信号波形发生与合成实验报告

合集下载

多种波形发生器实验分析报告

多种波形发生器实验分析报告

多种波形发生器实验分析报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (3)3. 实验原理 (4)二、实验内容与步骤 (5)1. 波形发生器设计与搭建 (6)1.1 设计要求与方案选择 (7)1.2 波形发生器硬件搭建 (9)1.3 波形发生器软件编程 (10)2. 多种波形合成与输出 (12)2.1 合成波形的设计与实现 (12)2.2 波形输出设置与调整 (13)2.3 实时监控与数据分析 (15)3. 实验测试与结果分析 (16)3.1 测试环境搭建与准备 (17)3.2 实验数据采集与处理 (18)3.3 结果分析与讨论 (19)三、实验结果与讨论 (20)1. 实验结果展示 (21)2. 结果分析 (22)2.1 各波形参数对比分析 (23)2.2 性能评估与优化建议 (24)3. 问题与改进措施 (25)四、实验总结与展望 (26)1. 实验成果总结 (27)2. 存在问题与不足 (28)3. 后续研究方向与展望 (29)一、实验概述本次实验旨在研究和分析多种波形发生器的性能特点,包括产生信号的频率、幅度、波形稳定性等方面。

实验中采用了多种类型的波形发生器,如正弦波、方波、三角波、梯形波等,并对其输出波形进行了详细的测量和分析。

实验过程中,我们首先对各种波形发生器的基本功能进行了测试,确保其能够正常工作。

我们对不同波形发生器产生的波形进行了对比分析,重点关注了波形的频率、幅度和波形稳定性等关键指标。

我们还对波形发生器的输出信号进行了频谱分析和噪声测试,以评估其性能表现。

通过本次实验,我们获得了丰富的实验数据和经验,为进一步优化波形发生器的设计提供了有力支持。

实验结果也为我们了解各种波形发生器在实际应用中的性能表现提供了重要参考。

1. 实验目的本次实验的主要目的是深入研究和理解多种波形发生器的原理及其在实际应用中的表现。

通过搭建实验平台,我们能够模拟和观察不同波形(如正弦波、方波、三角波等)的产生与特性,进而探究其各自的优缺点以及在不同场景下的适用性。

方波信号的分解与合成实验报告

方波信号的分解与合成实验报告

方波信号的分解与合成实验报告一、实验目的1.了解方波信号的特点和性质;2.学习使用傅里叶级数分解和合成方波信号;3.掌握实验仪器的使用方法和实验操作技巧。

二、实验原理1.方波信号的特点和性质方波信号是一种周期性的信号,其波形为矩形,即在一个周期内,信号的幅值在一段时间内为正,另一段时间内为负,且幅值大小相等。

方波信号的频率是指信号在一个周期内重复的次数,单位为赫兹(Hz)。

2.傅里叶级数分解和合成方波信号傅里叶级数是将一个周期性信号分解成一系列正弦和余弦函数的和的方法。

对于一个周期为T的周期性信号f(t),其傅里叶级数表示为:f(t)=a0/2+Σ(an*cos(nωt)+bn*sin(nωt))其中,a0/2为信号的直流分量,an和bn为信号的交流分量,ω=2π/T为信号的角频率,n为正整数。

傅里叶级数合成是将一系列正弦和余弦函数的和合成为一个周期性信号的方法。

对于一个周期为T的周期性信号f(t),其傅里叶级数合成表示为:f(t)=Σ(cncos(nωt)+dnsin(nωt))其中,cn和dn为信号的傅里叶系数,n为正整数。

三、实验器材和仪器1.示波器2.函数信号发生器3.万用表4.电阻箱5.电容箱四、实验步骤1.将函数信号发生器的输出设置为方波信号,频率为1kHz,幅值为5V。

2.将示波器的输入连接到函数信号发生器的输出端口。

3.调节示波器的水平和垂直控制,使得方波信号的波形清晰可见。

4.使用万用表测量方波信号的频率和幅值,并记录数据。

5.使用电阻箱和电容箱分别改变方波信号的频率和幅值,并记录数据。

6.使用傅里叶级数分解方法,将方波信号分解成一系列正弦和余弦函数的和,并记录数据。

7.使用傅里叶级数合成方法,将一系列正弦和余弦函数的和合成为一个周期性信号,并记录数据。

五、实验结果与分析1.方波信号的特点和性质通过示波器观察方波信号的波形,可以发现其具有矩形的特点,即在一个周期内,信号的幅值在一段时间内为正,另一段时间内为负,且幅值大小相等。

波形的合成与分析实验报告

波形的合成与分析实验报告

实验一波形的合成与分析
一、实验目的
1、加深了解信号分析的手段之一的傅立叶变换的基本思想和物理意义
2、观察和分析由多个幅值和相位成一定关系的正弦波信号叠加的合成波分析
3、观察和分析频率、幅值相同,相位角不同的正弦波叠加的合成波形
4、通过本实验熟悉信号的合成分析原理,了解信号频谱的含义
二、实验原理
按傅立叶原理分析,任何周期信号都可用一组三角函数{sin(2pi*nft)cos(2pi*nft)}的组合表示,也就是说,可以用一组正弦波和余弦波来合成任意形状的周期信号
周期方波由一系列频率成分成谐波关系,幅值成一定比例,相位角为0的正弦波叠加合成在实验过程中可以通过设计一组奇次正弦波来完成方波信号的合成
三、实验内容
用前六项谐波近似合成一个频率为100Hz、幅值为600的方波
四、实验仪器和设备
1、计算机
2、DRVI快速可重组虚拟仪器平台
五、实验结果信号截图
1、时域信号图
2、频域信号图
频域信号图分析时的实验装配图
三角波
三角波实验装配图
锯齿波
锯齿波实验装配图
实验基本完成,成绩良好。

信号的分解与合成实验报告总结

信号的分解与合成实验报告总结

信号的分解与合成实验报告总结
一、实验目的
本次实验的目的是:
1. 掌握信号的分解与合成原理;
2. 了解信号的合成生成方法;
3. 掌握合成信号的基本特性。

二、实验内容
本次实验的内容包括:
1. 利用MATLAB编程实现信号合成程序;
2. 信号合成程序的调试;
3. 利用合成信号产生平坦的信号;
4. 利用合成信号产生任意波形;
5. 记录下合成信号的波形并作出比较;
6. 对合成信号的结果进行分析与评价。

三、实验结果
1. 利用MATLAB编程实现信号合成程序:通过本次实验,我们可以用MATLAB编程实现一个信号合成程序,以满足任意一种信号的所需。

2. 平坦信号:利用本次实验,通过对直线段和曲线段的组合,我们可以得到一个看上去是弧形的信号,它是一个平坦信号,我们可以通过改变曲线段的个数来调整这个信号的过程。

3. 任意波形:在本次实验中,我们可以利用合成信号来得到任
意波形。

通过改变曲线段的弯曲度和曲线段的个数,我们可以得到不同波形。

4. 记录下合成信号的波形:在本次实验中,我们可以将波形记录下来,并作出比较,以确认合成出的波形的情况。

5. 对合成信号的结果进行分析与评价:本次实验中,我们可以对合成的信号进行分析与评价,以看出是否符合要求,并能够作出准确评价。

四、总结
本次实验主要是学习信号的分解和合成,及其相关原理。

信号的分解和合成主要是通过程序来实现的,在程序的帮助下,可以很容易地实现信号的分解和合成。

本次实验通过实现信号合成程序的调试,发现、记录合成的信号并作出评价的方法,让我们能够更好地了解信号的分解和合成。

信号分解与合成实验报告

信号分解与合成实验报告

信号分解与合成实验报告本次实验主要涉及信号分解和合成的过程和方法。

其中,我们研究了信号分解和合成的基本概念和原理,利用 MATLAB 软件进行信号分解和合成实验,通过实验数据和实验结果验证了信号分解和合成的正确性和实用性。

一、信号分解信号分解,是指将一个信号分解成若干个简单的成分。

常用的信号分解方法有傅里叶变换、小波变换等。

本次实验我们采用了小波变换对信号进行分解。

小波变换是一种时频分析方法,具有良好的适应性、时间分解精度高、尤其适合非平稳信号的分析。

在小波分析中,我们通过选择适当的小波函数和选取不同的分解层数,可以将信号分解为越来越细节和越来越精确的小波成分,对信号的各种特征和结构有较好的拟合和表示,从而更为深入地了解信号的内在特性。

在 MATLAB 环境下,我们通过调用 Wavelet Toolbox 中的相关函数,实现了信号分解的实验。

具体步骤为:1.加载待处理信号,使用 load 命令将信号载入 MATLAB 环境中。

2.选择所需的小波函数。

在 Wavelet Toolbox 中,提供了多种不同形态的小波函数,可根据实际需求进行选择。

3.调用 wfilters 函数进行小波滤波器设计。

该函数根据所选小波函数的性质,生成对应的离散小波滤波器系数(低通和高通滤波器系数)。

4.使用 wmulticfs 函数对信号进行小波分解。

该函数将信号分解为多个不同尺度和不同频带的小波系数,可用于分析信号中的不同成分。

5.可视化分解结果,通过图像展示各个小波系数的分布和特征,可以更直观地了解信号的结构和组成成分。

二、信号合成信号合成,是指将多个简单的信号成分重新组合起来,形成新的信号。

信号合成常用的方法有基本波形叠加法、线性组合法、窄带带通滤波法等。

在本次实验中,我们采用了基本波形叠加法为例,对信号进行合成。

基本波形叠加法,是指将一系列基本波形(如正弦波、三角波)按照一定比例组合,形成新的波形。

该方法简单易行,对于周期信号的分析具有良好的适应性。

信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告一、实验目的本次实验的主要目的是深入理解信号的分解与合成原理,通过实际操作和观察,掌握信号在时域和频域的特性,以及如何将复杂信号分解为简单的基本信号,并重新合成原始信号。

二、实验原理1、信号的分解任何周期信号都可以用一组正弦函数和余弦函数的线性组合来表示,这就是傅里叶级数展开。

对于非周期信号,可以通过傅里叶变换将其表示为连续频谱。

2、信号的合成基于分解得到的各个频率成分的幅度和相位信息,通过逆过程将这些成分相加,可以合成原始信号。

三、实验设备与环境1、实验设备信号发生器示波器计算机及相关软件2、实验环境安静、无电磁干扰的实验室环境四、实验内容与步骤1、产生周期信号使用信号发生器产生一个周期方波信号,设置其频率和幅度。

2、观察时域波形将产生的方波信号输入示波器,观察其时域波形,记录波形的特点,如上升时间、下降时间、占空比等。

3、进行傅里叶级数分解通过计算机软件对观察到的方波信号进行傅里叶级数分解,得到各次谐波的频率、幅度和相位信息。

4、合成信号根据分解得到的谐波信息,在计算机软件中重新合成信号,并与原始方波信号进行比较。

5、改变信号参数改变方波信号的频率和幅度,重复上述步骤,观察分解与合成结果的变化。

6、非周期信号实验产生一个非周期的脉冲信号,进行傅里叶变换和合成实验。

五、实验结果与分析1、周期方波信号时域波形显示方波具有陡峭的上升和下降沿,占空比固定。

傅里叶级数分解结果表明,方波包含基波和一系列奇次谐波,谐波的幅度随着频率的增加而逐渐减小。

合成的信号与原始方波信号在形状上基本一致,但在细节上可能存在一定的误差,这主要是由于分解和合成过程中的计算精度限制。

2、改变参数的影响当方波信号的频率增加时,谐波的频率也相应增加,且高次谐波的相对幅度减小。

幅度的改变主要影响各次谐波的幅度,而对频率和相位没有影响。

3、非周期脉冲信号傅里叶变换结果显示其频谱是连续的,且在一定频率范围内有能量分布。

实验四、信号的分解与合成实验实验报告(报告人09光信2)

实验四、信号的分解与合成实验实验报告(报告人09光信2)

实验四、信号的分解与合成实验实验报告(报告⼈09光信2)实验四信号的分解与合成实验报告⼀、实验⽬的1、进⼀步掌握周期信号的傅⾥叶级数。

2、⽤同时分析法观测锯齿波的频谱。

3、全⾯了解信号分解与合成的原理。

4、掌握带通滤波器的有关特性测试⽅法及其选频作⽤。

5、掌握不同频率的正弦波相位差是否为零的鉴别和测试⽅法(李沙育图形法)。

⼆、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波叠加⽽成的。

对周期信号由它的傅⾥叶级数展开式可知,各次谐波为基波频率的整数倍。

⽽⾮周期信号包含了从零到⽆穷⼤的所有频率成分,每⼀频率成分的幅度均趋向⽆限⼩,但其相对⼤⼩是不同的。

通过⼀个选频⽹络可以将信号中所包含的某⼀频率成分提取出来。

对周期信号的分解,可以采⽤性能较佳的有源带通滤波器作为选频⽹络。

若周期信号的⾓频率0w ,则⽤作选频⽹络的N种有源带通滤波器的输出频率分别是0w 、02w 、03w 、04w 、05w ....0N w ,从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应谐波频率的正弦波,这些正弦波即为周期信号的各次谐波。

把分离出来的各次谐波重新加在⼀起,这个过程称为信号的合成。

因此对周期信号分解与合成的实验⽅案如图2-7-1所⽰。

本实验中,将被测锯齿波信号加到分别调谐于其基波和各次谐波频率的⼀系列有源带通滤波器电路上。

从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应频率的正弦波。

本实验所⽤的被测周期信号是100Hz的锯齿波,⽽⽤作选频⽹络的7种有源带通滤波器的输出频率分别是100Hz、200Hz 、300Hz 、400Hz 、500Hz 、600Hz 、700Hz ,因⽽能从各有源带通滤波器的两端观察到基波和各次谐波。

按照锯齿波的傅⾥叶级数展开式如下所⽰:111111211111f(t)=[sin()sin(2)sin(3)sin(4)sin(5)sin(6)....]23456w t w t w t w t w t w t -+-+-+∏可知,锯齿波的1~7次谐波的幅度⽐应为 1111111::::::234567。

信号波形合成

信号波形合成

课程设计报告设计课题:信号波形合成实验专业班级:学生姓名:指导教师:设计时间:目录一、课程设计目的 (1)二、课程设计题目描述和要求 (1)1.基本要求 (1)2.发挥部分 (2)三、系统分析与设计 (2)1、方案设计 (2)方波振荡部分 (2)分频部分 (2)滤波部分 (2)移相、放大部分 (3)波形合成部分 (3)2、硬件实现 (3)方波振荡器 (3)分频器 (4)滤波器 (5)移向、放大器 (5)波形合成器 (6)四、系统调试过程中出现的主要问题 (7)五、系统运行报告与结论 (7)六、总结 (9)七、参考书目 (9)八、附录 (10)信号波形合成实验一、课程设计目的设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和其他信号。

电路示意图如图1所示:图1 电路示意图二、课程设计题目描述和要求1.基本要求(1)方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz和30kHz 的正弦波信号,这两种信号应具有确定的相位关系;(2)产生的信号波形无明显失真,幅度峰峰值分别为6V和2V;(3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz和30kHz正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V,合成波形的形状如图2所示。

图2 利用基波和3次谐波合成的近似方波2.发挥部分(1)再产生50kHz的正弦信号作为5次谐波,参与信号合成,使合成的波形更接近于方波;(2)根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的10kHz、30kHz等各个正弦信号,合成一个近似的三角波形;(3)其他。

三、系统分析与设计1、方案设计方波振荡部分方波振荡电路采用555定时器组成多谐振荡器,调节至300kHz 左右方波,由于之后的分频电路具有调节占空比功能,所以方波产生电路暂时不需要调节占空比。

分频部分分频部分实现将产生的方波通过分频产生10kHz 、30kHz 和50kHz 的新的方波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子电路综合实验实验报告题目:信号波形发生与合成班级:20130821学号:2013082117姓名:肖珩成绩:日期:2015年3月17日一、摘要实验采用纯硬件电路设计形式完成实验任务,实现实验功能。

首先用带限幅器滞回比较器和RC充放电回路构成的方波发生电路产生频率为1KHZ的方波信号。

作为一个信号源,需要低阻抗输出,因此在方波发生器之后连接一个射随电路。

信号经两路不同频率有源滤波处理,同时产生频率为1kHz和3kHz的正弦波信号。

其中基波产生采用低通滤波器,三次谐波产生采用带通滤波器。

为了将基波和三次谐波叠加之后最终恢复出近似方波信号,因此需要根据滤波分频电路输出的基波和三次谐波的延时,设计移相电路,其设计采用全通滤波器原理。

最后运用反相加法器将基波和三次谐波信号叠加,从而完成设计要求。

实现功能:设计一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。

方案特点:电路为纯硬件电路,采用运算放大器TL081,原理图简单易懂,硬件调试容易,部分实现功能明确且输出可测,有助于电路问题检测。

二、设计任务2.1 设计选题选题十四:信号波形发生与合成2.2 设计任务要求图1 系统框图1)矩形波发生电路产生1kHz的方波(50%占空比),频率误差小于5%,方波波形幅度峰峰值为10V,幅度误差小于5%,且输出阻抗r=50 Ω;o2)基波频率为1kHz,设计的低通滤波器要求-3dB带宽为1kHz,带外衰减≥-40dB/十倍频程下降,产生的信号波形无明显失真,幅度峰峰值为12V,幅度误差小于5%;3)三次谐波频率为3kHz,设计的带通滤波器要求中心频率为3kHz,-3dB带宽小于500Hz,带外衰减≥-40dB/十倍频程下降,产生的信号波形无明显失真,幅度峰峰值为4V,幅度误差小于5%;4)设计移相电路,完成对基波正弦信号的移相,使移相后的基波和三次谐波的波形如图2所示,要求移相电路的增益为1,增益误差≤5%;图2 移相后的基波和三次谐波波形5)设计加法器,将移相器输出的基波与三次谐波相加,合成近似正弦波,波形幅度峰峰值为10V,误差不大于0.5V,合成波形的形状如图3所示。

图3 利用基波和3次谐波合成的近似方波三、方案设计与论证1)矩形波发生电路方案论证与选择方案一:采用由NE555组成的或其它由门电路构成的方波发生电路。

这种电路外围电路设计较少比较简单,但是输出信号频率很难调到某一固定值而且受环境影响明显。

本电路要求固定频率的方波(1kHZ),因此方案不予采纳。

方案二:由运算放大器构成的信号发生电路。

原理比较简单,调试过程容易,且电路的搭建需要用到运放TL081,充分利用电路已有资源。

此方案经济稳定,故电路的方波发生器模块采用此方案。

2)分频电路方案论证与选择低通滤波器:方案一:无源低通滤波器方案二:有源低通滤波器实验要求带外衰减≥-40dB/十倍频程下降,因此选择二阶有源低通滤波器,且利用运算放大器输入电阻大的特点,隔离了负载对滤波特性的影响,同时可以使用运算放大器放大信号,所以选择此方案。

带通滤波器:方案一:压控电压源型(VCVS)方案二:无限增益多路反馈型(MFB)对比这两种方案,方案一计算比较复杂且在调试过程中可能会遇到一些问题,而方案二简单可行,减少调试的复杂性,故选择方案二来设计带通滤波器。

3)移相电路方案论证与选择方案一:用RC移相网络构成移相电路。

此种移相方法移相后的信号衰减很大,移相后需要进行放大处理,这无疑增加了系统的复杂性和不稳定性。

方案二:用运算放大器构成稳幅移相电路。

这种方法不仅能达到RC移相网络的移相效果,还能稳定信号幅度不发生大的变化,选择此方案为本电路的移相电路。

其基本原理图如下:四、电路单元参数的选定和设计实现 1.矩形波发生电路矩形波发生电路由两级构成,第一级由一个运放震荡产生1kHz 的方波,通过电阻分压电路将输出幅度设置到实验要求5V,然后紧跟一个射随电路,前后级隔离,同时设置输出电阻为50 Ω,电路如图4所示。

图4 矩形波发生电路矩形波发生电路参数计算过程如下: 振荡周期112222ln(1)R T T T RC R =+=+要求1f KHz =,选10C nF =,45.3R k =,1 5.1R k =,2 5.1R k =仿真输出波形如图5所示图5 第一级输出波形VPP=10.1V,在误差允许范围内,满足设计要求。

2.滤波分频电路设计原理如下:式中A为方波的幅度。

由上式知,三次谐波幅值是基波的13。

基波产生要求采用低通滤波器(LPF),由题目要求可知至少需要一个二阶的LPF。

由于滤波器的截止频率为1kHz,因此基波分量通过LPF 滤波器会有-3dB的衰减,同时会有相移(相移值与采用的滤波器阶数有关),因此需要设计LPF的通带增益为3dB,来满足输出幅度要求,相移值可通过滤波器设计软件的相频特性图标可以得到。

图6 基波电路基波产生电路参数计算过程如下:根据题目要求知: 1.413OLP H =,0.707Q =基波的频率为1KHZ,所以电容的取值210C nF=。

因此根据计算公式分别求取剩下的电阻电容值并取标称值为147C nF=,18.2R k=,24.7R k =,311R k=。

仿真输出波形如图7所示图7 基波输出波形VPP=12.2V,在误差允许范围内,满足设计要求。

三次谐波产生要求采用带通滤波器(BPF),这一部分设计时需要考虑滤波器的带外衰减特性,如果带外衰减不够,基波分量通过BPF 之后幅度较大,与三次谐波进行叠加,三次谐波产生电路输出的波形失真会比较严重。

图8 三次谐波电路三次谐波产生电路参数计算过程如下:根据题目要求选取:1OBP H =,6Q =同理三次谐波的频率为3KHZ ,则电容的取值1210C C C nF ===,根据公式计算电阻值21163,32,0.45A B R k R k R k ===。

仿真输出波形如图9所示图9 三次谐波输出波形VPP=3.99V ,在误差允许范围内,满足设计要求。

三、移相器电路由于仿真过程中基波的相位落后于三次谐波,因此选择超前全通滤波电路来改变相位差。

具体电路图如下:图10 移相电路滤波器设计计算比较复杂,经常需要借助EDA 软件来辅助完成,比较常用的EDA 软件有Filter Solutions 、Filter Wiz Pro 、FilterCAD 、FilterLab 等,设计过程中采用TI 公司的FilterPro Desktop 。

四、加法器电路实验过程中采用了反相加法电路原理,从而将基波和三次谐波信号的叠加,达到预期的效果。

01212()f f i i R R U U U R R =-+,取标称值12 5.1f R R R k ===Ω,12//// 1.7f R R R R k ==Ω。

合成波形如图所示:图11 利用基波和3次谐波合成的近似方波VPP=10.3V,在误差允许范围内,满足设计要求。

五、装调测试过程图12 实物图5.1 测试仪器(1)直流稳压电源HY1711-3S (2)信号源TFG3050L (3)示波器DS1102E5.2 矩形波发生电路部分电路测试矩形波发生电路加正负9V电源电压后,用示波器测试能够输出稳定方波,实际第一级输出波形如图13所示。

图13使用示波器观察矩形波发生电路的输出波形,正常工作状态时是频率为1.020KHz的方波信号,幅度峰峰值为8.24V。

实验过程中由于所选稳压二极管不能达到要求的输出幅度,因此以后所测数据均以此方波为标准。

5.3 基波发生电路部分电路测试矩形波发生电路与基波发生电路相连分别加正负9V电源电压后,用示波器测试能够输出正弦波,实际输出波形如图14所示。

图14使用示波器观察基波发生电路的输出波形,正常工作状态时是频率为1.020KHz的正弦波信号,幅度峰峰值为10.1V,误差为2%,在允许的范围内,设计满足实验要求。

5.4 三次谐波发生电路部分电路测试矩形波发生电路与三次谐波发生电路相连分别加正负9V电源电压后,用示波器测试能够输出正弦波,实际输出波形如图15所示。

图15使用示波器观察三次谐波发生电路的输出波形,正常工作状态时是频率为3.049KHz的正弦波信号,幅度峰峰值为3.32V,误差为0.7%,在允许的范围内,设计满足实验要求。

5.5 移相电路部分电路测试图16图中波形分别为基波和移相后的波形,观察移相的输出波形,波形幅度和频率都不发生变化。

5.6 总电路测试图17使用示波器观察总电路的输出波形,正常工作状态时是频率为1.025KHz的近似方波信号,幅度峰峰值为8.24V,误差为0,在允许的范围内,设计满足实验要求。

六、实验注意事项及主要可能故障分析6.1实验结果分析根据实验最终得出的数据和波形可以得出结论,电路基本实现了实验要求。

在关键的测试点用示波器观察其波形并读取幅值和频率,均满足设计要求,电路很好地将方波经两路不同频率有源滤波处理后,同时产生频率为1kHz和3kHz的正弦波信号,将这些信号再合成为近似方波信号,实验设计较成功。

实验过程中存在一定的误差,经分析,一方面可能由于仿真环境与实际电路不一样,从而影响实验中元件的选取,另一方面测试仪器示波器也有一定的测量误差,以及模拟电路本来就存在不确定的特点,最终对实验结果造成了误差,经过检验这些误差在允许的范围之内。

6.2 问题分析1)在基波测试时发现没有波形,首先检查了电路的连接,经与电路图比较发现无错误,接着用万用表测量每一个管脚电压值,发现异常,发现电路中存在虚焊,于是对问题部分进行了重新焊接。

2)在调试三次谐波电路时,电路输出不是正弦波,出现了下削波,猜测是由于带通滤波器中某个元件损坏所致,经过用万用表排查后发现电阻存在问题,更换后波形正常。

3)最终调试时,波形幅值没有达到要求,考虑到加法器有放大的作用,并经过Multisim 软件仿真后,更换了电阻,幅值达到要求。

6.3 心得体会本实验主要是考察运算放大器的使用,涉及矩形波发生电路、比例运算电路、加减运算电路、有源滤波电路,通过实验加深对这些电路的理解,能够灵活去运用解决实际需要。

调试过程中遇到问题,积极寻找故障原因,并运用所学放大器的原理加以解决,从而锻炼了独立动手能力。

当然在电路布局方面,自己也学会如何灵活选择减少搭线的困难,同时实验前老师的指导对我顺利完成实验也起了重要作用,这次实验提升了自己的独立思考能力,让我受益匪浅。

附:参考资料[1] 谢红编.《模拟电子技术》[M].哈尔滨:哈尔滨工程大学出版社,2008.[2] 童诗白. 模拟电子技术基础[M] .北京:高等教育出版社,2006年5月第四版.[3] 聂典,丁伟主编.《Multisim 10计算机仿真在电子电路设计中的应用》[M].北京:电子工业出版社,2009.[4] 闫胜利著. Altium Designer实用宝典[M].北京:电子工业出版社,2007.元件表总电路图。

相关文档
最新文档