XRD分析方法
XRD分析方法

X射线物理学基础
10
X射线物理学基础
• X射线的产生
– 原子内的电子分布在一系列量子化的壳层上, 按K、L、M、N……递增;
– 最内层的能量最低 – 某层电子的能量
– 当冲向阳极靶的电子具有足够能量将内层电子 击出成为自由电子(二次电子);
• 原子:高能的不稳定 • 自发向稳态过渡:
11
X射线物理学基础
22
应用
• 已知波长的X射线,测量未知的晶体的面间距, 进而算出其晶胞参数
– 结构分析(XRD)
• 已知 ,测角,计算d;根据标准卡片,判断其物相(晶
体结构) • 根据d=f(h,k,l,a,b,c,α,β,γ,)可计算晶胞参数
• 已知面间距的晶体来反射从样品发射出来的X 射线,求得X射线的波长,确定试样的组成元
• (hkl )的n级衍射可看作(nh nk nl)的一级衍射20
布拉格方程的讨论
• sin=λ/(2d)
– λ一定时,d减小,将增大; – 面间距小的晶面,其掠射角必须较大
• 掠射角的极限范围为0°-90°,但过大或过小都会造成 衍射的探测困难
石英的衍射仪计数器记录图(部分)*右上角为
石英的德拜图,衍射峰上方为(hkl)21值,
素
– X射线能量色散谱仪(EDS,EDAX)
• 已知d 的晶体(单晶硅),测角,得到特征辐射波长 ,
确定元素,特征X射线分析的基础
23
X射线衍射
• (单晶或多晶)晶体与x射线所产生的衍射作用 • 衍射斑点或谱图 • 分析晶体结构
• 确定晶体所属的晶系(物相鉴定)、晶体的晶胞参数、 晶粒尺寸的大小、结晶度、薄膜的厚度和应力分布等
• 物相分析
– 材料、冶金 机械、化工 地矿、环保 医药、食品等
XRD分析方法介绍

XRD分析方法介绍X射线衍射(X-ray diffraction,简称XRD)是一种非常重要的物质结构表征技术,广泛应用于材料科学、化学、地球科学、生命科学等领域。
它通过将X射线射向样品,然后测量和分析X射线经过样品后的衍射图样,从而得到样品的结构信息。
1.非破坏性:XRD是一种非破坏性分析方法,样品在接受X射线照射后不会发生永久性损伤,可以反复使用。
2.不受样品形态限制:XRD适用于固体、液体、薄膜和粉末等形态的样品,对样品的晶型、晶体结构和晶粒尺寸等信息进行分析。
3.高分辨率:XRD可以提供较高的分辨率,可以检测出样品中微小的结构变化,如晶格畸变、相变等。
4.定量分析:XRD可以进行定量分析,通过衍射峰的强度和位置,可以获取样品中不同晶相的含量,并计算晶格参数、物相纯度等信息。
5.多功能性:除了结构表征外,XRD还可以用于拟合数据、表面分析、粒度分析等应用。
1.菲涅尔衍射法:菲涅尔衍射法是一种传统的XRD方法,主要用于粉末样品的结构分析。
它是通过测量样品晶粒间隔的变化,然后将这些信息转换为衍射图样,从而得到样品的结构信息。
2. Laue衍射法:Laue衍射法是一种快速的结构分析方法,主要用于晶体表面和薄膜样品的分析。
它通过将样品放在X射线束下,然后测量并分析样品中衍射出的X射线图样,从而得到样品的结构信息。
3.粉末衍射法:粉末衍射法是一种广泛应用的XRD方法,主要用于粉末样品的结构分析。
它是通过将样品制成细粉,然后进行衍射测量,并根据布拉格方程计算晶格参数和相量等信息。
4.单晶衍射法:单晶衍射法是一种高精度的XRD方法,主要用于单晶样品的结构分析。
它是通过将样品制成单晶,然后测量和分析样品中衍射出的X射线图样,从而得到样品的三维晶体结构信息。
5.傅立叶变换衍射法:傅立叶变换衍射法是一种用于薄膜和多晶样品的XRD方法,主要用于分析样品中的表面形貌、界面反应等信息。
它是通过将样品经过傅立叶变换,将时域中的信号转换为频域中的信号,然后提取相应的结构信息。
XRD及其分析技术

度
分 析
2 0°
器
主
接接收收狭狭缝缝
放
大
单
器
色
器
样品驱动机构
发散狭缝 样品
入射X射线
样品作转动
衍射X射线
入射Soller 狭缝
衍射Soller 狭缝
水冷却系统 X光管
稳定的: 直流高压 灯丝电源 聚焦偏压
前置放大器
衍射Soller,接收狭缝,探 测器和单色器作 2 转动
探测器高 、低压电 源
实际上计算机还可控制 发散狭缝、单色器等
Cu K 平均波长:1.5418Å
Cu K 1波长:1.54060Å
Mo K 波长:0.707Å
2.X衍射原理
布拉格衍射方程
产生衍射的条件是光程差是波长的整数 倍
2d hkl ·sin= n 布拉格公式
n:衍射的级(正整数)
根据布拉格方程,我们可以把晶 体对 X 射线的衍射看作为“反射”, 并乐于借用普通光学中“反射”这个 术语,因为晶面产生衍射时,入射线 、衍射线和晶面法线的关系符合镜面 对可见光的反射定律。但是,这种“ 反射”并不是任意入射角都能产生的 ,只有符合布拉格方程的条件才能发 生,故又常称为“选择反射”。
据此,每当我们观测到一束衍射 线,就能立即想象出产生这个衍射的 晶面族的取向,并且由衍射角 θn 便可 依据布拉格方程计算出这组平行晶面 的间距(当实验波长也是已知时) 。
3.X衍射仪器的组成
X射线多晶衍射仪 (又称X射线粉末衍射仪) 由X射线发生器、测角 仪、X射线强度测量系统以及衍射仪控制与衍射数据采集、处理系统 四大部分组成。下图示出了X射线多晶衍射仪的构成示意图。
8
4.XRD样品的制备——压片法
XRD

X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等。
X射线衍射分析-样品要求1、金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。
2、对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。
因此要求测试时合理选择响应的方向平面。
3、对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。
4、粉末样品要求磨成320目的粒度,约40微米。
粒度粗大衍射强度底,峰形不好,分辨率低。
要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。
5、粉末样品要求在3克左右,如果太少也需5毫克。
6、样品可以是金属、非金属、有机、无机材料粉末。
用途1、物相分析衍射图晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。
制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。
鉴定出各个相后,根据各相花样的强度正比于改组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析。
目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析。
关于XRD物相定量分析

关于XRD物相定量分析X射线衍射(XRD)是一种常用的分析技术,用于确定材料的物相组成,结构和晶体学信息。
XRD物相定量分析是通过测量样品对入射X射线的散射模式来分析样品中各组分的含量。
本文将详细介绍XRD物相定量分析的原理、方法和应用。
原理:XRD物相定量分析的原理基于布拉格方程:nλ = 2d sinθ,其中n 为整数,λ为入射X射线的波长,d为晶面间距,θ为散射角。
当X射线照射到晶体上时,会与晶体内的晶面相互作用,并产生散射。
不同晶面的晶面间距会导致不同散射角和散射强度的出现。
通过测量样品的散射模式,可以确定样品中的物相组成。
方法:XRD物相定量分析的方法主要有两种:定性分析和定量分析。
1.定性分析:通过比对实验测得的散射模式与已知标准样本的散射模式,可以确定样品中的物相种类。
这种方法常用于未知样品的初步分析和相的鉴定。
2.定量分析:通过测量散射峰的强度和位置,可以确定样品中各组分的含量。
定量分析需要建立标准曲线或参考曲线,以确定散射峰的位置和强度与物相含量之间的关系。
常用的定量分析方法有内标法、峰面积法和相对比例法等。
常用仪器:进行XRD物相定量分析需要使用X射线衍射仪。
X射线衍射仪由X射线源、样品台、衍射角度测量器和X射线探测器组成。
X射线源通常使用钴、铜或铬等发射入射X射线的金属。
应用:XRD物相定量分析在材料科学、地质学、矿物学、纺织业等领域具有广泛的应用。
1.材料科学:XRD物相定量分析可以用于研究材料的结构性质,例如晶胞参数、晶体结构和晶格畸变等。
它可以用于分析晶体中的杂质、晶形和晶轴取向等信息,并对材料的性能和性质进行评估和改善。
2.地质学和矿物学:XRD物相定量分析可用于矿石和岩石中矿物的鉴定和定量分析。
它可以确定矿物的种类、含量和分布情况,进而研究地质历史和矿床形成机制。
3.纺织业:XRD物相定量分析在纺织品中的应用主要用于分析纤维结构和纤维取向。
它可以评估纤维材料的质量和性能,并优化纺织工艺。
XRD物相定量分析

XRD物相定量分析X射线衍射(X-Ray Diffraction,XRD)是一种常用的材料物相分析方法,可以确定材料的结晶结构、晶格参数以及物相比例等信息。
通过测量材料对入射X射线的衍射,可以得到衍射谱图,通过对谱图的分析计算,可以得到材料的物相及其定量分析结果。
本文将介绍XRD物相定量分析的基本原理、常用方法和数据处理过程。
X射线衍射的基本原理是由入射的X射线通过晶体与晶体原子或分子发生散射而产生的。
根据布拉格定律,当入射角度满足2dsinθ=nλ时,其中d是晶格面间距,θ是入射和散射光束夹角,n是整数,λ是X射线波长,就会发生衍射。
不同晶体具有不同的晶格参数和晶体结构,因此它们会在不同的衍射角(θ值)出现不同的衍射峰,通过测量衍射角可以获得晶体的结构信息。
XRD物相定量分析的实验步骤主要包括样品的制备、衍射谱图的测量和数据处理等。
首先,样品需要制备成适当的形式,通常是粉末状或薄片状。
对于晶体较大的样品,可以直接进行测量;而对于晶体粒度较小的样品或非晶体样品,需要进一步进行研磨和退火等处理,以提高样品的结晶度。
制备完成后,将样品放置在X射线衍射仪的样品台上,进行衍射谱图的测量。
衍射谱图的测量通常采用旋转或倾斜方式,分别称为旋转衍射和倾斜衍射。
在旋转衍射中,样品台固定,X射线管和检测器绕着样品台进行旋转,测量不同角度下的衍射强度。
在倾斜衍射中,样品台和检测器保持固定,X射线管进行倾斜照射,测量不同角度下的衍射强度。
通过测量一系列角度下的衍射强度,可以得到样品的衍射谱图。
XRD物相定量分析方法有许多种,常用的包括全谱法、内标法、正交试验法、铺峰法等。
全谱法是通过将衍射谱图进行全范围积分来定量分析各个物相的含量,适用于物相含量差异较大的样品。
内标法是通过在样品中加入已知物相作为内标,根据内标峰的强度比值来计算其他物相的含量,适用于物相含量差异不大的样品。
正交试验法是通过设计一系列正交试验样品,根据试样中各物相峰的强度来计算各物相的含量,适用于物相含量差异较大的样品。
XRD物相分析实验报告

XRD物相分析实验报告一、引言X射线衍射(XRD)是一种用来研究物质的晶体结构和晶体衍射现象的重要实验方法。
XRD物相分析实验可以通过测定物质的衍射图案,确定样品中的晶体结构以及晶格参数,进而分析物质的组成和性质。
本实验旨在通过XRD物相分析,对实验样品的晶体结构进行研究。
二、实验步骤1.将待测样品研磨成细粉,并用乙醇进行清洗和过滤,使得样品表面平整且无杂质。
2.将样品放置在刚度良好的样品钢环中,并用理石粉填充其余空间,以保持样品的平整性和稳定性。
3.将样品钢环固定在X射线测量装置上的样品架上,确保样品与X射线发射源、接收器和探测器之间的距离合适,并开启仪器。
4.使用仪器提供的程序选择适当的测量参数,如测量范围、步长等,进行XRD测试。
5.测量结束后,根据实验结果进行数据处理和分析,绘制出衍射图案,通过对衍射峰进行配对和标定,确定样品的物相信息。
三、实验结果与分析根据实验测得的衍射图案,可以清晰地观察到一系列衍射峰。
根据布拉格衍射公式d = λ / (2sinθ),其中d是晶面间距,λ是入射X射线波长,θ是衍射角度,我们可以计算出样品的晶面间距。
通过对衍射峰的标定和配对,我们可以确定样品中的物相信息。
根据国际晶体学数据库(ICDD)提供的数据,我们可以进行衍射峰的比对和匹配,确定样品中的晶体结构和晶格参数。
四、讨论与结论通过实验测定和分析,我们可以得出以下结论:1.样品中存在的晶体结构和晶格参数:(列举样品中的物相,以及其晶格参数,如晶格常数a,b,c以及晶胞参数等)2.样品的组成和性质:根据物相信息,可以推断出样品的组成和性质,如化合物的化学组成和晶体的热稳定性等。
3.实验结果的可靠性:对于确定样品物相和晶体结构的可靠性,除了比对和匹配实验结果外,还应考虑并确定实验条件和控制因素的合理性以及实验数据的准确性。
总之,XRD物相分析实验是一种常用的方法,可以研究物质的晶体结构和晶格参数。
通过实验测量和分析,我们可以得出样品中存在的物相信息并推断出样品的组成和性质。
XRD粉末X射线分析方法

硼磷化合物
硅磷化合物
固体磷酸催化剂
• XRD测定结果可知a)焙烧温度230℃-670℃,磷硼生成磷 酸硼物相.随着焙烧温度的升高,磷酸硼物相生成量基 本不变(磷酸硼的ASTM卡片号为34-132),无其他同素异 构体生成.b)焙烧温度230℃,磷硅还没有形成磷硅晶体 化合物.340-670℃时,生成焦磷酸硅结晶化合物(焦磷 酸硅的ASTM卡片号为22-1320),有同素异构体生成(其 ASTM卡片号为39-0189),随着焙烧温度的升高,焦磷酸 硅的晶粒增大,晶格趋于完整.c)XT-90为硼磷酸硅催化 剂,活化前后的催化剂主要物相是 Si3(PO4)4.SIP2O7.BPO4.经过活化处理后,正磷酸硅的含 量有所增加,焦磷酸硅的含量有所降低.所以活化处理 能提高催化剂的初活性,有可能影响催化剂的寿命
试样的测定
• 试样的预处理:晶体要细小,无择优取 向
• X射线管的选择;铜靶,铁靶,钼靶, • X射线单色化和背底消除 • 测定条件的选择
X射线定性方法
X射线定量分析方法
晶胞常数精密测定
• 晶体中各周期重复中的等同代表点叫做结点,
连接晶体中的各结点可形成平行六面体型格子, 叫做点阵或晶胞。连接晶胞中相邻结点形成的 单位平行六面体,称为单位点阵或单位晶胞, 平行于单胞棱线三个轴,称为晶轴,单胞的三 个轴长a.b.c及轴间夹角α.β.γ称为晶胞参 数。
粉末衍射图含有的信息
• 特性 • 峰位置 • 非确定峰 • 背底 • 峰的半高宽 • 峰强度 • 系统性消失
信息 晶胞大小 ,定性分析 晶体杂质 无定型物质 晶体大小,应力变形,堆积缺陷 晶体结构 ,定量分析 对称性
XRD在分子筛的应用
• 晶化产物的测定 • 改性产物的测定 • 结晶度的测定 • 点阵常数的测定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶面组
2dhklsinθ=λ
光程差 BD+BF=2dhklsin θ =nλ; 只有当d、 θ和 λ满足布拉格方程式时才能发生衍射。
d:面间距; θ:入射线(反射线)与 晶面的夹角; λ:入射光的波长,Cu靶: λkα1=1.54060, λkα2=1.54443; n:整数,反射的级数
材料分析测试方法
屈树新 西南交通大学 材料先进技术教育部重点实验室 材料科学与工程学院 分析测试中心
复习题
• 复习晶体结构的有关知识(固体物理,第一章)。
• 预习X射线衍射(XRD)的原理。
• 结合本专业查阅文献体会如何根据理论设计、制 备新材料。
物质的结构分析
• 进行物质结构分析方法主要有3大类
多晶粉末衍射分析
multiple crystal powder diffraction analysis
✓在入射X光的作用下,原子中的电子构成多个X辐射源,以 球面波向空间发射形成干涉光;
✓强度与原子类型、晶胞内原子位置有关; ✓ 衍射图:晶体化合物的“指纹”; ✓多晶粉末衍射法:测定晶体的结构;
10 -1
10 110
130
150
107
9
X射线衍射
Wavelength in microns
紫外和 可见和 红外光谱 拉曼光谱 拉曼光谱
顺磁共振
核磁共振
XRD分析方法
• X-射线物理学基础 • X-射线与物质的相互作用 • X-射线衍射分析原理 • X-射线衍射分析应用
– XRD图谱的物相鉴定
X射线物理学基础
• 劳厄,1914年,晶体衍射实验;
– X射线具有波粒二相性
• 衍射:可见光
• 一定能量的光量子流
– h:普朗克常数=6.626-34J•S – E:能量; P:动量
X射线物理学基础
X射线物理学基础
• X射线的产生
– 原子内的电子分布在一系列量子化的壳层上, 按K、L、M、N……递增;
– 最内层的能量最低 – 某层电子的能量
1962
生理医学
Francis Maurice
H.C.Crick、JAMES h.f.Wilkins
d.Watson、
脱氧核糖核酸DNA测定
1964 化学
Dorothy Crowfoot Hodgkin
青霉素、B12生物晶体测定
1985 化学
霍普特曼Herbert Hauptman 卡尔Jerome Karle
– 四园单晶衍射
• 电子衍射(Transmission Electron Microscopy, TEM) • 中子衍射 • 穆斯堡谱 • Γ射线衍射
物质的结构分析
• 测定物质结构的本质
某种波,如微波、红外光、X射线; 或某种粒子,如光子、电子、中子等
试样
改变试样中原子 或分子的核或 电子的某种能态
试样中原子解离 或电子电离
得到物质结构 的信息
入射波(粒子)的 散射、衍射或吸收
产生与入射波长 不同的波或粒子
电磁光谱
X射线
紫外
可见 近红外
远红外
微波
无线电波
10 9
10 7
10 5
10 130
110
10-1
Wavenumbers 能量增加
核转变 电子跃迁
分子振动
转动
-310
-5
跃迁
10-5
10-3
– 特征X射线
X射线物理学基础
靶
试
样
X射线物理学基础
物质的结构分析
• 测定物质结构的本质
某种波,如微波、红外光、X射线; 或某种粒子,如光子、电子、中子等
试样
改变试样中原子 或分子的核或 电子的某种能态
试样中原子解离 或电子电离
得到物质结构 的信息
入射波(粒子)的 散射、衍射或吸收
产生与入射波长 不同的波或粒子
X射线的发现
1914 物理
劳埃Max von Laue
晶体的X射线衍射
1915 物理
亨利.布拉格Henry Bragg 劳伦斯.布拉格Lawrence Bragg.
晶体结构的X射线分析
1917 物理
巴克拉Charles Glover Barkla
元素的特征X射线
1924 物理
卡尔.西格班Karl Manne Georg Siegbahn X射线光谱学
单色X射线源 样品台 检测器
X射线衍射方程
• 晶体的点阵结构是一致互相平行且等距离的 原子平面
– 衍射的基础——晶体的周期性和对称性
• 衍射光束服从反射定律
– 反射光线在入射平面中,反射角等于入射角 – 则这组晶面所反射的X射线,只有当其光程差是
X射线波长的整数倍时才相互增强,出现衍射
2dhklsinθ=nλ
– 各种衍射技术
• 直接和精确测定分子和晶体结构的方法
– 各种光谱技术
• 红外光谱、激光拉曼光谱、紫外光 • 在各种状态测定结构,如液体
– 分子模拟、量子力学计算
现代分析测试
• 材料的结构分析
– 衍射方法
• X射线衍射 (X-Ray Diffraction, XRD)
– 粉末衍射 » 微区、薄膜 » 高温、常温、低温衍射仪
– 当冲向阳极靶的电子具有足够能量将内层电子 击出成为自由电子(二次电子);
• 原子:高能的不稳定 • 自发向稳态过渡:
X射线物理学基础
• X射线的产生
– K层出现空位, K激发态; – L层跃迁至K层, L激发态; –ΔE=EL-EK, 能量差以X射线光
量子的形式辐射出来;Kα
• L层有能量差别很小的亚能级, Kα1、 Kα2
• X射线的产生
– 德国科学家伦琴,1895年 – 使相片底片感光,并有很强的穿透力
• X射线的应用
– 科学研究 (XRD) – 医疗(透视) – 技术工程 (无损探伤)
衍射分析技术的发展
• 与X射线及晶体衍射有关的部分诺贝尔奖获得者名单
年份 学科
得奖者
内容
1901 物理
伦琴Wilhelm Conral Rontgen
直接法解析结构
鲁斯卡E.Ruska
电子显微镜
1986 物理
宾尼希G.Binnig
扫描隧道显微镜
罗雷尔H.Rohrer
1994 物理
布罗克豪斯 B.N.Brockhouse 沙尔 C.G.Shull
中子谱学 中子衍射
X射线物理学基础
• X射线的本质
– 电磁波,波长较短,一般在0.05-0.25nm;
1937 物理
戴维森Clinton Joseph Davisson 汤姆孙George Paget Thomson
电子衍射
1954 化学
鲍林Linus Carl Panling
化学键的本质
1962 化学
肯德鲁John Charles Kendrew 帕鲁兹Max Ferdinand Perutz
蛋白质的结构测定