2018年广东中考数学试题及答案

合集下载

【精编】广东省2018年中考数学试题(有答案)

【精编】广东省2018年中考数学试题(有答案)

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是A .0B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为 A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是 A .30° B .40° C .50° D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x . 13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。

2018年广东省中考数学试题(带答案解析)

2018年广东省中考数学试题(带答案解析)

2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆 B.菱形C.平行四边形 D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知+|b﹣1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆 B.菱形C.平行四边形 D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE ∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD ﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD ﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点Bn的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B 3、B4的坐标进而得出点Bn的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,(3,6);所以M1②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,(,﹣2),所以M2综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= 60 °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

广东省2018年中考数学试题(有答案)(精品推荐)

广东省2018年中考数学试题(有答案)(精品推荐)

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14、2中,最小的数是A .0 B .13 C . 3.14 D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210B .70.144210C .81.44210 D.80.1442103.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4 B .5 C .6 D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是A .圆 B.菱形 C .平行四边形 D .等腰三角形6.不等式313x x 的解集是A .4x B .4x C .2x D .2x 7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ,40C ,则B 的大小是A .30° B .40°C .50°D .60°9.关于x 的一元二次方程230xx m 有两个不相等的实数根,则实数m 的取值范围为A .94m B .94m C .94m D .94m 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11.同圆中,已知弧AB 所对的圆心角是100,则弧AB 所对的圆周角是 . 12.分解因式:122x x . 13.一个正数的平方根分别是51xx 和,则x= . 14.已知01b b a ,则1a .15.如图,矩形ABCD 中,2,4CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为.(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3x x y 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-18.先化简,再求值:.2341642222a a a a a a,其中19.如图,BD 是菱形ABCD 的对角线,75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF 的度数.20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。

2018年广东省中考数学试卷及答案

2018年广东省中考数学试卷及答案

2018年广东省中考数学试卷一、选择题(每小题3分,共30分)1.四个实数10 3.1423-、、、中,最小的数是( ).A 0 .B 13.C 3.14- .D 22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学计数法表示为( ).A 71.44210⨯ .B 70.144210⨯ .C 81.44210⨯ .D 90.144210⨯ 3.如图,由5个相同正方体组合而成的几何体,它的主视图是( )(第3题) (第8题)4.数据15748、、、、的中位数是( ).A 4 .B 5 .C 6 .D 75.下列所述图形中,是轴对称图形但不是中心对称图形的是( ).A 圆 .B 菱形 .C 平行四边形 .D 等腰三角形6.不等式313x x -≥+的解集是( ).A 4x ≤ .B 4x ≥ .C 2x ≤ .D 2x ≥7.在ABC ∆中,点D E 、分别为边AB AC 、的中点,则ADE ∆与ABC ∆的面积之比为( ).A 12 .B 13 .C 14 .D 168.如图,AB CD ∥,且=100=40DEC C ∠︒,∠︒,则B ∠大小是( ).A 30︒ .B 40︒ .C 50︒ .D 60︒C D AB BD ACE9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( ).A 94m <.B 94m ≤ .C 94m > .D 94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设PAD ∆的面积为y ,点P 的运动时间为x ,则y 关于x 的函数图象大致为( )二、填空题(每小题4分,共24分)11.同圆中,已知弧AB 所对的圆心角是100︒,则弧AB 所对的圆周角是 .12.分解因式:221x x -+= .13.一个正数的平方根分别是1x +和5x -,则x = .14.10b -=,则1a += .15.如图,矩形ABCD 中,42BC CD =,=,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 (结果保留π).16.如图,已知等边11OA B ∆,顶点1A 在双曲线()0y x x=>上,点1B 的坐标为()20,,过B 作B A OA ∥交双曲线于点A ,过A 作A B A B ∥交x 轴与点B ,得到第PABD.C.B.A.DC三、解答题(每小题6分,共18分)17.计算:11220182-⎛⎫--+ ⎪⎝⎭18.先化简,再求值:22221644a a a a a-⋅+-,其中a =19.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹) (2)在(1)条件下,连接BF ,求DBF ∠的度数.四、解答题(每小题7分,共21分)20.某公司购买了一批A B 、型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买A B 、型芯片的单价各是多少? (2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?.CDAB21.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图所示的不完整统计图. (1)被调查员工的人数为 人; (2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.如图,矩形ABCD 中,AB AD >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:ADE CED ∆∆≌; (2)求证:DEF ∆是等腰三角形.不剩剩一半剩少量剩大量类型ADCFE五、解答题(每小题9分,共27分)23.如图,已知顶点为()03C ,-的抛物线()20y ax b a =+≠与x 轴交于A B 、两点,直线y x m =+过顶点C 和点B .(1)求m 的值; (2)求函数2y ax =+(3)抛物线上是否存在点M ,使得MCB ∠存在,请说明理由.24.如图,四边形ABCD 中,AB AD CD ==,以AB 为直径的O Θ经过点C ,连接AC OD 、交于点E .(1)证明:OD BC ∥; (2)若tan 2ABC ∠=,证明:DA 与O Θ相切; (3)在(2)条件下,连接BD 交O Θ于点F ,连接EF ,若1BC =,求EF 的长.O BDA CFE25.已知9030Rt OAB OAB ABO ∆,∠=︒,∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,连接BC .(1)填空:OBC ∠= ;(2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M N 、同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,但两点相遇时运动停止.已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒.设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?参考答案备用图备用图图2图1A OCBD NM A O C B D A O CB D O B D A CP()21. 2. 3. 4. 5. 6.7.8.9.10.11.5012.113.214.215.16.C A B B D D C B A B x ︒-π()()()()()20222217.1220182212318.21644442442219.1275150180180150=30.a a a a aa a a a a a a a EF AB ABCD AD BC ABD CBD ABC ABD CBD A ABC EF -⎛⎫--+ ⎪⎝⎭=-+=-:⋅+-+-=⋅+-==,==:,,∴,∠=∠=︒,∠=∠+∠=︒∠=︒-∠=︒-︒︒解:解当原式解尺规作图如图是的垂直平分线.四边形是菱形∥.30753045.AB BE BE ABF A DBF ABD ABF ,∴=∴∠=∠=︒,∠=∠-∠=︒-︒=︒是的垂直平分线BDACFE()()()()20.13120420092626.935.263521.18002.3?”80800“”40800“”15053510000353500A x x x x x x A B =+,=,=∴+=∴::÷=10%:÷=5%:-%-10%-%=%∴⨯%=解:设该公司购买型芯片的单价是元.根据题意,得解这个方程得经检验是原方程的解该公司购买、型芯片的单价各是元、元.解如图所示剩一半是样本的;剩大量是样本的;剩少量是样本的;()“”3500.∴人剩少量的员工有人不剩剩一半剩少量剩大量类型400()()()1..21...ABCD AC AD BC CE AE AB CD DE ED ADE CED ADE CED FDE FED DEF :,∴==,===,∴∆∆∆∆∴∠=∠∴∆证明矩形沿对角线所在直线折叠≌由得≌是等腰三角形A DCFE()()()()()()())11222451560tan 6001033230 3.30.03301313309333313..3C y x m m y x y x B C B y ax b M x CM D OCODC OD DCM y y b a y x a b b y x :,-=+,=-=-,=,=,,-,=+,⎧-=,=,⎧⎪∴=-⎨,.∠=︒+︒=︒,==︒∴⎨=+⎩,:=-=-,⎪=-=-⎩解将代入得在中当时则将、分别代入①当在轴的上得解得方时设交轴于则为由()()12121222203 6.36.451530tan 300 3.x x y y M M x CM D OCOEC OE E CM y ⎧⎧=,⎧=⎪⎪⎨⎨⎨=-=⎪⎩⎪⎩⎩∴,.∠=︒-︒=︒,==︒∴,:=-解得;②当在轴的下方时设交轴于则为() ())2222221....112.tan2222.252525242OCOA OC AD CD OD AC OD ACAB O AC BC OD BCBC a OE BC a AC BC ABC a AE aAD AB OA DE aOD OE DE a OD a OA AD:=,=,∴,⊥Θ,∴⊥∴:===,=∠=,=, ===,=,==⎛⎫∴=+=,=,+=+=⎪⎪⎝⎭证明连接是垂直平分线是的直径∥证明设则()222.490..3.90.90...1a OAD DA OAFAB O AFD BADAD BDADF BDA ADF BDA AD FD BDFD ADAED OAD EDA ADOAD ODEDA ADO AD ED ODED ADFD ODED BDEF ODEDF BDO EDF BDOBO BDBC∴∠=︒∴ΘΘ,∴∠=∠=︒∠=∠,∴∆∆,=,=⋅∠=∠=︒,∠=∠,∴∆∆,=,=⋅∴=∠=∠,∴∆∆,==,与相切连接是的直径∽∽∽由52258BO OD BDEF==,===得COBDAFE()()()11602604.sin302cos3011227830 1.53AOCOB OC BOCBOC BC OBRt OAB OA OB AB OBRt OAB ACOA ABS OA AB AC OP OPACx M N OC OB OM xOMN OM h∆︒:=,∠=︒,∴∆,==∆,=︒=,=︒=∆,==⋅=⋅=⋅,===<≤,=,∆=解是等边三角形在中在中①当时点、分别在、上.则的边上的高))2221sin60 1.5.2883833848 1.531sin608 1.58 1.5.2834 4.812 2.5ON x y xx yx M N CB OB BM xOMN ON h BM x y x xx y yx M N CB MN x︒=,=⨯⨯=⎛⎫=,=⨯=⎪⎝⎭<<,=-,∆=︒=-,=-=,=∴<≤≤,=-最大值最大值当时②当时点、分别在、上.则的边上的高当时③当时点、都在上.则())3112 2.512 2.5.2483OMN MN h AB y x xx yx y,∆===-⋅=-=,=∴=,,最大值的边上的高当时当时取得最大值备用图备用图图2图1A OCBDNMA OCBDNMAOC BDNOBDAC PM。

(完整word版)2018年广东省广州市中考数学试卷(含答案解析)

(完整word版)2018年广东省广州市中考数学试卷(含答案解析)

2018年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)(2018•广州)四个数0,1,,中,无理数的是()A .B.1 C .D.02.(3分)(2018•广州)如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条3.(3分)(2018•广州)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A .B .C .D .4.(3分)(2018•广州)下列计算正确的是( )A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y ÷=x2(y≠0)D.(﹣2x2)3=﹣8x6第1页(共45页)5.(3分)(2018•广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠46.(3分)(2018•广州)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A .B .C .D .7.(3分)(2018•广州)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.(3分)(2018•广州)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意第2页(共45页)思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A .B .C .D .9.(3分)(2018•广州)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是()A .B .C .D .10.(3分)(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()第3页(共45页)A.504m2B .m2 C .m2 D.1009m2二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)(2018•广州)已知二次函数y=x2,当x>0时,y随x 的增大而(填“增大”或“减小”).12.(3分)(2018•广州)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC= .13.(3分)(2018•广州)方程=的解是.14.(3分)(2018•广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.第4页(共45页)15.(3分)(2018•广州)如图,数轴上点A表示的数为a,化简:a+= .16.(3分)(2018•广州)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△COD=2:3.其中正确的结论有.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)(2018•广州)解不等式组:.第5页(共45页)18.(9分)(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.19.(10分)(2018•广州)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.20.(10分)(2018•广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位第6页(共45页)居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.(12分)(2018•广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.第7页(共45页)第8页(共45页)22.(12分)(2018•广州)设P(x ,0)是x 轴上的一个动点,它与原点的距离为y 1.(1)求y 1关于x 的函数解析式,并画出这个函数的图象;(2)若反比例函数y 2=的图象与函数y 1的图象相交于点A,且点A 的纵坐标为2.①求k 的值;②结合图象,当y 1>y 2时,写出x 的取值范围.23.(12分)(2018•广州)如图,在四边形ABCD 中,∠B=∠C=90°,AB>CD,AD=AB+CD .(1)利用尺规作∠ADC 的平分线DE ,交BC 于点E ,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.24.(14分)(2018•广州)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C 三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r ,求的值.第9页(共45页)25.(14分)(2018•广州)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.第10页(共45页)2018年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分。

广东省2018年中考数学试题(有答案)【精品】.doc

广东省2018年中考数学试题(有答案)【精品】.doc

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .2 2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为 A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是 A .30° B .40° C .50° D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m <B .94m ≤C .94m >D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x . 13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

2018年广东省中考数学试卷及答案

2018年广东省中考数学试卷及答案

绝密★启用前广东省初中学业水平考试数 学(考试时间100分钟,满分120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四个实数0,13, 3.14-,2中,最小的数是( )A .0B .13C . 3.14-D .22.据有关部门统计,2018年“五一”小长假期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为 ( )A .71.44210´B .70.144210´C .81.44210´D .80.144210´3.如图,由5个相同正方体组合成的几何体,它的主视图是 ( )A B C D (第3题)4.数据1,5,7,4,8的中位数是( )A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是中心对称图形的是 ( )A .圆B .菱形C .平行四边形D .等腰三角形6.不等式313x x -+≥的解集是( )A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在ABC △中,点D ,E 分别为边AB ,AC 的中点,则ADE △与ABC △的面积之比为( )A .12B .13C .14D .168.如图,AB CD ∥,且100DEC Ð=o ,40C Ð=o ,则B Ð的大小是( )A .30oB .40oC .50oD .60o(第8题)9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A .94m <B .94m ≤C .94m >D .94m ≥10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D ®®®路径匀速运动到点D ,设PAD △的面积为y ,点P 的运动时间为x ,则y 关于x 的函数图象大致为( )ABCD(第10题)二、填空题(本大题共6小题,每小题4分,共24分)11.同圆中,已知»AB 所对的圆心角是100o ,则»AB 所对的圆周角是 o .12.分解因式: .13.一个正数的平方根分别是1x +和5x -,则x = .14.已知01=-+-b b a ,则=+1a .15.如图,在矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)(第15题)(第16.如图,已知等边三角形11OA B ,顶点1A 在双曲线0)y x =>上,点1B 的坐标为(2,0).过点1B 作121B A OA ∥交双曲线于点2A ,过点2A 作2211A B A B ∥交x 轴于点2B ,得到第二个等边三角形122B A B ;过点2B 作2312B A B A ∥交双曲线于点3A ,过点3A 作3322A B A B∥交x轴于点3B ,得到第三个等边三角形233B A B ;……以此类推,则点6B 的坐标为 .=+-122x x 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------三、解答题(本大题共3小题,共18分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:101220182-æö--+ç÷èø.18.(本小题满分6分)先化简,再求值:22221644a a a a a -+-g,其中a 19.(本小题满分6分)如图,BD 是菱形ABCD 的对角线,75CBD Ð=o .(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为点E ,交AD 于点F .(不要求写作法,但保留作图痕迹)(2)在(1)的条件下,连接BF ,求DBF Ð的度数.(第19题)四、解答题(本大题共3小题,共21分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分7分)某公司购买了一批A,B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3 120元购买A 型芯片的条数与用4 200元购买B 型芯片的条数相等.(1)求:该公司购买的A,B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6 280元,求:购买了多少条A 型芯片?21.(本小题满分7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 人.(2)把条形统计图补充完整.(3)若该企业有员工10 000人,请估计该企业这周的工作量完成情况为“剩少量”的员工有多少人.(第21题)22.(本小题满分7分)如图,在矩形中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:ADF CED △≌△.(2)求证:DEF △是等腰三角形.(第22题)五、解答题(本大题共3小题,共27分.解答应写出文字说明、证明过程或演算步骤)ABCD -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------23.(本小题满分9分)如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+¹与x 轴交于,A B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值.(2)求函数2(0)y ax b a =+¹的解析式.(3)抛物线上是否存在点M ,使得15MCB Ð=o?若存在,请求出点M 的坐标;若不存在,请说明理由.(第23题)24.(本小题满分9分)如图,在四边形ABCD 中,AB AD CD ==,以AB 为直径的O e 经过点C ,连接,AC OD 交于点E .(1)求证:OD BC ∥.(2)若tan 2ABC Ð=,求证:DA 与O e 相切.(3)在(2)条件下,连接BD 交于O e 于点F ,连接EF ,若1BC =,求EF 的长.(第24题)25.(本小题满分9分)已知Rt OAB △,90OAB Ð=o ,30ABO Ð=o ,斜边4OB =,将Rt OAB △绕点O 顺时针旋转60o ,得Rt ODC △,如题1图,连接BC .(1)填空:OBC Ð= o ;(2)如题1图,连接AC ,作OP AC ^,垂足为点P ,求OP 的长度.(3)如题2图,点,M N 同时从点O 出发,在OCB △边上运动,点M 沿O C B®®路径匀速运动,点N 沿O B C ®®路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为每秒1.5个单位长度,点N 的运动速度为每秒1个单位长度,设运动时间为x s ,OMN △的面积为y .求:当x 为何值时y 取得最大值,最大值为多少?(结果分母可保留根号)(第25题)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________广东省全国中考试卷精选数学答案解析一、选择题1.【答案】C【解析】∵13.14023-<<<,∴最小的数是 3.14-.【考点】实数的比较大小.2.【答案】A【解析】714420000 1.44210=´.【考点】科学记数法.3.【答案】B【解析】从正面看这个几何体,从左边起第一列有2层,第二列有1层,第三列有1层.【考点】三视图中的主视图.4.【答案】B【解析】将数据重新排列为1、4、5、7、8,则这组数据的中位数为5.【考点】中位数.5.【答案】D【解析】A 项,是轴对称图形,也是中心对称图形,故此选项错误;B 项,是轴对称图形,也是中心对称图形,故此选项错误;C 项,不是轴对称图形,是中心对称图形,故此选项错误;D 项,是轴对称图形,不是中心对称图形,故此选项正确.故选:D .【考点】轴对称图形及中心对称图形的概念.6.【答案】D【解析】移项,得:331x x +-≥,合并同类项,得:24x ≥,系数化为1,得:2x ≥,故选:D .【考点】解不等式.7.【答案】C【解析】∵点D 、E 分别为边AB 、AC 的中点,∴DE 为ABC △的中位线,∴DE BC ∥,∴ADE ABC △∽△,∴21(4ADE ABC S DE S BC ==△△.故选:C .【考点】三角形的中位线,三角形中位线的性质,相似三角形的性质.8.【答案】B【解析】∵100DEC Ð=o ,40C Ð=o ,∴40D Ð=o ,又∵AB CD ∥,∴40B D Ð=Ð=o ,故选:B .【考点】平行四边形的性质,坐标与图形性质.9.【答案】A【解析】∵关于x 的一元二次方程230x x m +=-有两个不相等的实数根,∴224(3)410b ac m D =-=-´´->,∴94m <.故选:A .【考点】一元二次方程根的判别式.10.【答案】B【解析】当点P 沿A B ®路径匀速运动时,y 与x 成正比例关系,且y 随x 的增大而增大,运动到点B 时PAD △的面积最大;当点P 沿B C ®路径匀速运动时,y 最大且保持不变;当点P 沿C D ®路径匀速运动时,y 与x 成一次函数关系,且y 与x 的增大而减小.【考点】动点问题的函数图象.二、填空题11.【答案】50【解析】∵同圆中,同弧所对的圆周角的度数等于它所对的圆心角度数的一半,∴»AB 所对的圆周角是50o .【考点】圆周角定理.12.【答案】2(1)x -【解析】由完全平方公式,得2221(1)x x x -+=-.【考点】分解因式.13.【答案】2【解析】根据题意知150x x ++-=,解得:2x =,故答案为:2.【考点】平方根的性质,相反数的性质.14.【答案】2【解析】∵1|0|b -=,∴10b -=,0a b -=,解得:1b =,1a =,故12a +=.故答案为:2.【考点】二次根式的性质,绝对值的性质,解方程.15.【答案】π【解析】连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴2OD =,OE BC ^,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积2290π224π360OECD EODS S ××=-=-=-正方形扇形,∴阴影部分的面积124(4π)π2=´´--=.故答案为π.【考点】矩形的判定与性质,切线的性质,全等三角形的判定与性质,扇形的面积公式.16.【答案】【解析】如图,作2A C x ^轴于点C ,设1B C a =,则2A C =,112OC OB B C a =+=+,2(2)A a +.∵点2A 在双曲线0)y x =>上,∴(2)a a +==g ,解得1a =-,或1a =-(舍去),∴211222OB OB B C =+=+-=,∴点2B 的坐标为;作3A D x ^轴于点D ,设2B D b =,则3A D b =,22OD OB B D b =+=+,2(2,)A b b +.∵点3A 在双曲线0)y x =>上,∴)b b +=g ,解得b =+,或b =,∴3222OB OB B D =+=-=,∴点3B 的坐标为;同理可得点4B 的坐标为即(4,0);…,∴点n B 的坐标为,∴点6B 的坐标为.故答案为.【考点】等边三角形的性质,解直角三角形,利用反比例函数的解析式求点的坐标.三、解答题17.【答案】解:原式212=3=-+【解析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【考点】实数的运算.18.【答案】解:原式22(4)(4)4(4)=2a a a a a a a+-=+-g当a原式2==.【解析】原式先因式分解,再约分即可化简,继而将a 的值代入计算.【考点】分式的化简求值.19.【答案】解:(1)如图,EF 即为所求.(2)如图,∵BD 是菱形ABCD 的对角线,75CBD Ð=o ,∴75ABD CBD Ð=Ð=o ,∴2150ABC CBD Ð=Ð=o .∵AD BC ∥,∴18030A ABC Ð=-Ð=o o .∵EF 是AB 的垂直平分线,∴FA FB =,∴30FBA A Ð=Ð=o ,∴753045DBF ABD ABF Ð=Ð-Ð=-=o o o .【解析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可;(2)根据DBF ABD ABF Ð=Ð-Ð计算即可.【考点】基本作图,线段垂直平分线的性质,菱形的性质.四、解答题20.【答案】解:(1)设A 型芯片的单价为x 元,则B 型芯片的单价为(9)x +元,根据题意,得312042009x x =+,解得26x =.经检验,26x =是原方程的解.∴26935+=(元).∴A ,B 型芯片的单价分别是26元,35元.(2)设购买A 型芯片a 条,则购买B 型芯片(200)a -条,根据题意,得2635(200)6280a a +-=,解得80a =.∴购买了80条A 型芯片.【解析】(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.【考点】分式方程的应用,一元一次方程的应用.21.【答案】(1)800(2)补全条形统计图如图.(3)估计该企业这周的工作量完成情况为“剩少量”的员工有280100003500800´=(人).【解析】1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【考点】条形统计图和扇形统计图的综合运用.22.【答案】证明:(1)∵四边形ABCD 是矩形,且矩形沿AC 折叠,∴AD BC CE AE AB CD ====,,DAC ACB ECA Ð=Ð=Ð,EAC BAC DCA Ð=Ð=Ð.∴DAC EAC ECA DCA Ð-Ð=Ð-Ð,即DAE ECD Ð=Ð,∴(SAS)ADE CED △≌△.(2)由(1)知,ADE CED △≌△,∴DEF EDF Ð=Ð∴DF EF =.∴DEF △是等腰三角形.【解析】(1)根据矩形的性质结合折叠的性质找出AD CE =、AE CD =;(2)利用全等三角形的性质找出DEF EDF Ð=Ð.【考点】全等三角形的判定与性质,翻折变换,矩形的性质.五、解答题23.【答案】解:(1)∵直线y x m =+过点(0,3)C -,∴3m =-.(2)由(1)知,直线的解析式为3y x =-,∴令3y =,得3x =.∴(3,0)B .∵点(3,0)B ,(0,3)C -在抛物线上,90,3,a b b +=ì\í=-î解得1,33.a b ì=ïíï=-î∴2133y x =-.(3)存在.当点M 在点B 上方时,设CM 交OB 于点D ,如图1.∵点(0,3)C -,(3,0)B ,∴3OB OC ==,∴45OCB OBC Ð=Ð=o .∵15MCB Ð=o ,∴30tan OCD OD OC OCD Ð=\=Ð=o g ,∴D .∴可得直线CD3y =-.联立方程组23,13,3y y xì=-ïí=-ïî解得12120,3, 6.x x y y ì=ì=ïíí=-=ïîî∴M .当点M 在点B 下方时,设CM 与x 轴交于点D ,如图2.∵15,45MCB OCB Ð=Ð=oo ,∴60OCD Ð=o ,∴tanOD OC OCD =Ð=g∴D ∴可得直线CD 的解析式为3y =-.联立方程组23,13,3y y x ì=-ïïíï=-ïî解得12120,3, 2.x x y y ì=ì=ïíí=-=-ïîî∴2)M -.综上所述,抛物线上存在点M ,使得15MCB Ð=o ,点M 的坐标为M 或2)M -.【解析】(1)把(0,3)C -代入直线y x m =+中解答即可;(2)把0y =代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可;(3)分M 在BC 上方和下方两种情况进行解答即可.【考点】二次函数综合题.24.【答案】(1)证明:如图1,连接OC .∵,,OA OC AD CD OD OD ===,∴OAD OCD △≌△,∴ADO CDO Ð=Ð.又∵AD CD =,∴,AE CE OD AC =^,∴OE 是ABC △的中位线,∴OD BC ∥.(2)证明:如图1,连接OC .∵AB 为O e 的直径,∴90ACB Ð=o .∵tan 2,2AC ABC BCÐ=\=.又由(1)知,OD BC ∥,∴,tan 2AOD ABC AOD Ð=Ð\Ð=.∵2AD CD AB OA ===,∴2,2,2AD AD CD AD AC OA OB OC OB BC==\===,∴DAC OBC △∽△.∴ACD BCO Ð=Ð.∵AB 是O e 的直径,∴90ACB Ð=o ,即90,90BCO OCA ACD OCA Ð+Ð=\Ð+Ð=o o ,即90OCD Ð=o .由(1)知,,90OAD OCD OAD OCD \Ð=Ð=o △≌△,∴OA DA ^.又∵OA 为O e 的半径,∴DA 与O e 相切.(3)解:如图2,连接,OC AF .∵AB 是O e 的直径,∴90AFB Ð=o ,∴90AFD Ð=o .由(1)知,90AED Ð=o ,∴点,,,A E F D 在以AD 为直径的圆上.易知ABD △是等腰直角三角形,∴AFD △是等腰直角三角形,∴45DEF DAF ABD Ð=Ð==Ðo .∵FDE ODB Ð=Ð,∴FDE ODB △∽△,∴EF DE BO DB=.∵1,tan 2BC ABC =Ð=,∴1AC=.∴AB==.∴2OB DE =\===.∴cos AB BD ABD ===Ð∵,EF DEBO DB==EF=.【解析】(1)连接OC,证OAD OCD△≌△得ADO CDOÐ=Ð,由AD CD=知DE AC^,再由AB为直径知BC AC^,从而得OD BC∥;(2)根据tan2ABCÐ=可设BC a=、则2AC a=、AD AB===,证OE为中位线知12OE a=、12AE CE AC a===,进一步求得2DE a==,再AOD△中利用勾股定理逆定理证90OADÐ=o即可得;(3)先证AFD BAD△∽△得2DF BD AD=g①,再证AED OAD△∽△得2OD DE AD=g②,由①②得DF BD OD DE=g g,即DF DEOD BD=,结合EDF BDOÐ=Ð知EDF BDO△∽△,据此可得EF DEOB BD=,结合(2)可得相关线段的长,代入计算可得.【考点】与圆有关的位置关系,圆的综合题.25.【答案】(1)60o(2)∵60,OBC OB OCÐ==o,∴OBC△为等边三角形.∴4OC BC OB===.∵90ABC ABO OBCÐ=Ð+Ð=o,∴ABC OABÐ=Ð,∴AO BC∥.在Rt ABO△中,∵30,4ABO OBÐ==o,∴2AB AO==.∴AC==.∴1122AOCS AO AB AC OP==g g△,∴OP=(3)①当83x≤≤时,过点N作NE OC^,交OC于点E.则3,2NE OM x ==,∴21322y x x x =´=.此时,该抛物线的对称轴为y 轴,当83x =时,y 取得最大值,max y .②当843x <时,过点M 作MF OB ^,交OB 于点F ,则3),2MF x ON x =-=,∴2138))223y x x x =´-=-.此时,该抛物线的对称轴为83x =.∵0,∴当843x <时,y 随x 的增大而减小,∴y .③当2445x ≤≤时,点,M N 均在线段BC 上,则5122MN x =-,∴15(12)22y x =´-´=+.∵0,∴y 随x 的增大而减小,∴当4x =时,y 取得最大值,max y =.综上所述,当83x =时,y .【解析】(1)只要证明OBC △是等边三角形即可;(2)求出AOC △的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当803x £<时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ^且交OC 于点E .②当843x £<时,M 在BC 上运动,N 在OB 上运动.③当2445x <≤时,M 、N 都在BC 上运动,作OG BC ^于G .【考点】几何变换综合题,30度的直角三角形的性质,等边三角形的判定和性质,三角形的面积.。

(完整版)2018年广东省中考数学试题含答案解析,推荐文档

(完整版)2018年广东省中考数学试题含答案解析,推荐文档

2018年广东省中考数学试卷、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选 项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.2. (3分)据有关部门统计,2018年五一小长假”期间,广东各大景点共接待游 客约14420000人次,将数14420000用科学记数法表示为( )A. 1.442X 107B. 0.1442X 107 C . 1.442X 108 D . 0.1442X 1083. (3分)如图,由5个相同正方体组合而成的几何体,它的主视图是(A . 4 B. 5 C. 6 D . 75. (3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( A .圆 B •菱形 C •平行四边形D .等腰三角形6. (3分)不等式3x - 1>x+3的解集是( )A . x < 4B . x >4C. x < 2D . x >27. (3分)在厶ABC 中,点D 、E 分别为边AB 、AC 的中点,则△ ADE 与厶ABC 的面积之比为()A•寺B •寺C t D .寺8.(3 分)如图,AB // CD,则/ DEC=100, / C=40°,则/ B 的大小是()1. A .(3分)四个实数0、0 B. — C. - 3.14-3.14、2中,最小的数A BA . 30° B. 40° C. 50° D . 609. (3分)关于x 的一元二次方程x 2-3x+m=0有两个不相等的实数根,则实数 m 的取值范围是()A .贰了B . 2了C m 订10. (3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A -B -C -D路径匀速运动到点。

,设厶PAD 的面积为y , P 点的运动时间为x ,则y 关于x 的二、填空题(共6小题,每小题3分,满分18分)11. (3分)同圆中,已知弧 AB 所对的圆心角是100°,则弧AB 所对的圆周角 是.12 . (3分)分解因式:x 2- 2x+仁 _____ .13 . (3分)一个正数的平方根分别是 x+1和x - 5,则x= ______ . 14 . (3 分)已知t|+| b - 1| =0,则 a+1= ______ .15 . (3分)如图,矩形 ABCD 中, BC=4 CD=2,以AD 为直径的半圆 O 与BC 相切于点E,连接BD ,贝U 阴影部分的面积为 ______ .(结果保留n )16. (3分)如图,已知等边△ OA1B 1,顶点A 1在双曲线的坐标为(2,0).过B 1作B 1A 2 // OA 交双曲线于点A 2,D . OX函数图象大致为( ) (x >0) 上,点 B 1过A2作A2B2 // A1B1交x轴于点B2,得到第二个等边厶B1A2B2;过B2作B2A3 / B1A2交双曲线于点A3,过A作A3B3// A2B2交x轴于点B3,得到第三个等边厶B2A3B3 ;以此类推,…,贝U点三、解答题(一)17. (6 分)计算:| - 2| - 2018°+ (丄)18. (6分)先化简,再求值::?〔厂',其中a二丄.出a2-4a 219. (6分)如图,BD是菱形ABCD的对角线,/ CBD=75,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求/ DBF的度数.20. (7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?21. (7分)某企业工会开展一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为_____ 人:(2)把条形统计图补充完整;(3) 若该企业有员工10000人,请估计该企业某周的工作量完成情况为 剩少量22. (7分)如图,矩形 ABCD 中, 使点B 落在点E 处,AE 交CD 于点F ,连接DE. 23. (9分)如图,已知顶点为 C (0,- 3)的抛物线y=af+b (a ^0)与x 轴交 于A , B 两点,直线y=x+m 过顶点C 和点B . (1) 求m 的值;(2) 求函数y=aW+b (a ^0)的解析式;(3) 抛物线上是否存在点 M ,使得/ MCB=1° ?若存在,求出点M 的坐标;若AB > AD ,把矩形沿对角线AC 所在直线折叠,的员工有多少人? (1)求证:△ ADE ^A CED24. (9分)如图,四边形ABCD中,AB=AD=CD以AB为直径的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年广东中考数学试题
一、选择题(本大题10小题,每小题3分,共30分) 1.四个实数0、13
、 3.14-、2中,最小的数是( )
A .0
B .13
C . 3.14-
D .2
2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )
A .7
1.44210⨯ B .7
0.144210⨯ C .8
1.44210⨯ D .8
0.144210⨯ 3.如图,由5个相同正方体组合而成的几何体,它的主视图是( )
A .
B .
C .
D .
4.数据1、5、7、4、8的中位数是( )
A .4
B .5
C .6
D .7 5.下列所述图形中,是轴对称图形但不是..
中心对称图形的是( ) A .圆 B .菱形 C .平行四边形 D .等腰三角形 6.不等式313x x -≥+的解集是( )
A .4x ≤
B .4x ≥
C .2x ≤
D .2x ≥
7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为( )
A .
12 B .13 C .1
4
D .16
8.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,
则B ∠的大小是( ) A .30° B .40° C .50° D .60° 9.关于x 的一元二次方程2
30x x m -+=有两个不相等的实数根,则实数m 的取值
范围为( ) A .9
4
m <
B .94m ≤
C .94m >
D .94m ≥
10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )
二、填空题(本大题6小题,每小题4分,共24分)
11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .
12. 分解因式:=+-122x x .
13. 一个正数的平方根分别是51-+x x 和,则x= . 14. 已知01=-+-b b a ,则=+1a .
15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)
16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3
>=
x x
y 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为 。

三、解答题(一)(本大题3小题,每小题6分,共18分)
17.计算:1
-0
212018-2-⎪⎭
⎫ ⎝⎛+
18.先化简,再求值:
.2
3
41642222=--⋅+a a a a a a ,其中
19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,
(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF ,求DBF ∠的度数.
四、解答题(二)(本大题3小题,每小题7分,共21分)
20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

(1)求该公司购买的A 、B 型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?
21.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图21-1图和题21-2图所示的不完整统计图. (1)被调查员工人数为人: (2)把条形统计图补充完整;
(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?
22.如图,矩形ABCD 中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .
(1)求证:△ADF ≌△CED ; (2)求证:△DEF 是等腰三角形.
五、解答题(三)(本大题3小题,每小题9分,共27分)
23.如图,已知顶点为()0,3C -的抛物线()2
0y ax b a =+≠与x 轴交于,A B 两点,直线y x m =+过顶点C
和点B . (1)求m 的值;
(2)求函数()2
0y ax b a =+≠的解析式
(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.
24.如图,四边形ABCD 中,AB AD CD ==,以AB 为直径的O 经过点C ,连接,AC OD 交于点E .
(1)证明://OD BC ;
(2)若tan 2ABC ∠=,证明:DA 与O 相切;
(3)在(2)条件下,连接BD 交于
O 于点F ,连接EF ,若1BC =,求EF 的长.
25.已知OAB Rt ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将OAB Rt ∆绕点O 顺时针旋转60︒,如题251-图,连接BC .
(1)填空:OBC ∠= °;
(2)如题251-图,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;
(3)如题252-图,点,M N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5/单位秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?。

相关文档
最新文档