0.3 方程与方程的解法
新人教版初中七年级数学上册《3.3 解一元一次方程(二)——去括号与去分母(第2课时)》精品教学课件

课堂检测
解:设丢番图活了x岁,根据题意得
x x x 5 x 4 x. 6 12 7 2
解得 x=84. 答:丢番图活了84岁.
课堂小结
不要漏乘不 含分母的项
乘以所有分母 的最小公倍数
不要漏乘, 注意符号
等式的性质2 去分母
等式的性质2 系数化为1
探究新知
(2)3x x 1 3 2x 1 .
2
3
解:去分母(方程两边乘6),得
18x+3(x-1) =18-2 (2x -1).
去括号,得 18x+3x-得 18x+3x+4x =18 +2+3.
合并同类项,得 25x = 23. 系数化为1,得 x 23 .
解一元一次方程 的一般步骤
去括号
移项
等式的性质1
合并同 类项
移项要变号
课后研讨
1.说一说本节课的收获。 2.谈谈在解决实际问题中有哪些需要 注意或不太懂的地方。
请以课堂反思的方式写 一写你的收获。
布置作业
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
总结点评 同学们,我们今天的探索很成
功,但探索远还没有结束,让我们 在今后的学习生涯中一起慢慢去发 现新大陆吧!
再见
4
3
解:去分母(方程两边同乘12),得 3(x-1) - 4(2x+5) = - 3×12.
去括号,得 3x - 3 - 8x - 20= - 36. 移项,得 3x - 8x= - 36+3+20. 合并同类项,得 - 5x= - 13. 系数化为1,得 x 13 .
5
五年级上数学解方程(2)

等式两边除以同一个不为 0 数,左右两边仍然相等。
想一想:你能运用等式的性质解方程吗?
你能借助天平解释一下解方程的过程吗?
3x=18 解:3x÷3=18÷3
x=6
x=6是方程3x=18的解吗?
方程左边=3x =3×6 =18 =方程右边
所以,x=6是方程的解。
知识提炼
知识点:形如ax=b(a≠0)的方程的解法:
第5单元 简易方程
第7课时 解方程(2)
1.应用等式的性质,能较熟练地解形如ax=b(a≠0)、 a-x=b的方程。(重点)
2.理解运用等式的性质解方程的算理。(难点)
解:x+4-4=12-4 解:x-5+5=6.8+5
x=8
x=11.8
解方程3x=18
3x=18 解:3x÷3=18÷3
x=6
所以,x=11是方程的解。
知识提炼
知识点:解形如a-x=b的方程时,可以根据等式的性质把它转
化成形如a+x=b的方程,再求x的值。解法如下: a-x=b
解:a-x+x=b+x a=b+x
x+b=a x+b-b=a-b
x=a-b
Байду номын сангаас
小试牛刀
解方程并检验。 15-x=6
解:15-x +x=6+x 15=6+x
解方程20-x=9 想一想:你能运用等式的性质解方程吗?
等式两边同时减去20可以吗?
今天学的解方程与以前解决的方 程进行比较,有什么不同?
20-x=9
解:20-x + =9 + x 20=9+x x 9+x=20
9+x-9=20-9 x=11
检验:
方程左边=20-x =20-11 =9 =方程右边
6+x=15 6+x-6=15-6
一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。
一元一次方程的概念及解法

同步课程˙一元一次方程一、等式(1)用等号“=”来表示相等关系的式子,叫做等式.(2)在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.(3)等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.一、方程方程:含有未知数的等式叫方程,如21x +=,它有两层含义:①方程必须是等式;②等式中必须含有未知数二、方程的解方程的解:使方程左右两边的值相等的未知数的值;只含有一个未知数的方程的解,也叫方程的根。
三、一元一次方程 一元一次方程的概念:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.一元一次方程的形式:最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式. 标准形式:方程0ax b +=(其中0a ≠,a ,b 是已知数)叫一元一次方程的标准形式. 注意:⑴任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形(必须为恒等变换)为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.⑵方程ax b =与方程()0ax b a =≠是不同的,方程ax b =的解需要分类讨论完成四、一元一次方程的解法(一)等式的性质 等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.一元一次方程的概念及解法知识回顾知识讲解同步课程˙一元一次方程若a b =,则am bm =,a bm m=(0)m ≠注意:⑴在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边⑵等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同. ⑶在等式变形中,以下两个性质也经常用到: 对称性,即:如果a b =,那么b a =.传递性,即:如果a b =,b c =,那么a c =.又称为等量代换 易错点:等号左右互换的时候忘记变符号 (二)解一元一次方程的步骤 解一元一次方程的一般步骤:1.去分母:在方程的两边都乘以各分母的 最小公倍数 .温馨提示:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号. 2.去括号:一般地,先去 小括号,再去 中括号,最后去 大括号. 温馨提示:不要漏乘括号里的项,不要弄错符号.3.移项:把含有 未知数 的项都移到方程的一边, 不含未知数的项 移到方程的另一边. 温馨提示:⑴移项要变号;⑵不要丢项. 4.合并同类项:把方程化成ax b =的形式. 温馨提示:字母和其指数不变.5.系数化为1:在方程的两边都除以未知数的系数a (0a ≠ ),得到方程的解 bx a=. 温馨提示:不要把分子、分母搞颠倒.同步课程˙一元一次方程【例1】 下列各式中哪些是方程⑴7887⨯=⨯ ⑵2345x x ++ ⑶312y y -= ⑷60x = ⑸31x > ⑹111x =+ ⑺26x y -= ⑻2430y y -+=【变式练习】判断下列各式是不是方程⑴373x x -=-+ ⑵223y -= ⑶2351x x -+ ⑷112--=- ⑸42x x -=- ⑹152x y-=【例2】 检验下列各数是不是方程315x x -=+的解⑴3x =; ⑵1x =-【变式练习】检验下列各数是不是方程213x y x y ++=--的解⑴23x y =⎧⎨=-⎩ ⑵10x y =⎧⎨=⎩ ⑶02x y =⎧⎨=-⎩【例3】 若2-为关于x 的一元一次方程,713mx +=的解,则m 的值是 【变式练习】关于x 的方程320x a +=的根是2,则a 等于 【例4】 x=3是方程( )的解( )A .3x=6B .(x -3)(x -2)=0C .x (x -2)=4D .x+3=0同步练习同步课程˙一元一次方程【例5】 若⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的取值是( )A.5B.-5C.2D.1【例6】 已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是【例7】 已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于( ). A.-2B.0C.32D.23 【例8】 若2-为关于x 的一元一次方程,713mx +=的解,则m 的值是 【变式练习】关于x 的方程320x a +=的根是2,则a 等于 【例9】 根据等式的性质填空:(1)4a b =-,则______a b =+; (2)359x -=,则39x =+ ; (3)683x y =+,则x =_________; (4)122x y =+,则x =__________.【例10】下列各式中,变形正确的是( ).A .若a b =,则a c b c +=+B .若(1)2a x -=,则21x a =- C .若2a b =,则4a b =D .若1a b =+,则221a b =+【例11】根据等式性质5=3x -2可变形为( ).A.-3x =2-5B.-3x =-2+5C.5-2=3xD.5+2=3x【变式练习】下列变形中,不正确的是( )A .若25x x =,则5x =B .若77,x -=则1x =-C .若10.2x x -=,则1012x x -= D .若x ya a =,则ax ay = 【变式练习】用适当数或等式填空,使所得结果仍是等式,并说明根据的是哪一条等式性质及怎样变形的.⑴如果23x =+,那么x =____________;根据 ⑵如果6x y -=,那么6x =+_________;根据 ⑶如果324x y -=,那么34x y -=______;根据⑷如果34x =,那么x =_____________;根据【例12】下列各式中:⑴3x +;⑵2534+=+;⑶44x x +=+;⑷12x=;⑸213x x ++=;⑹44x x -=-;⑺23x =;⑻2(2)3x x x x +=++.哪些是一元一次方程?【变式练习】下列方程是一元一次方程的是( ).A .2237x x x +=+ B .3435322x x -+=+ C . 22(2)3y y y y +=-- D .3813x y -=同步课程˙一元一次方程【变式练习】在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈⑴中,属于一次方程的序号填入圆圈⑵中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①359x +=:②2440x x ++=;③235x y +=:④20x y +=;⑤8x y z -+=:⑥1xy =-.【例13】关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________. 【例14】已知等式0352=++m x 是关于x 的一元一次方程,则m =____________. 【例15】已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________ . 【例16】若131m x -=是一元一次方程,那么m =【变式练习】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k =【变式练习】若关于x 的方程2223x x ax a x a -=-+是一元一次方程,则a = ,方程的解是 【变式练习】已知关于x 的方程(21)50n m x --=是一元一次方程,则m 、n 需要满足的条件为 【例17】下列等式中变形正确的是( )A.若31422x x -+=,则3144x x -=- B. 若31422x x -+=,则3182x x -+= C.若31422x x -+=,则3180x -+= D. 若31422x x -+=,则3184x x -+= 【例18】122233x x x -+-=- 【例19】方程3x+6=2x -8移项后,正确的是( )A .3x+2x=6-8B .3x -2x=-8+6C .3x -2x=-6-8D .3x -2x=8-6【例20】将3(x -1)-2(x -3)=5(1-x )去括号得( )A.3x -1-2x -3=5-xB.3x -1-2x +3=5-xC.3x -3-2x -6=5-5xD.3x -3-2x +6=5-5x【例21】在解方程21-x −1332=+x 时,去分母正确的是( ) A.()()132213=+--x x B. ()()632213=+--x xC.13413=+--x xD. 63413=+--x x【例22】方程2-342-x =-67-x 去分母得( ) A.2-2 (2x -4)= -(x -7) B .12-2 (2x -4)= -x -7 C.12-2 (2x -4)= -(x -7) D .12-(2x -4)= -(x -7)(2)(1)⑤③①②(2)(1)同步课程˙一元一次方程【变式练习】解方程:⑴6(1)5(2)2(23)x x x ---=+ ⑵12225y y y -+-=-【变式练习】解方程:(1)3(3)52(25)x x -=--;(2)()()()243563221x x x --=--+; (3)135(3)3(2)36524x x ---=【例23】解方程:(1)5y -9=7y -13; (2)3(x -1)-2(2x +1)=12 ; (3)757875xx -=- ; (4)1213123x x x --+=-.先变形、再解方程本类型题:需要先利用等式的基本性质,将小数化为整数,然后再进行解方程计算 【例24】解方程:7110.2510.0240.0180.012x x x --+=-. 解:原方程可化为7110.251432x x x --+=- 去分母,得 .根据等式的性质( )去括号,得 .移项,得 .根据等式的性质( ) 合并同类项,得 .系数化为1,得 .根据等式的性质( )同步课程˙一元一次方程【例25】0.130.4120 0.20.5x x+--=【变式练习】解下列方程:⑴2 1.21 0.70.3x x--=;⑵0.40.90.10.50.030.020.50.20.03x x x+-+-=;⑶1(0.170.2)1 0.70.03xx--=⑷0.10.020.10.10.3 0.0020.05x x-+-=⑸422 30%50%x x-+-=⑹1(4)33519 0.50.125xxx+++=+⑺0.20.450.0150.010.5 2.50.250.015x xx++-=-⑻0.10.90.21 0.030.7x x--=逐层去括号含有多重括号时,去括号的顺序可以从内向外,也可以从外向内。
七年级数学上册第5章一元一次方程5、3一元一次方程的解法2去分母法解方程新版浙教版

10 若关于 x 的方程 mx+23=n3-x 有无数个解,则 3m+n 的值 为( A ) A.-1 B.1 C.2 D.以上答案都不对
【点拨】mx+23=n3-x,移项,得 mx+x=n3-23,合并同类 项,得(m+1)x=n-3 2.因为该方程有无数个解,所以 m+1 =0,n-3 2=0,所以 m=-1,n=2.所以 3m+n=-1,故 选 A.
第5章一元一次方程
5.3. 去分母法解方程 2
习题链接
温馨提示:点击 进入讲评
1B 2D 3C 4A
5C 6 7 8
答案呈现
9 10 11 12
习题链接
温馨提示:点击 进入讲评
13 14 15
答案呈现
1 解方程3y-4 1-1=2y1+2 7时,为了去分母应将方程两边同乘
(B)
A.16
B.12
D.35x=2(x-1)+1 变形为 3x=10(x-1)+1
4 小明在解方程2x-3 1=x+3 a-1 去分母时,方程右边的-1 没
有乘 3,因而求得的解为 x=2,则原方程的解为( A ) A.x=0 B.x=-1
C.x=2 D.x=-2
5 某书上有一道解方程的题:1+3□x+1=x,□处在印刷时被 油墨盖住了,查后面的答案知道这个方程的解是 x=4,那 么□处的数应该是( C ) A.7 B.5 C.2 D.-2
13 (1)如下表,方程1,方程2,方程3,…,是按照一定规律 排列的一列方程,解方程1,并将它的解填在表格中;
4 3
(2)方程1x0-(x-a)=1 的解是 x=790,求 a 的值.该方程是 否是(1)中所给出的一列方程中的一个方程?如果是,它是第 几个方程?
解:把 x=790代入方程,得79-790-a=1,解得 a=8.此时, 方程即为1x0-(x-8)=1.观察可知,它是(1)中所给出的一列 方程中的一个方程,是第 7 个方程.
七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
【解分式方程的一般步骤】 解分式方程步骤6步
【解分式方程的一般步骤】解分式方程步骤6步初一列方程解应用题的一般步骤列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵ 速度=路程÷时间⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程⑵ 各段时间和=总时间⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:① 时针的速度是0.5°/分② 分针的速度是6°/分③ 秒针的速度是6°/秒1. 一列火车通过隧道,从车头进入道口到车尾离开隧道共需45 秒,当整列火车在隧道里需32 秒,若车身长为180 米,隧道x 米,可列方程为_______________。
解一元二次方程及不等式的解法
适用能因式分解的方程解一元二次方程 解法一元二次方程:因式分解法;公式法1、因式分解法移项:使方程右边为0因式分解:将方程左边因式分解;方法:一提,二套,三十字,四分组 由A?B=0,则A=0或B=0,解两个一元一次方程2、公式法将方程化为一般式写出a 、b 、c求出ac b 42-,若<0,则无实数解若>0,则代入公式求解解下列方程:1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=166、2(2x -1)-x (1-2x )=07、x 2=648、5x 2-52=09、8(3-x )2–72=0 10、3x(x+2)=5(x+2)11、(1-3y )2+2(3y -1)=012、x 2+2x+3=013、x 2+6x -5=014、x 2-4x+3=015、x 2-2x -1=016、2x 2+3x+1=017、3x 2+2x -1=018、5x 2-3x+2=019、7x 2-4x -3=020、-x 2-x+12=021、x 2-6x+9=022、22(32)(23)x x -=-23、x 2-2x-4=024、x 2-3=4x25、3x 2+8x -3=026、(3x +2)(x +3)=x +1427、(x+1)(x+8)=-1228、2(x -3)2=x 2-929、-3x 2+22x -24=030、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=032、3(x-5)2=x(5-x)33、(x +2)2=8x 34、(x -2)2=(2x +3)235、2720x x +=36、24410t t -+=37、()()24330x x x -+-=38、2631350x x -+=39、()2231210x --=40、2223650x x -+=41、()()2116x x ---=42、()()323212x x -+=44、22510x x +-=45、46、21302x x ++=、 二.利用因式分解法解下列方程(x -2)2=(2x-3)2042=-x x 3(1)33x x x +=+x 2-23x+3=0()()0165852=+---x x 三.利用开平方法解下列方程51)12(212=-y 4(x-3)2=2524)23(2=+x四. 利用配方法解下列方程7x=4x 2+201072=+-x x五. 利用公式法解下列方程-3x 2+22x -24=02x (x -3)=x -3.3x2+5(2x+1)=0 六. 选用适当的方法解下列方程(x +1)2-3(x +1)+2=022(21)9(3)x x +=-2230x x --= 2)2)(113(=--x x x (x +1)-5x =0.3x (x -3)=2(x -1)(x +1).一元二次不等式及其解法知识点一:一元二次不等式的定义(标准式)任意的一元二次不等式,总可以化为一般形式:或. 知识点二:一般的一元二次不等式的解法一元二次不等式或的解集可以联系二次函数的图象,图象在轴上方部分对应的横坐标值的集合为不等式的解集,图象在轴下方部分对应的横坐标值的集合为不等式的解集.设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表:二次函数()的图象039922=--x x有两相异实根有两相等实根无实根知识点三:解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;(2)写出相应的方程,计算判别式:①时,求出两根,且(注意灵活运用因式分解和配方法);②时,求根;③时,方程无解(3)根据不等式,写出解集.规律方法指导1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数例1.解下列一元二次不等式(1);(2);(3)(1)解:因为所以方程的两个实数根为:,函数的简图为:因而不等式的解集是.(1)练习:解下列不等式(2) ; ;02732<+-x x ;0262≤+--x x ;01442<++x x ;0532>+-x x062=--x x 01522=--x x ;01662=++x x ;08232≥+--x x ;0542≥+-x x ;31≥-x x ;。
一元一次方程的解法(分母带分数)
去分母 去括号
移项
乘所有的分母的最小公倍数. 依据是等式性质二 依据是去括号法则和乘法分配律
把含有未知数的项移到一边,常数项移到 另一边.“过桥变号”,依据是等式性质 一 合并同类项 将未知数的系数相加,常数项项加。 依据是乘法分配律 系数化为1 在方程的两边除以未知数的系数.
作业:
一元二次方程的解法一元一次方程的解法一元三次方程的解法一阶微分方程解法一元一次方程去分母一元三次方程解法一元二次方程解法一阶常微分方程解法两元一次方程的解法一元四次方程的解法
测试:
1、书112页2题(2)(4)
练习:书116页5题(2),(4)
2x-0.3 0.5
X+0.4 0.3
= 14) 2、白皮50页 3、 预习112-114页
测:书116页5题(1),(3)
分母是 分数
分母是 分数的 方程
怎么办?
如 何 化 分 为 整
3
0.7
=
3 ×10 0.7 ×10 =
30 7
分数的基本性质 分数的分子、分母同时 扩大相同的倍数分数的 值不变。
例( 2x-0.3) (X+0.4 )
×10
×10
写在 题上
0.5 解:
×10
0.3 ×10
= 1
(2)
x+2 3
2x-1 4
= 1
解:
书112页1题,2题的 1,3小题
注意:去分 母时不能漏 乘没有分母 的项.
1、去分母时,应在方程 的左右两边乘以分母的 最小公倍数; 2、去分母的依据是等式 性质二,去分母时不能 漏乘没有分母的项; 3、去分母与去括号这两 步分开写,不要跳步, 防止忘记变号。
3.3 一元一次方程的解法课时2七年级上册数学湘教版
x−
2 3
的值相
等的未知数x的值.
即要解方程
x−310=
1 4
x−
2 3
新知探究 知识点
解一元一次方程
例3
当x用什么数代入时,多项式的
x−10
3
的值与多
项式
1 4
x−
2 3
的值相等?
解:由题意可知,要解方程:x−310=
1 4
x−
2 3
.
去分母,得
4(x-10)=3x-8 ,
去括号,得
4x-40=3x-8 ,
移项、合并同类项,得
x=32 .
故当x用32代入时,多项式的x−310的值与多项式14 x− 23的值相等.
新知探究 知识点
解一元一次方程
结合上述例题,总结解一元一次方程的基本步骤.
解一元一次方程的基本步骤:
一元一次方程
ax=b(a,b是常数,a≠0)
x=ba
①去分母
⑤化系数为1
②去括号
③移项
④合并同类项
去括号,得
15x-5+2x-4=10x.
移项,得
15x+2x-10x=4+5.
合并同类项,得 两边都除以7,得
7x=9. x =97 .
随堂练习
2.当x用什么数代入时,多项式2(2x5−3) +2 【课本P109 练习 第2题】
的值与多项式3x-1的值相等?
解:由题意可知,要解方程:
2(2x−3)
去括号,得
15x-5+2x-4=10x ,
移项,得
15x+2x-10x=5+4 ,
合并同类项,得
7x=9,