性与简单的幂函数4-2简单幂函数的图象和性质课后习题北师大版必修第一册
09-第四节 函数的奇偶性与简单的幂函数-课时2 简单幂函数的图象和性质高中数学必修一北师大版

知识点2 幂函数的图象和性质 4年3考
3.下列命题正确的是( D )
A.幂函数的图象都经过 0,0 , 1,1 两点
B.当 = 0时,函数 = 的图象是一条直线
C.如果两个幂函数的图象有三个公共点,那么这两个函数一定相同
D.如果幂函数为偶函数,则图象一定经过点 −1,1
【解析】 对于A,幂函数 = 的图象都经过点 1,1 ,当 ≤ 0时,不过点
D.若 > 1,则 > 1
1
,故A正确.
2
1
2
= ,则函数 的定义
1
2
域为[0, +∞),且 为非奇非偶函数,故B,C错误.因为 = > 0,所以函数
1
2
= 在区间[0, +∞)上单调递增,所以当 > 1时, > 1 = 1,故D
正确.
6.有四个幂函数:① = −1 ;② = −2 ;③ = 2 ;
情形,②是 = 2的情形,⑤是 =
1
− 的情形,所以①②⑤都是幂函数;③是
2
常函数,不是幂函数;④中 2 的系数是2,所以不是幂函数.故选C.
【归纳总结】幂函数 = (为常数)具有形式上的严格性,在幂函数
的表达式中,要注意以下四点:
(1) 的系数为1;(2) 的底数是自变量;(3)指数为常数;
−∞, 0 ∪ 0, +∞ ,且在 0, +∞ 上单调递减,满足条件;对于②, = −2
是 −∞, 0 ∪ 0, +∞ 上的偶函数,值域是 0, +∞ ,且在 0, +∞ 上单调递减,
满足条件;对于③, = 2 是上的偶函数,值域是[0, +∞),在 0, +∞ 上
第二章-4.2-简单幂函数的图象和性质高中数学必修第一册北师大版

§4 函数的奇偶性与简单的幂函数
4.2 简单幂函数的图象和性质
教材帮|必备知识解读
知识点1 幂函数的概念
例1-1 在函数 = −4 , = 3 2 , = 2 + 2, = 1中,幂函数的个数为( B
A.0
B.1
C.2
D.3
【解析】函数 = −4 为幂函数;
函数 = 3 2 中 2 的系数不是1,所以它不是幂函数;
的增大而减小;
当 = −3时,2 − 2 − 3 = 12, = 12 是幂函数,但不满足当 ∈ 0, +∞ 时,
随的增大而减小,故舍去.
∴ 实数的值为2.
【学会了吗|变式题】
2.(2024·广东省汕头市期末)已知函数 = 2 − 2 − 2 ⋅ −2 是幂函数,且在
故A正确;
幂函数 = 的图象只在第一象限内和原点,故B不正确;
当 > 0时, > 0,所以幂函数的图象不可能在第四象限,故C不正确;
幂函数 = 与 = 3 的图象的交点为 −1, −1 , 0,0 , 1,1 ,共三个,故D不正确.
方法帮|关键能力构建
题型1 幂函数的定义域和值域
0, +∞ 上单调递增,则实数 =( C
A.−1
B.−1或3
)
C.3
D.2
【解析】由题意知,2 − 2 − 2 = 1,即 + 1 − 3 = 0,
解得 = −1或 = 3,
∴ 当 = −1时, − 2 = −3,则 = −3 在 0, +∞ 上单调递减,不合题意;
当 = 3时, − 2 = 1,则 = 在 0, +∞ 上单调递增,符合题意,∴ = 3,
2021_2022学年新教材高中数学第二章函数4.2简单幂函数的图象和性质课件北师大版必修第一册20

.
4.幂函数y=x2-a在区间(0,+∞)上单调递减,则实数a的取值范围
是
.
解析:因为y=x2-a在区间(0,+∞)上单调递减,所以2-a<0,得a>2.
答案:a>2
5.比较下列各题中两个幂的值的大小:
(1)1. ,0. ;
(2)1.- ,0.- ;
(3) ,
区间[0,1]上它们的图象是一簇美丽的曲线(如图).设点
A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xα
和y=xβ的图象三等分,即有BM=MN=NA,则αβ等于(
)
A.1
C.3
B.2
D.无法确定
解析:由条件知,M , ,N ,
<1 ,即
<
<
.
y= 在区间(-∞,0)和(0,+∞)上单调递减,且
∴5.25-1>5.26-1.
5.25<5.26,
【变式训练 2】 把
为
,
,
,
按从小到大的顺序排列
.
-
解析: =1,
> =1,
∴ = , = ,
∴
=
= = ,
高中数学第二章函数4函数的奇偶性与简单的幂函数4-2简单幂函数的图象和性质课件北师大版必修第一册

§4 函数的奇偶性与简单的幂函数 4.2 简单幂函数的图象和性质
【素养目标】 1.通过具体实例,理解幂的概念.(数学抽象) 2.会画简单幂函数的图象,并能根据图象得出这些函数的性 质.(直观想象) 3.理解常见幂函数的基本性质.(逻辑推理)
【学法解读】 以五种常见的幂函数为载体,学生应自己动手在同一个平面直角坐 标系下画出这五种幂函数的图象,通过观察比较研究其图象和性质,进 而研究一般幂函数的图象和性质.
___(1_,__1_)___
思考2:在区间(0,+∞)上,幂函数有怎样的单调性? 提示:幂函数在区间(0,+∞)上,当α>0,y=xα是增函数;当α<0 时,y=xα是减函数.
基础自测
1.下列函数为幂函数的是
( D)
A.y=2x4
B.y=2x3-1
C.y=2x
D.y=x2
[解析] y=2x4 中,x4 的系数为 2,故 A 不是幂函数;y=2x3-1 不
题型二
Hale Waihona Puke 幂函数的图象例 2 函数 y=xα 与 y=αxα∈-1,1,12,2,3的图象只可能是
下面中的哪一个
(C)
[分析] 逐个分析函数图象,也可给α分别取已知数值,研究两个函
数在同一个坐标系的图象形状.
[解析] A 中直线对应函数 y=x,曲线对应函数为 y=x-1,1≠-1,
1
故 A 错;B 中直线对应函数为 y=2x,曲线对应函数为 y=x2
【对点练习】❸ (1)比较下列各组数的大小:
①1.10.1,1.20.1;②0.24-0.2,0.25-0.2.
(2)已知幂函数f(x)=(m2-3m+3)xm+1为偶函数,则m=
A.1
高中数学第2章函数4函数的奇偶性与简单的幂函数4-2简单幂函数的图象和性质北师大版必修第一册

规律方法
判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为
常数)的形式,即(1)系数为1;(2)指数为常数;(3)后面不加任何项.反之,若一
个函数为幂函数,则该函数必具有这种形式.
2
变式训练1如果幂函数 y=(m -3m+3)
2 --2
的图象不过原点,求实数m的
取值.
解 由幂函数的定义得m2-3m+3=1,解得m=1,或m=2;
大,幂函数的图象越远离x轴(简记为“指大图高”).
(3)由幂函数的图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象
1
限内的图象(类似于y=x-1或 y= 2 ,y=x3)来判断.
(4)当α>0时,幂函数在区间(0,+∞)上都单调递增;当α<0时,幂函数在区间
(0,+∞)上都单调递减.
变式训练2如图所示,曲线C1与C2分别是函数y=xm和y=xn在第一象限内的
(2)几个常见幂函数的图象;
(3)幂函数的性质.
2.方法归纳:待定系数法、数形结合法.
3.常见误区:对幂函数形式的判断易出错,只有形如y=xα(α为常数)的函数为
幂函数,其他形式都不是幂函数.
成果验收·课堂达标检测
α
1.已知幂函数 f(x)=x (α∈R)的图象过点
1
A.4
解析 幂函数 f(x)=x
C.C3,C2,C1,C4
D.C1,C4,C2,C3
解析 幂函数图象在第一象限内直线x=1右侧的“高低”关系是“指大图高”,
故幂函数y=x2在第一象限内的图象为C1,y=x-1在第一象限内的图象为C4,
1
1
−
y= 3在第一象限内的图象为C2,y= 2
新教材高中数学第二章函数4函数的奇偶性与简单的幂函数 函数的奇偶性课件北师大版必修第一册

[注意] ①由于这里的-x<0,因此应将-x 代入 f(x)=-12x2-1;② 由于这里的-x>0,因此应将-x 代入 f(x)=12x2+1.
[归纳提升] 判断函数奇偶性的方法 (1)定义法:
(2)图象法:即若函数的图象关于原点对称,则函数为奇函数;若函数 图象关于y轴对称,则函数为偶函数.此法多用在解选择题、填空题中.
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点 函数的奇偶性
奇偶性
偶函数
奇函数
条件 一般地,设函数f(x)的定义域是A,如果对任意的x∈A,有-x∈A
结论 图象特点
f(-x)=__________ 关于_______f(_x对) 称
y轴
f(-x)=____________ 关于_____-__f(_x对) 称 原点
(3)函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.
当x>0时,-x<0,则f(-x)=-12(-x)2-1=-(12x2+1)=-f(x);
①
当x<0时,-x>0,f(-x)=21(-x)2+1=12x2+1=-(-12x2-1)=-
f(x).
②
综上可知,函数f(x)=12-x221+x2-1(x1>(x<0) 0)是奇函数.
∴f(x)=1x是奇函数. (2)函数 f(x)=-3x2+1 的定义域为 R,关于原点对称,且 f(-x)=- 3(-x)2+1=-3x2+1=f(x), ∴f(x)=-3x2+1 是偶函数.
(3)显然函数f(x)的定义域关于原点对称. 当x>0时,-x<0,f(-x)=x2-x=-(x-x2)=-f(x), 当x<0时,-x>0,f(-x)=-x-x2=-(x2+x)=-f(x), ∴f(-x)=-f(x),∴函数f(x)为奇函数. (4)函数f(x)的定义域为(-∞,1)∪(1,+∞),不关于原点对称,故函数f(x) 不具有奇偶性.
新教材高中数学4函数的奇偶性与简单的幂函数4-1函数的奇偶性课后习题北师大版必修第一册

§4 函数的奇偶性与简单的幂函数4.1 函数的奇偶性A 级必备知识基础练1.(多选题)下列函数是奇函数的有( )A.y=x(x -1)x -1B.y=-3xC.y=x-2xD.y=πx 3-35x 2.(2022安徽合肥高一期末)若奇函数f (x )在区间[-2,-1]上单调递减,则函数f (x )在区间[1,2]上( )A.单调递增,且有最小值f (1)B.单调递增,且有最大值f (1)C.单调递减,且有最小值f (2)D.单调递减,且有最大值f (2)3.若函数f (x )=(k-2)x 2+(k-1)x+3是偶函数,则f (x )的单调递减区间是. 4.定义在R 上的偶函数f (x ),对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f(x 1)-f(x 2)x 1-x 2<0,则f (3),f (-2),f (1)的大小关系为 .5.若函数f (x )={2x 2+7x -4,x >0,g(x),x <0为奇函数,则f (g (-1))= . 6.已知函数f (x )=x 5+ax 3+bx-8,且f (-2)=10,则f (2)= .7.已知奇函数f (x )的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f (x )<0的x 的取值集合.8.已知f(x)为奇函数,且当x<0时,f(x)=x2+3x+2.若当x∈[1,3]时,f(x)的最大值为m,最小值为n,求m-n的值.9.已知函数f(x)的定义域为(-1,1),且满足下列条件:①f(x)为奇函数;②f(x)在定义域上是减函数;③f(1-a)+f(1-a2)<0.求实数a的取值范围.B级关键能力提升练10.(2021陕西西安长安一中高一月考)设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数11.若函数f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,则F(x)在区间(-∞,0)上()A.有最小值-5B.有最大值-5C.有最小值-1D.有最大值-312.已知定义在R上的函数f(x)在区间(-∞,-2)上单调递减,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-4]∪[-2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-2]∪[2,+∞)D.(-∞,-4]∪[0,+∞)13.定义在区间(-8,a)上的奇函数f(x)在区间[2,7]上单调递增,在区间[3,6]上的最大值为a,最小值为-1,则2f(-6)+f(-3)= .14.如果f(x)是定义域为R的偶函数,且当x≥0时,f(x)=x2-4x,那么不等式f(x+2)<5的解集是.15.已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[-3,3],且它们在x∈[0,3]上的图象<0的解集是.如图所示,则不等式f(x)g(x)16.已知f(x)为定义在R上的偶函数,当x≤-1时,f(x)=x+b,且f(x)的图象经过点(-2,0),在y=f(x)的图象中有一部分是顶点为(0,2),过点(-1,1)的一段抛物线.(1)求出函数f(x)的解析式;(2)求出函数f(x)的值域.C级学科素养创新练17.(2021吉林高一月考)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求函数f(x)的单调递增区间;(2)求出函数f(x)在R上的解析式;(3)若函数g(x)=f(x)-2ax+2,x∈[1,2],求函数g(x)的最小值.4.1函数的奇偶性1.BCD先判断函数的定义域是否关于原点对称,再确定f(-x)与f(x)的关系.选项A中函数的定义域为(-∞,1)∪(1,+∞),不关于原点对称,所以排除A;选项B,D中函数定义域均为R,且f(-x)=-f(x),故为奇函数;选项C中函数定义域为(-∞,0)∪(0,+∞),且f(-x)=-f(x),也是奇函数.2.C因为奇函数的图象关于原点对称,所以函数f(x)在y轴两侧单调性相同.因为f(x)在区间[-2,-1]上单调递减,所以f(x)在区间[1,2]上单调递减,所以f(x)在区间[1,2]上有最大值f(1),最小值f(2),故选C.3.[0,+∞)因为函数f(x)是偶函数,所以k-1=0,即k=1,所以f(x)=-x2+3,其单调递减区间为[0,+∞).4.f(3)<f(-2)<f(1)由已知条件可知f(x)在区间[0,+∞)上单调递减,所以f(3)<f(2)<f(1).再由偶函数的性质得f(3)<f(-2)<f(1).5.-81当x<0时,-x>0.因为f(x)是奇函数,所以f(-x)=-f(x)=2(-x)2-7x-4=2x2-7x-4,所以f(x)=-2x2+7x+4.即g(x)=-2x2+7x+4,因此,f(g(-1))=f(-5)=-50-35+4=-81.6.-26令h(x)=x5+ax3+bx,易知h(x)为奇函数.因为f(x)=h(x)-8,h(x)=f(x)+8,所以h(-2)=f(-2)+8=18,所以h(2)=-h(-2)=-18,所以f(2)=h(2)-8=-18-8=-26.7.解(1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值f(x)<0的x的取值集合为(-2,0)∪(2,5).8.解∵当x<0时,f(x)=x2+3x+2,且f(x)是奇函数,∴当x>0时,-x<0,则f (-x )=x 2-3x+2,故f (x )=-f (-x )=3x-x 2-2.∴当x ∈[1,32]时,f (x )单调递增;当x ∈(32,3]时,f (x )单调递减.因此当x ∈[1,3]时,f (x )max =f (32)=14,f (x )min =f (3)=-2.∴m=14,n=-2,从而m-n=94.9.解∵f (x )为奇函数,∴f (1-a 2)=-f (a 2-1),∴f (1-a )+f (1-a 2)<0⇒f (1-a )<-f (1-a 2)⇒f (1-a )<f (a 2-1).∵f (x )在定义域(-1,1)上是减函数,∴{1-a >a 2-1,-1<1-a <1,-1<a 2-1<1,解得0<a<1,故实数a 的取值范围为(0,1).10.C ∵f (x )是奇函数,g (x )是偶函数,∴f (-x )=-f (x ),g (-x )=g (x ).对于A,f (-x )g (-x )=-f (x )g (x ),故f (x )g (x )是奇函数,故A 错误;对于B,|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x ),故|f (x )|g (x )是偶函数,故B 错误;对于C,f (-x )|g (-x )|=-f (x )|g (x )|,故f (x )|g (x )|是奇函数,故C 正确;对于D,|f (-x )g (-x )|=|f (x )g (x )|,故|f (x )g (x )|是偶函数,故D 错误.故选C .11.C ∵函数f (x )和g (x )都是奇函数,∴F (x )-2=af (x )+bg (x )为奇函数.又F (x )在区间(0,+∞)上有最大值5,∴F (x )-2在区间(0,+∞)上有最大值3,F (x )-2在区间(-∞,0)上有最小值-3,∴F (x )在区间(-∞,0)上有最小值-1.12.A g (x )=f (x-2)的图象是将函数f (x )的图象向右平移2个单位长度得到的,又g (x )=f (x-2)的图象关于原点对称,所以函数f (x )的图象关于点(-2,0)对称,大致图象如图所示,且f (0)=g (2)=0,f (-4)=g (-2)=-g (2)=0,f (-2)=g (0)=0,结合函数的图象,由xf (x )≤0可知{x ≥0,f(x)≤0或{x <0,f(x)≥0.结合图象可知x ≥0或-2≤x<0或x ≤-4.故不等式xf (x )≤0的解集是(-∞,-4]∪[-2,+∞),故选A .13.-15 根据题意,f (x )是定义在区间(-8,a )上的奇函数,则a=8.又由f (x )在区间[2,7]上单调递增,且在区间[3,6]上的最大值为a=8,最小值为-1,则f (6)=a=8,f (3)=-1.函数f (x )是奇函数,则f (-6)=-8,f (-3)=1.则2f (-6)+f (-3)=2×(-8)+1=-15.14.(-7,3) 因为f (x )为偶函数,所以f (|x+2|)=f (x+2),则f (x+2)<5可化为f (|x+2|)<5,则|x+2|2-4|x+2|<5,即(|x+2|+1)(|x+2|-5)<0,所以|x+2|<5,解得-7<x<3,所以不等式f (x+2)的解集是(-7,3).15.{x|-2<x<-1,或0<x<1,或2<x<3} 不等式f(x)g(x)<0可化为f (x )g (x )<0,由题图可知,当x>0时,其解集为(0,1)∪(2,3).∵y=f (x )是偶函数,y=g (x )是奇函数,∴f (x )g (x )是奇函数,∴当x<0时,f (x )g (x )<0的解集为(-2,-1).综上,不等式f(x)g(x)<0的解集是{x|-2<x<-1,或0<x<1,或2<x<3}.16.解(1)∵f (x )的图象经过点(-2,0),∴0=-2+b ,即b=2.∴当x ≤-1时,f (x )=x+2.∵f (x )为偶函数,∴当x ≥1时,f (x )=f (-x )=-x+2.当-1≤x ≤1时,依题意设f (x )=ax 2+2(a ≠0),则1=a ·(-1)2+2,∴a=-1.∴当-1≤x ≤1时,f (x )=-x 2+2.综上,f (x )={x +2,x ≤-1,-x 2+2,-1<x <1,-x +2,x ≥1.(2)当x ≤-1时,f (x )=x+2∈(-∞,1];当-1<x<1时,f (x )=-x 2+2∈(1,2];当x ≥1时,f (x )=-x+2∈(-∞,1].综上所述,f (x )的值域为(-∞,2].17.解(1)由题意知当x ≥0时,f (x )=x 2-2x=(x-1)2-1,此时函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).又函数f (x )为偶函数,所以当x<0时,其单调递增区间为(-1,0), 所以函数f (x )的单调递增区间为(-1,0),(1,+∞).(2)设x<0,则-x>0,所以f (-x )=(-x )2-2(-x )=x 2+2x ,由已知f (x )=f (-x ),所以当x<0时,f (x )=x 2+2x ,所以f (x )={x 2-2x(x ≥0),x 2+2x(x <0).(3)由(2)可得g (x )=x 2-(2a+2)x+2,x ∈[1,2],对称轴为直线x=a+1.当a+1<1,即a<0时,函数g (x )在区间[1,2]上单调递增, 故函数g (x )的最小值为g (1)=1-2a ;当1≤a+1≤2,即0≤a ≤1时,函数g (x )在对称轴处取得最小值, 故函数g (x )的最小值为g (1+a )=-a 2-2a+1;当a+1>2,即a>1时,函数g (x )在区间[1,2]上单调递减, 故函数g (x )的最小值为g (2)=2-4a.综上,函数g (x )的最小值为g (x )min ={1-2a,a <0,-a 2-2a +1,0≤a ≤1,2-4a,a >1.。
【新教材】高中数学 新人教B版必修第二册 第四章 4.4 幂函数 课件

;
(3)奇偶性是
;
(4)单调性是
;
(5)图中已经作出了函数y=x-1,y=x,y=x2的图像,在其中作
出函数y=x3的图像.
5.幂函数y=xα的图像的类型α=
q p
,p,q∈Z,p·q≠0,|p|与|q|互质
α的取值范围
α<0
0<α<1
α>1
p和q都是奇数 则为奇函数
p是奇数,q是偶数 则为偶函数 p是偶数,q是奇数 则为非奇非偶函数
【解析】
∵
幂函数f(x)=
x
1 2
=
1
的定义域为{x|x>0},在(0,+∞)
x
上单调递减,∴ 若f(a+1)<f(10-2a),
a 1 0,
则 10 2a 0,
a 1,
解得 a 5, 即3<a<5,∴ a的取值范围是(3,5)【答案】A
a 1 10 2a,
a 3,
15
【规律方法】 求解关于幂函数的不等式,一般是利用幂函数的单调性。首 先确定是哪个幂函数,然后根据这个幂函数的单调性,列出 参数为未知量的不等式然后求解。注意列出的不等式不能超 出这个函数的定义域和单调区间。
>
3
1 3
,故B选项错误.对于C选项,
由于y=1.25x是增函数,故0.8-0.1=1.250.1<1.250.2,所以C选项错误.对于D选项,由于
1.70.3>1.70=1=0.90>0.93.1,故D选项正确.【答案】 D
13
归纳总结 比较两个幂值大小的方法 比较两个幂值的大小,关键是构造适当的函数.若指数相同 而底数不同,则考虑幂函数;若指数不同而底数相同,则考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2 简单幂函数的图象和性质A级必备知识基础练1.函数y=3xα-2的图象过定点()A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)2.在下列幂函数中,既是奇函数又在区间(0,+∞)上单调递增的是()A.f(x)=x-1B.f(x)=x-2C.f(x)=x3D.f(x)=x 1 23.(多选题)下列说法错误的是()A.幂函数的图象不经过第四象限B.y=x0的图象是一条直线C.若函数y=1x 的定义域为{x|x>2},则它的值域为y y<12D.若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2}4.当x∈(1,+∞)时,函数y=xα的图象恒在直线y=x的下方,则α的取值范围是()A.(0,1)B.(-∞,0)C.(-∞,1)D.(1,+∞)5.幂函数y=x m与y=x n在第一象限内的图象如图所示,则()A.-1<n<0<m<1B.n<-1,0<m<1C.-1<n<0,m>1D.n<-1,m>16.若(a+1)13<(3-2a)13,则a的取值范围是.7.已知幂函数f(x)=x m2-2m-3(m∈Z)的图象关于y轴对称,并且f(x)在第一象限内是单调递减函数,则m= .8.已知函数y=(a2-3a+2)x a2-5a+5(a为常数).(1)当a为何值时,此函数为幂函数?(2)当a为何值时,此函数为正比例函数?(3)当a为何值时,此函数为反比例函数?B 级关键能力提升练9.(多选题)已知函数f (x )=x α的图象经过点(4,2),则下列结论正确的有( ) A.函数f (x )为增函数 B.函数f (x )为偶函数 C.若x>1,则f (x )>1 D.若0<x 1<x 2,则f(x 1)+f(x 2)2<fx 1+x 2210.已知函数f (x )=(m 2-m-1)x m2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)-f(x 2)x 1-x 2>0,若a ,b ∈R ,且a+b>0,ab<0,则f (a )+f (b )的值( )A.恒大于0B.恒小于0C.等于0D.无法判断11.已知幂函数f (x )=mx n的图象过点(√2,2√2),设a=f (m ),b=f (n ),c=f (-2),则( ) A.c<b<a B.c<a<b C.b<c<aD.a<b<c12.(多选题)已知实数a ,b 满足等式a 12=b 13,则下列关系式可能成立的是( ) A.0<b<a<1 B.-1<a<b<0 C.1<a<bD.a=b13.已知幂函数f (x )=(m-1)2x m 2-4m+2在区间(0,+∞)上单调递增,函数g (x )=2x-k.(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.14.已知幂函数f(x)=(2m2-6m+5)x m+1为偶函数.(1)求函数f(x)的解析式;(2)若函数y=f(x)-2(a-1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.C级学科素养创新练15.已知幂函数f(x)=x(2-k)(1+k),k∈Z,且f(x)在区间(0,+∞)上单调递增.(1)求实数k的值,并写出相应的函数f(x)的解析式.(2)若函数F(x)=2f(x)-4x+3在区间[2a,a+1]上不单调,求实数a的取值范围.],若存在, (3)试判断是否存在正数q,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,178求出q的值;若不存在,请说明理由.4.2 简单幂函数的图象和性质1.A2.C3.BCD 对于A,由幂函数的图象知,它不经过第四象限,所以A 对;对于B,因为当x=0时,x 0无意义,即在x=0无定义,所以B 错;对于C,函数y=1x 的定义域为{x|x>2},则它的值域为y 0<y<12,不是y y<12,所以C 错;对于D,定义域不一定是{x|-2≤x ≤2},如{x|0≤x ≤2},所以D 错.故选BCD .4.C 由幂函数的图象特征知α<1.5.B 由于y=x m在区间(0,+∞)上单调递增,且为上凸函数,故0<m<1.由于y=x n在区间(0,+∞)上单调递减,且在直线x=1的右侧时,y=x n的图象在y=x -1的图象的下方,故n<-1.故选B . 6.(-∞,23) 因为函数f (x )=x 13的定义域为R ,且为增函数,所以a+1<3-2a ,解得a<23. 7.1 因为幂函数f (x )=x m2-2m -3(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m-3为偶数.又因为f (x )在第一象限内单调递减,所以m 2-2m-3<0,即-1<m<3,又m ∈Z ,所以m=1. 8.解(1)由题意知a 2-3a+2=1,即a 2-3a+1=0, 解得a=3±√52. (2)由题意知{a 2-5a +5=1,a 2-3a +2≠0,解得a=4.(3)由题意知{a 2-5a +5=-1,a 2-3a +2≠0,解得a=3.9.ACD 因为函数f (x )=x α的图象经过点(4,2), 所以α=12.所以f (x )=x 12.显然f (x )在定义域[0,+∞)上为增函数,所以A 正确;f (x )的定义域为[0,+∞),所以f (x )不具有奇偶性,所以B 不正确;当x>1时,√x >1,即f (x )>1,所以C 正确; 当0<x 1<x 2时,f(x 1)+f(x 2)22-[f(x 1+x 22)]2=√x 1+√x 222-(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2-x 1-x 24=-(√x 1-√x 2)24<0. 即f(x 1)+f(x 2)2<fx 1+x 22成立,所以D 正确.10.A 由已知函数f (x )=(m 2-m-1)x m2+m -3是幂函数,可得m 2-m-1=1,解得m=2或m=-1,当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)-f(x 2)x 1-x 2>0,函数f (x )单调递增,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .11.B 幂函数f (x )=mx n的图象过点(√2,2√2),则{m =1,(√2)n =2√2⇒{m =1,n =3,所以幂函数的解析式为f (x )=x 3,且函数f (x )单调递增.又-2<1<3,所以f (-2)<f (1)<f (3),即c<a<b ,故选B .12.ACD 画出函数y=x 12与y=x 13的图象如图所示,设a 12=b 13=m ,作直线y=m. 从图象知,若m=0或m=1,则a=b ; 若0<m<1,则0<b<a<1; 若m>1,则1<a<b. 故其中可能成立的是ACD .13.解(1)依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在区间(0,+∞)上单调递减,与题设矛盾,舍去.当m=0时,f (x )=x 2,符合题设,故m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ]. ∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].14.解(1)由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2是偶函数,符合题意;当m=2时,f (x )=x 3为奇函数,不符合题意,舍去. 故f (x )=x 2.(2)由(1)可知y=x 2-2(a-1)x+1, 函数y 的对称轴为直线x=a-1,由题意知函数y 在区间(2,3)上为单调函数, ∴a-1≤2或a-1≥3,解得a ≤3或a ≥4. ∴a 的取值范围为(-∞,3]∪[4,+∞). 15.解(1)由题意知(2-k )(1+k )>0,解得-1<k<2. 又k ∈Z ,∴k=0或k=1,分别代入原函数,得f (x )=x 2.(2)由已知得F (x )=2x 2-4x+3,对称轴为直线x=1.要使函数F (x )在区间[2a ,a+1]上不单调,则2a<1<a+1,则0<a<12.即实数a 的取值范围是(0,12).(3)由已知,g (x )=-qx 2+(2q-1)x+1. 假设存在这样的正数q 符合题意,则函数g (x )的图象是开口向下的抛物线,其对称轴为直线x=2q -12q=1-12q <1,因而,函数g (x )在区间[-1,2]上的最小值只能在x=-1或x=2处取得, 又g (2)=-1≠-4,从而g (-1)=2-3q=-4,解得q=2.此时,g (x )=-2x 2+3x+1,其图象的对称轴为直线x=34∈[-1,2],∴g (x )在区间[-1,2]上的最大值为g (34)=-2×(34)2+3×34+1=178,符合题意. ∴存在q=2,使函数g (x )=1-qf (x )+(2q-1)x 在区间[-1,2]上的值域为[-4,178].。