七年级下册数学期末考试提高题难题奥数题有答案
初一数学奥数题带答案

初一数学奥数题带答案20道一张方桌由一个桌面和四条腿组成,1立方米木料可制作桌面50张或桌腿300条,现在有5立方米木料,问用多少木料制作桌面,多少木料制桌腿,正好配成方桌多少张?轮船在静水中的速度为1小时24千米,水流速度是2千米一小时,该船在甲乙两地间行驶一个来回就用了6小时,求从甲到乙顺流航行和从乙到甲逆流航行各用了多少时间,甲乙两地距离是多少?甲仓存煤200吨,乙仓存煤70吨,若甲仓每天运出15吨,乙仓...最佳答案:2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a +b|-|c-b|+|a-c|的值.3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.6.解方程2|x+1|+|x-3|=6.8.解不等式||x+3|-|x-1||>2.10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD 延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;(3)求新合金中含锰的重量范围.|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.② 由①,② ∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),① 又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又S△E FD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以 SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即 KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k +1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•52 23.设凳子有x只,椅子有y只,由题意得 3x+4y+2(x+y)=43,即 5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有 24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即 92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以 x=1.4(元).若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最初一数学竞赛题难题解答一、列代数式问题例1甲楼比丙楼高24.5米,乙楼比丙楼高15.6米,则乙楼比甲楼低_____米.(2000年“希望杯”初一数学培训题)解析:设丙楼高为x米,那么甲楼高(x+24.5)米,乙楼高(x+16.5)米,∴(x+16.5)-(x+24.5)=-8.9,即乙楼比甲楼低8.9米.二、有理数的计算问题例2计算(1/1998-1)(1/1997-1)…(1/1000-1)=______.(1999年“希望杯”初一数学邀请赛试题)分析:逆用有理数的减法法则,转化成分数连乘.解:原式=-(1997/1998)×(1996/1997)×…×(999/1000)=-1/2.例3若a=19951995/19961996,b=19961996/19971997,c=19971997/19981998,则()(A)a(1997年“希望杯”初一数学邀请赛试题)解析:∵ a=(1995×10001)/(1996×10001)=1995/1996=1-1/1996,同理,b=1-1/1997,c=1-1/1998,又1/1996>1/1997>1/1998,∴ a三、数的奇偶性质及整除问题例41998年某人的年龄恰好等于他出生公元年数的数字之和,那么他的年龄应该是_________岁.(第九届“希望杯”初一数学邀请赛题)解:设此人出生的年份为abcd,从而,1998-abcd=a+b+c+d.∴ a+b+c+d≤4×9=36,故abcd≥1998-36=1962.当a=1,b=9时,有11c+2d=88.从而知c为偶数,并且11c≤88, ∴ c≤8,又11×6+2×9<88, ∴ c=8,d=0.∴ 此人的年龄是18岁.例5把一张纸剪成5块,从所得的纸片中取出若干块,每块又剪成5块,如此下去,至剪完某一次后,共得纸片总数N可能是().(A)1990(B)1991(C)1992(D)1993(1992“缙云杯”初中数学邀请赛)解析:设把一张纸剪成5块后,剪纸还进行了n次,每次取出的纸片数分别为x1,x2,x3,…,xn块,最后共得纸片总数N,则N=5-x1+5x1-x2+5x2-…-xn+5xn=1+4(1+x1+x2+…+xn),又N被4除时余1,N必为奇数,而1991=497×4+3,1993=498×4+1,∴ N只可能是1993,故选(D).四、利用非负数的性质例6已知a、b、c都是负数,且|x-a|+|y-b|+|z-c|=0,则xyz的值是( )(A)负数(B)非负数(C)正数(D)非正数(第十届“希望杯”初一数学邀请赛试题)解析:由非负数的性质,知x=a,y=b,z=c.∴ xyz=abc,又abc都是负数,∴ xyz<0,故选(a).例7已知(x-3)2+|n-2|=0,那么代数式3xn+x22n-1/3-(x3+xn/3-3)的值是_______.(北京市“迎春杯”初一数学邀请赛试题)解析:由非负数的性质,得x=3,n=2.∴ 3xn+x2n-1/3-(x3+xn/3-3)=9.五、比较大小问题例8把255,344,533,622四个数按从大到小的顺序排列___________.(天津市第二届“少年杯”数学竞赛题)解析:∵255=(25)11=3211,344=(34)11=8111,533=(53)11=12511,622=(62)11=3611, 又32<36<81<125,∴ 255<622<344<533.例9若a=989898/999999,b=979797/989898,试比较a,b的大小.(1998年“希望杯”初一数学邀请赛试题)解析:a=(98×10101)/(99×10101)=98/99,b=97/98,a-b=98/99-97/98=1/(98×99)>0,∴ a>b.六、相反数、倒数问题例10若a,b互为相反数,c,d互为负倒数,则(a+b)1996+(cd)323=____.(第七届“希望杯”初一数学邀请赛试题)解析:由题意,得a+b=0,cd=-1,∴ (a+b)1996+(cd)323=-1.七、数形结合——数轴问题例11 a,b,c三个数在数轴的位置如图,则下列式子正确的是( )(A) 1/(c-a)>1/(c-b)>1/(a-b) (B) 1/(c-a)>1/(c-b)>1/(b-a)(C) 1/(b-c)>1/(c-a)>1/(b-a)(D) 1/(a-b)>1/(a-c)>1/(c-b一、填空题(每小题5分,共75分)1.计算:=_________.2.设有理数a,b,c在数轴上的对应点如图所示,则│b-a│+│a+c│+│c-b │=________.3.若m人在a天可完成一项工作,那么m+n人完成这项工作需_______天(用代数式表示).4.如果,,那么=_______.5.已知│x-1│+│x+2│=1,则x的取值范围是_______.6.“如果两个角的和等于90°,那么这两个角叫做互为余角;如果两个角的和等于180°,那么这两个角叫做互为补角”.已知一个角的补角等于这个角的余角的6倍,那么这个角等于_________.7.由O点引出七条射线如图,已知∠AOE和∠COG均等于90°,∠BOC>∠FOG,那么在右图中,以O为顶点的锐角共有______个.8.某人将其甲、乙两种股票卖出,其中甲种股票卖价1200元,盈利20%;其乙种股票卖价也是1200元,但亏损20%,该人交易结果共盈利_______.9.时钟在12点25分时,分针与时针之间的夹角度数为________.10.已知a×b×=,其中a、b是1到9的数码.表示个位数是b,十位数是a的两位数,表示其个位、十位、百位都是b的三位数,那么a=_____,b=______.11.一个小于400的三位数,它是完全平方数,它的前两位数字组成的两位数还是完全平方数,其个位数字也是一个完全平方数,那么这个三位数是______.12.甲、乙、丙三人同时由A地出发去B地.甲骑自行车到C地(C是A、B•之间的某地),然后步行;乙先步行到C点,然后骑自行车;丙一直步行.结果三人同时到达B地.已知甲步行速度是每小时7.5km;乙步行速度是每小时5km.甲、乙骑自行车的速度都是每小时10km,那么丙步行的速度是每小时________km.13.小虎和小明同做下面一道题目:“甲、乙、丙三个小孩分一袋糖果,分配如下:甲得总数的一半多一粒,乙得剩下来的三分之一,丙发现自己分得的糖果是乙的二倍,那么这袋糖果□小虎的答案是:糖的总数是38粒,甲得20粒,乙得6粒,丙得12粒.□小明的答案是:从题目给出的数据,无法确定糖果的总数.你认为他们的答案是否正确?在答案前的方框内,将你认为正确的打∨,•不正确的打×.a b clld e fg h l14.如图,3×3的正方形的每一个方格内的字母都代表某一个数,已知其每一行、每一列以及两条对角线上的三个数之和都相等,若a=4,b=19,L=22,那么b=•_____,h=________.15.一幢楼房内住有六家住户,分别姓赵、钱、孙、李、周、吴.这幢楼住户共订有A、B、C、D、E、F这种报纸,每户至少订了一种报纸.已知赵、钱、孙、李、周分别订了其中2,2,4,3,5种报纸,而A、B、C、D、E五种报纸在这幢楼里分别有1、•4、2、2、2家订房.那么吴姓住户订有_______种报纸,报纸F在这幢楼里有_____•家订户.二、解答题(第16、17题各8分,第18题9分,第19,20题各10分,共45分)16.已知│ab+2│+│a+1│=0,求下式的值:+…+.17.对于有理数x,y,定义新运算:x*y=ax+bx+c,其中a、b、c是常数,等式右边是通常的加法与乘法运算.已知1*2=9,(-3)*3=6,0*1=2,求2*(-7)的值.18.甲、乙二人分编号分别为001,002,003,…,998,999的999张纸牌,•凡编号的三个数码都不大于5的纸牌都属于甲;•凡编号三个数码中有一个或一个以数码大于5的纸牌都属于乙.(1)甲分得多少张纸牌?甲分得的所有纸牌的编号之和是多少?19.在边防沙漠地带,巡逻车每天行驶200千米,每辆巡逻车可载供行驶14天的汽油,现有5辆巡逻车,同时从驻地A出发,完成任务后再沿原路返回驻地.为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,•仅留足自己返回驻地所需的汽油,将其余的汽油留给另外三辆使用,问其他三辆可行进的最远距离是多少千米?20.要把一个边长为6cm的正方体分割成49个小正方体(小正方体大小可以不等),应如何分割?并画图示意.答案:一、填空题1.原式===-0.12(或-).2.由图可知,a>0,b<0,c<0,且│c│>│a│>│b│>0,于是有b-a<0,a+c<0,c-b<0,所以原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.3.1人1天工作量为,m+n人1天工作量为,故m+n人完成这项工作的时间为天.。
初一奥数题(附答案)

初一奥数题(附答案)初一奥数题(附答案)2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.6.解方程2|x+1|+|x-3|=6.8.解不等式||x+3|-|x-1||>2.10.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;(3)求新合金中含锰的重量范围.参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以x=1.4(元).若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.。
初一奥数题及解答

初一奥数题及解答Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998初一奥数复习题2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.5.已知方程组有解,求k的值.6.解方程2|x+1|+|x-3|=6.7.解方程组8.解不等式||x+3|-|x-1||>2.9.比较下面两个数的大小:10.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC ∥AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC∥KL,BD 延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于3415227.甲火车长92米,乙火车长84米,若相向而行,相遇后经过秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱每支牙膏多少钱33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;(3)求新合金中含锰的重量范围.初一奥数复习题解答2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.5.②+③整理得x=-6y,④④代入①得(k-5)y=0.当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.故k=5或k=-1时原方程组有解.<x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有,所以应舍去.7.由|x-y|=2得x-y=2,或x-y=-2,所以由前一个方程组得|2+y|+|y|=4.当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3.同理,可由后一个方程组解得所以解为解①得x≤-3;解②得-3<x<-2或0<x≤1;解③得x>1.所以原不等式解为x<-2或x>0.9.令a=,则于是显然有a>1,所以A-B>0,即A>B.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11.所以商式为x2-3x+3,余式为2x-4.12.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短).显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB∥CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB∥CD,所以∠EDF=∠A=70°,②由①,②知BC∥AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF∥CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC∥DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE∥AD,即在△BEG中,DF∥GE.从而F是BE中点.连结FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCE E,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC∥KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有+=,③由①得x=150-y,代入③有0. 9(150-y)+=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×+2(x+1)(1+30%)=[2x+3(x+1)],即2×+2×+2×=5x+,即=2×,所以x=(元).若y为去年每支牙膏价格,则y=+1=(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以(25+x)=,解之得x=50分钟.于是左边=(25+50)=30(千米),右边= ×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.(3)新合金中,含锰重量为:x·40%+y·10%+z·50%=,而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.。
(完整word)七年级奥数题20道和答案

七年级奥数题20道和答案补充几道:在车站开始检查票时,有A(A>0)位旅客在等候。
检票开始后,仍有旅客继续前来排队。
设旅客按固定的速度增加,检票口检票的速度也是固定的。
若开放一个口,则要30分钟才能将排队检票的旅客全部检票完毕;若开放两个检票口,则要10分钟。
如果要在5分钟内将排队检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口上述题大致解法为:设1个检票口1分钟检票1人。
1个检票口30分的检票量为1×30分=30人,这既包括原有A人,也包括30分内增加的人。
2个检票口10分的检票量为2×10分=20人,这既包括原有A人,也包括10分内增加的人。
因为原有A人一定,所以上面两式的差30-20=10人正好是30分增加的人数与10分增加的人数的差。
由此可以求出每分人数增加量是10÷(30-10)=0.5人。
车站原有A人是30-0.5×30=15人,或20-0.5×10= 15人。
前面已假定每个口每分钟的检票量为1,而每分钟增加的人数为0.5,因此新增加的人需0.5个口。
今要5分内完成,1个口5分检5人,原有的15人需3个口,再加上新增加的人需0.5个口(即1个口).共4个口.所以在5分钟内检票完毕,至少要同时开放4个检票口.2008年夏季奥运会的主办国即将于2001年7月揭晓,为了支持北京申奥,红、绿两支宣传北京申奥万里行车队在距北京3000km处会合,并同时向北京进发,绿队走完2000km 时,红队走完1800km,随后,红队的速度比原来的提高20%,两车队继续同时向北京进发。
(1)求红队提速前红、绿两队的速度比;(2)问红、绿两支车队是否同时到达了北京?说明理由;(3)若红、绿两支车队不能同时到达北京,那么,哪支车队先到达北京?求出第一支车队到达北京时两车队的距离(单位:km)。
(1)V红:V绿=1800:2000=9:10(2)设提速前时间为t则提速前V绿=2000/t,V红=1800/t提速后V红后=1800*120%/t=2160/t,V绿不变,所以t绿总=3000/V绿=3t/2,t红总=t+(3000-1800)/V红后=14t/9,因为t红总不等于t绿总所以不同时到达(3)因为3t/2<5t/9所以绿队先到达。
七年级奥数题集(带答案)

精心整理1、2002)1(-的值(B)A.2000B.1C.-1D.-2000 2、a 为有理数,则200011+a 的值不能是(C ) A.1B.-1C.0D.-20003、20074、)1(-5、)1(-6、计算78911练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 612、计算:)9897983981(656361()4341(21++++++++++ 结果为:5.612249122121=⨯++⨯+ 13、计算:.200720061431321211⨯++⨯+⨯+⨯ 应用:)111(1)1(+-=+n n d n n d练习:.1051011171311391951⨯++⨯+⨯+⨯ 13、计算:35217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯.结果为52 14、求21-++x x 的最小值及取最小值时x 的取值范围.练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.练习:1、计算2、若m A.C.3、若n A.C.4143678…5、已知系是(C )A.2001+=b aB.2002+=b aC.b a =D.2002-=b a6、计算:.35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯52 7、计算:.561742163015201412136121++++++83288、计算:.100321132112111+++++++++++ 9、计算:.999999999999999999999+++++10、计算)100011)(99911)(99811()411)(311211(10201970198019992000-------++-+- .610 11、已知,911,999909999==Q p 比较Q P ,的大小. 12、设n13、又得到一个数,14理数3,(1)15.19981.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是 (A)A .a%.B .(1+a)%.C.1100a a + D.100a a+ 2.甲杯中盛有2m 毫升红墨水,乙杯中盛有m 毫升蓝墨水,从甲杯倒出a 毫升到乙杯里,0<a <m ,搅匀后,又从乙杯倒出a 毫升到甲杯里,则这时 (A)A .甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B .甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C .甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则(A)A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是(C)A.111ab b a c<<-;B.1b a-<1ab<1c;C.1c<1b a-<1ab;D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有()A.2123.4.当5121,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.初中数学竞赛辅导2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.4.设(3x-1)7=a7x7+a6x6+…+a1x1+a0,试求a0+a2+a4+a6的值.6.解方程2|x+1|+|x-3|=6.8.解不等式||x+3|-|x-1||>2.10.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.14.15.ACB.17与BE 交于F18KL于F1920.下23共有432425(1)(2)26.由?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.1630.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B35.20%,含锰501千克.(1)(2)(3)|=-a c-b≥0,a-c≤0原式=-b3.因为x+m≥0时,||x+m4a0+a210因为y,u=3x-2y+4z11.所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=从而由∠15所以所以所以∠16.在∠DBC∠A+∠17以,又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.+1)=75于是α所以故23即所以24令而t=1,把t25.(1)有8×7×(2)与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30解之得31由②有由①得解之得322×1.68即2×即所以若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边即乙用35.(1)(2)当(3)x?40y=250重量y而。
7年级奥数题及答案数学奥数题七年级

7年级奥数题及答案数学奥数题七年级7年级奥数题及答案7年级奥数题及答案刚步入7年级的学生对于自己的基础知识要求扎实之外,也要多做奥数题为自己铺一个垫脚石,下面是WTT为你们准备的7年级的相关奥数题目以及相关的奥数答案,希望能帮助你们。
7年级奥数题1:把1至205这205个自然数依次写下来得到一个多位数 123456789..205,这个多位数除以9余数是多少解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9 整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除 10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少2021__022******** 从1000~1999千位上一共999个“1”的和是999,也能整除;2021__022********的各位数字之和是27,也刚好整除。
最后答案为余数为0。
7年级奥数题2:A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2B/(A+B) 前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是:98 / 100 7年级奥数题3:已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
初一奥数题(附答案精编版

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯初一奥数题(附答案)1.设 a,b,c 为实数,且| a|+a=0,| ab|=ab,|c|-c=0,求代数式|b| -| a+b|-|c-b|+| a-c|的值.2.若 m< 0,n> 0,| m|<| n|,且| x+m|+| x-n| =m+n,求 x 的取值范围.3.设 (3x-1) 7=a7x7+a6x6++a1x+ a0,试求 a0+a2+a4+a6的值.4.解方程 2| x+1|+|x-3 |=6.5.解不等式|| x+ 3|-|x-1 ||> 2.6. x,y,z 均是非负实数,且知足:x+3y+2z=3,3x+3y+z=4,求 u =3x-2y + 4z 的最大值与最小值.7.求 x4-2x3 +x2+2x-1 除以 x2+x+ 1 的商式和余式.12.如图 1-88 所示.小柱住在甲村,奶奶住在乙村,礼拜日小柱去探望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应当选择如何的路线才能使行程最短?13.如图 1-89 所示. AOB 是一条直线, OC,OE 分别是∠ AOD 和∠ D OB 的均分线,∠ COD=55°.求∠ DOE 的补角.14.如图 1- 90 所示.BE 均分∠ ABC ,∠ CBF=∠ CFB=55°,∠ EDF=70°.求证: BC‖AE .15.如图 1-91 所示.在△ ABC 中, EF⊥ AB ,CD ⊥AB ,∠ CDG= ∠BE F.求证:∠ AGD= ∠ ACB .16.如图 1-92 所示.在△ ABC 中,∠ B= ∠C, BD ⊥ AC 于 D.求17.如图 1-93 所示.在△ ABC 中, E 为 AC 的中点, D 在 BC 上,且 B D∶DC=1∶2,AD 与 BE 交于 F.求△ BDF 与四边形 FDCE 的面积之比.18.如图 1-94 所示.四边形ABCD 两组对边延伸订交于K 及 L ,对角线 AC ‖KL ,BD 延伸线交 KL 于 F.求证: KF=FL .19.随意改变某三位数数码次序所得之数与原数之和可否为999?说明理由.20.设有一张 8 行、8 列的方格纸,随意把此中32 个方格涂上黑色,剩下的 32 个方格涂上白色.下边对涂了色的方格纸实行“操作”,每次操作是把随意横行或许竖列上的各个方格同时改变颜色.问可否最后获取恰有一个黑色方格的方格纸?21.假如正整数p 和 p+2 都是大于 3 的素数,求证: 6| (p+1).22.设 n 是知足以下条件的最小正整数,它们是75 的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有 3 条腿,每把椅子有 4 条腿,当它们全被人坐上后,共有 43 条腿 (包含每一个人的两条腿 ),问房间里有几个人?24.求不定方程49x-56y+14z=35 的整数解.25.男、女各8 人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不考虑先后序次,只考虑男女如何结成舞伴.问各有多少种不一样状况?26.由 1,2,3,4,5 这 5 个数字构成的没有重复数字的五位数中,有多少个大于 34152?27.甲火车长 92 米,乙火车长84 米,若相向而行,相遇后经过 1.5 秒 (s)两车错过,若同向而行相遇后经 6 秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了 4 天后,由甲队独自达成剩下的,又用 2 天达成.若甲独自达成比乙独自达成所有任务快 3 天.求甲乙独自完成各用多少天?29.一船向相距240 海里的某港出发,抵达目的地前48 海里处,速度每小时减少 10 海里,抵达后所用的所有时间与原速度每小时减少 4 海里航行全程所用的时间相等,求本来的速度.30.某工厂甲乙两个车间,昨年计划达成税利750 万元,结果甲车间超额15%达成计划,乙车间超额 10%达成计划,两车间共同达成税利 845 万元,求昨年这两个车间分别达成税利多少万元?甲: 460 万乙:290万31.已知甲乙两种商品的原价之和为150 元.因市场变化,甲商品降价 1 0%,乙商品抬价20%,调价后甲乙两种商品的单价之和比原单价之和降低了 1%,求甲乙两种商品原单价各是多少?甲: 105 乙: 4532.小红昨年暑期在商铺买了 2 把小孩牙刷和 3 支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多 1 元,今年暑期她又带相同的钱去该商店买相同的牙刷和牙膏,因为今年的牙刷每把涨到1.68 元,牙膏每支涨价30%,小红只能买 2 把牙刷和 2 支牙膏,结果找回 4 角钱.试问昨年暑期每把牙刷多少钱?每支牙膏多少钱?牙刷:牙膏:33.某商场假如将进货单价为8 元的商品,按每件12 元卖出,每日可售出 400 件,据经验,若每件少卖 1 元,则每日可多卖出 200 件,问每件应减价多少元才可获取最好的效益?11元34.从 A 镇到 B 镇的距离是28 千米,今有甲骑自行车用0. 4 千米 /分钟的速度,从 A 镇出发驶向 B 镇, 25 分钟此后,乙骑自行车,用0.6 千米/分钟的速度追甲,试问多少分钟后追上甲?50 分钟后35.现有三种合金:第一种含铜60%,含锰 40%;第二种含锰10%,含镍 90%;第三种含铜 20%,含锰 50%,含镍 30%.现各取适合重量的这三种合金,构成一块含镍 45%的新合金,重量为 1 千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;最大:最小:(3)求新合金中含锰的重量范围.0.01~0 .54参照答案2.因为| a| =-a,所以a≤0,又因为| ab| =ab,所以 b≤0,因为| c| =c,所以 c≥0.所以a+ b≤0,c-b≥0, a-c≤0.所以原式 =-b+ (a+ b)-(c-b)-(a-c)=b .3.因为 m< 0,n> 0,所以| m| =-m ,| n| =n.所以| m|<| n|可变成m+ n> 0.当 x+m≥0时,| x+m |=x + m;当 x- n≤0时,| x-n | =n-x .故当 -m≤ x≤n时,|x+ m|+| x-n | =x + m-x + n=m + n.4.分别令x=1 , x=-1 ,代入已知等式中,得a0+a2+ a4+ a6=-8128 .10.由已知可解出y 和 z因为 y, z 为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3 ,余式为2x-412.小柱的路线是由三条线段构成的折线(如图 1- 97 所示 ).我们用“对称”的方法将小柱的这条折线的路线转变成两点之间的一段“连线”(它是线段).设甲村对于北山坡(将山坡当作一条直线)的对称点是甲′;乙村对于南山坡的对称点是乙′,连结甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是 A , B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)明显,路线甲→A→B→乙的长度恰巧等于线段甲′乙′的长度.而从甲村到乙村的其余任何路线,利用上边的对称方法,都能够化成一条连结甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的行程最短.13.如图1- 98 所示.因为OC,OE 分别是∠ AOD ,∠ DOB 的角均分线,又∠ AOD+∠ DOB=∠ AOB=180°,因为∠ COD=55° ,所以∠ DOE=90° -55°=35°.所以,∠ DOE 的补角为180°-35 °= 145°.14.如图1- 99 所示.因为BE 均分∠ ABC ,所以∠CBF= ∠ ABF ,又因为∠ CBF=∠ CFB,所以∠ ABF=∠ CFB.进而AB ‖ CD( 内错角相等,两直线平行).由∠ CBF=55°及 BE 均分∠ ABC ,所以∠ ABC=2× 55°=110°.①由上证知AB ‖ CD,所以∠ EDF=∠ A=70°,②由①,②知BC ‖ AE( 同侧内角互补,两直线平行).15.如图1-100 所示. EF⊥ AB , CD ⊥ AB ,所以∠ EFB=∠ CDB=90°,所以 EF‖ CD( 同位角相等,两直线平行).所以∠BEF=∠ BCD(两直线平行,同位角相等).①又由已知∠ CDG= ∠BEF .② 由①,②∠ BCD=∠ CDG.所以BC ‖ DG( 内错角相等,两直线平行).所以∠ AGD=∠ ACB(两直线平行,同位角相等).16.在△ BCD 中,∠DBC +∠ C=90°(因为∠ BDC=90° ),① 又在△ ABC 中,∠ B= ∠ C,所以∠A +∠ B+∠ C=∠ A + 2∠ C=180°,所以由①,②17.如图 1- 101,设 DC 的中点为G,连结 GE .在△ ADC 中, G,E 分别是 CD ,CA 的中点.所以,GE ‖ A D ,即在△ BEG 中, DF ‖ GE.进而 F 是 BE 中点.连结FG .所以又S△ EFD = S△ BFG-SEFDG=4S △ BFD-SEFDG ,所以S△ EFGD=3S △ BFD .设 S△ BFD=x ,则 SEFDG=3x .又在△ BCE 中, G 是 BC 边上的三均分点,所以S△ CEG=S △ BCEE ,进而所以SEFDC=3x + 2x= 5x,所以S△ BFD ∶ SEFDC=1 ∶ 5.18.如图1- 102 所示.由已知AC ‖KL ,所以 S△ ACK=S △ ACL ,所以即 KF=FL .+ b1=9 , a+a1=9 ,于是 a+b+c + a1+ b1+c1=9 + 9+9,即 2(a 十 b+ c)=27 ,矛盾!20.答案能否认的.设横行或竖列上包含k 个黑色方格及8-k 个白色方格,此中0≤ k≤8.当改变方格的颜色时,获取 8-k 个黑色方格及k个白色方格.所以,操作一次后,黑色方格的数量“增添了”(8-k)-k=8-2k个,即增添了一个偶数.于是不论如何操作,方格纸上黑色方格数量的奇偶性不变.所以,从原有的32 个黑色方格(偶数个 ),经过操作,最后老是偶数个黑色方格,不会获取恰有一个黑色方格的方格纸.21.大于 3 的质数 p 只能拥有6k+ 1, 6k+ 5 的形式.若p=6k + 1(k ≥ 1),则 p+2=3(2k + 1)不是质数,所以,p =6k + 5(k ≥ 0).于是, p+1=6k + 6,所以, 6| (p+ 1) .22.由题设条件知n=75k=3 ×52 ×k .欲使 n 尽可能地小,可设 n=2α 3β 5γ (,β≥1γ≥,2)且有( α +1)( β+1)(+1)=75γ .于是α+ 1,β+1,γ+ 1 都是奇数,α,β,γ均为偶数.故取γ=2.这时( α+1)( β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20?324?5223.设凳子有x 只,椅子有y 只,由题意得3x+4y+2(x+y) = 43,即5x+6y = 43.所以 x=5, y=3 是独一的非负整数解.进而房间里有8 个人.8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24.原方程可化为7x-8y+2z = 5.令 7x-8y=t , t +2z=5 .易见 x=7t , y=6t 是 7x-8y=t 的一组整数解.所以它的所有整数解是而 t=1, z=2 是 t+ 2z=5 的一组整数解.它的所有整数解是把 t 的表达式代到 x , y 的表达式中,获取原方程的所有整数解是25. (1)第一个地点有8 种选择方法,第二个地点只有7 种选择方法,,由乘法原理,男、女各有8×7×6×5×4×3×2×1= 40320种不一样摆列.又两列间有一相对地点关系,所以共有2×403202 种不一样状况.(2)逐一考虑结对问题.与男甲结对有8 种可能状况,与男乙结对有7 种不一样状况,,且两列可对调,所以共有2×8×7×6×5×4×3×2 ×1=80640种不一样状况.26.万位是 5 的有 4×3×2×1=24( 个 ).万位是 4 的有4×3×2×1=24( 个 ).万位是3,千位只能是 5 或 4,千位是 5 的有 3×2×1=6 个,千位是 4 的有以下 4 个:34215 , 34251, 34512 , 34521.所以,总合有24+24 + 6+4= 58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92 + 84=176( 米 ).设甲火车速度为x 米 /秒,乙火车速度为y 米 /秒.两车相向而行时的速度为x+y ;两车同向而行时的速度为x- y,依题意有解之得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯解之得x=9( 天 ), x +3=12( 天 ).解之得x=16( 海里 /小时 ).经查验, x=16 海里 /小时为所求之原速.30.设甲乙两车间昨年计划达成税利分别为x 万元和y 万元.依题意得解之得故甲车间超额达成税利乙车间超额达成税利所以甲共达成税利400+60=460( 万元 ),乙共达成税利350+35=385( 万元 ).31.设甲乙两种商品的原单价分别为x 元和 y 元,依题意可得由②有0.9x+1.2y=148.5 ,③由①得x=150-y ,代入③有0. 9(150-y) += 148. 5,解之得y=45( 元 ),因此, x=105( 元).32.设昨年每把牙刷x 元,依题意得2×+2(x+1)(1+30 % )=[2x + 3(x+1)]-0.4 ,即 2×+ 2×1.3+2 ×1.3x = 5x +,即 2.4x=2 ×1.68 ,所以x=1.4( 元 ).若 y 为昨年每支牙膏价钱,则y=1.4 +1=2.4( 元 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33.本来可获收益4×400=1600 元.设每件减价x 元,则每件仍可赢利(4-x) 元,此中0< x< 4.因为减价后,每日可卖出(400+200x) 件,若设每日赢利y 元,则y= (4-x)(400+200x)= 200(4-x)(2+x)=200(8 + 2x-x2)=-200(x2-2x+1) + 200+1600=-200(x-1)2+1800 .所以当 x=1 时, y 最大 =1800( 元 ).即每件减价 1 元时,赢利最大,为1800 元,此时比本来多卖出200 件,因此多赢利 200 元.34.设乙用x 分钟追上甲,则甲到被追上的地址应走了(25+x) 分钟,所以甲乙两人走的行程分别是0. 4(25+x) 千米和0. 6x 千米.因为两人走的行程相等,所以0.4(25+x)=0.6x ,解之得x=50 分钟.于是左侧 =0.4(25 + 50)=30( 千米 ),右侧 = 0.6 ×50=30( 千米 ),即乙用50 分钟走了30 千米才能追上甲.但 A ,B 两镇之间只有28 千米.所以,到 B 镇为止,乙追不上甲.35. (1) 设新合金中,含第一种合金x 克(g) ,第二种合金y 克,第三种合金z 克,则依题意有(2) 当 x=0 时,大 500 克.(3) 新合金中,含锰重量为:x?40%+ y?10% +z?50% =400-0.3x ,y=250 ,此时, y 为最小;当z=0 时, y=500 为最大,即250 ≤ y≤ 500,所以在新合金中第二种合金重量y 的范围⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯是:最小250 克,最而 0≤x≤500,所以新合金中锰的重量范围是:最小250 克,最大400 克.。
广东省华师附中实验学校(奥数班)2018-2019七年级数学下册期末模拟试卷详细答案

广东省华师附中实验学校2018-2019学年七年级(下)期末数学模拟试卷(奥数班提高题)一、选择题:(每小题3分,共30分)1.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【思路分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.2.为了了解华师附中实验学校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43%B.50%C.57%D.73%【思路分析】用120≤x<200范围内人数除以总人数即可.【解答】解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为=57%.故选:C.3.如图所示的各组图形中,表示平移关系的是()A.B.C.D.【思路分析】根据平移、旋转、对称的定义即可判断【解答】解:A、表示对称关系.B、表示旋转关系.C、表示旋转关系.D、表示平移关系.故选:D.4.方程组的解为,则a、b分别为()A.a=8,b=﹣2B.a=8,b=2C.a=12,b=2D.a=18,b=8【思路分析】将x与y的值代入方程组即可求出a与b的值.【解答】解:将x=5,y=b代入方程组得:,解得:a=12,b=2,故选:C.5.如图,已知∠AEF=∠EGH,AB∥CD,则下列判断中不正确的是()A.∠BEF=∠EGH B.∠AEF=∠EFD C.AB∥CH D.GH∥CD【思路分析】根据平行线的判定可得出AB∥GH,再根据已知条件得出AB∥GH∥CD,再由平行线的性质进行判定即可.【解答】解:∵∠AEF=∠EGH,∴AB∥GH,∵AB∥CD,∴AB∥GH∥CD,故C、D正确;∴∠AEF=∠EFD,故B正确;故选:A.6.下列四个命题:①若a>b,则a﹣3>b﹣3;②若a>b,则a+c>b+c;③若a>b,则﹣3a<﹣3b;④若a>b,则ac>bc.其中,真命题的个数有()A.3B.2C.1D.0【思路分析】根据不等式的性质对①②③进行判断;利用反例对④进行判断.【解答】解:若a>b,则a﹣3>b﹣3,所以①正确;若a>b,则a+c>b+c,所以②正确;若a>b,则﹣3a<﹣3b,所以③正确;若a>b,若c=0,则ac=bc,所以④错误.故选:A.7.下列各式正确的是()A.B.C.D.【思路分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:=5,故选项A错误,=﹣2,故选项B错误,已经是最简的三次根式,故选项C错误,=±3,故选项D正确,故选:D.8.规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g[f(﹣2,3)]等于()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)【思路分析】根据f(m,n)=(m,﹣n),g(2,1)=(﹣2,﹣1),可得答案.【解答】解:g[f(﹣2,3)]=g[﹣2,﹣3]=(2,3),故D正确,故选:D.9.如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm2【思路分析】根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.【解答】解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ABED的面积=6×(1+3)=24cm2,∴△ABC纸片扫过的面积=6×(2+3)=30cm2,故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【思路分析】首先过点P作PA∥a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【解答】解:过点P作PA∥a,则a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠NPA=180°,∴∠1+∠2+∠3=360°.故选:C.二、填空题:(每小题3分,共18分)11.若是方程3x+y=1的一个解,则9a+3b+2019=.【思路分析】将代入方程3x+y=1得3a+b=1,代入原式=3(3a+b)+2019计算可得.【解答】解:将代入方程3x+y=1,得:3a+b=1,则原式=3(3a+b)+2019=3×1+2019=2022,故答案为:2022.12.在平面直角坐标系中,点A的坐标为(2,﹣3).若线段AB∥x轴,且AB的长为6,则点B的坐标为.【思路分析】根据平行于x轴的直线上的点的纵坐标相同求出点B的纵坐标,再分点B在点A的左边与右边两种情况列式求出点B的横坐标,即可得解.【解答】解:∵点A的坐标为(2,﹣3),线段AB∥x轴,∴点B的纵坐标为﹣3,若点B在点A的左边,则点A的横坐标为2﹣6=﹣4,若点B在点A的右边,则点A的横坐标为2+6=8,∴点B的坐标为(﹣4,﹣3)或(8,﹣3).故答案为:(﹣4,﹣3)或(8,﹣3).13.从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75°.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22°.则∠AOD的度数是.【思路分析】分两种情况:如果∠AOD是锐角,∠AOD=∠COA﹣∠COD;如果∠AOD是钝角,∠AOD=∠COA+∠COD,由平行线的性质求出∠COA,∠COD,从而求出∠AOD的度数.【解答】解:∵AB∥CF,∴∠COA=∠OAB.(两直线平行,内错角相等)∵∠OAB=75°,∴∠COA=75°.∵DE∥CF,∴∠COD=∠ODE.(两直线平行,内错角相等)∵∠ODE=22°,∴∠COD=22°.在图1的情况下,∠AOD=∠COA﹣∠COD=75°﹣22°=53°.在图2的情况下,∠AOD=∠COA+∠COD=75°+22°=97°.∴∠AOD的度数为53°或97°.故答案为:53°或97°.14.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k ﹣的算术平方根为.【思路分析】先用含k的代数式表示x、y,即解关于x,y的方程组,再代入2x+3y=﹣6中可得k的值,最后根据算术平方根求解即可.【解答】解:方程组解得:,把x,y代入二元一次方程2x+3y=6,得:2×7k+3×(﹣2k)=6,解得:k=,则k﹣=,的算术平方根为,故答案为:.15.如图是某报记者在抽样调查了一些市民用于读书、读报等休闲娱乐的时间后,绘制的频率分布直方图(共六组),已知从左往右前五组的频率之和为0.8,如果第六组有12个数,则此次抽样的样本容量是.【思路分析】根据题意可以得到最后一组的频率,然后根据对应的频数即可求得样本容量,本题得以解决.【解答】解:由题意可得,此次抽样的样本容量是:12÷(1﹣0.8)=12÷0.2=60,故答案为:60.16.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为cm2.【思路分析】由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积.【解答】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组解得则一个小长方形的面积=40cm×10cm=400cm2.故答案为:400.三、解答题:(共72分)17.(6分))计算:+﹣.【思路分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=0.3﹣2﹣=﹣2.218.(6分)解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【思路分析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,∴不等式组的解集为﹣1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.19.(7分)为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:(1)本次活动一共调查的学生数为名;(2)补全图一,并求出图二中A区域的圆心角的度数;(3)若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.【思路分析】(1)根据C的人数除以其所占的百分比,求出调查的学生总数即可;(2)用总数减去A、C区域的人数得到B区域的学生数,从而补全图一;再根据百分比=频数÷总数计算可得A所占百分比,再乘以360°,从而求出A区域的圆心角的度数;(3)求出B占的百分比,乘以2800即可得到结果.【解答】解:(1)根据题意得:80÷=800(名),则调查的学生总数为800名.故答案为800;(2)B的人数为:800﹣(480+80)=240(名),A区域的圆心角的度数为×360°=216°,补全统计图,如图所示:(3)根据题意得:×2800=840人.所以估计该校八、九年级学生只愿意就读中等职业技术学校的有840人.20.(7分)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.【思路分析】(1)根据点P、P1的坐标确定出平移规律,再求出C1的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△AOA1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴C(﹣2,0)的对应点C1的坐标为(4,﹣2);(2)△A1B1C1如图所示;(3)△AOA1的面积=6×3﹣×3×3﹣×3×1﹣×6×2,=18﹣﹣﹣6,=18﹣12,=6.21.(7分)某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3个4个1200元第二周 5 个3个1450元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.【思路分析】(1)设A、B两种型号的足球销售单价分别是x元和y元,根据3个A型号4个B型号的足球收入1200元,5个A型号5个B型号的电扇收入1450元,列方程组求解;(2)设A型号足球购进a个,B型号足球购进(60﹣a)个,根据金额不多余8400元,列不等式求解;(3)根据A种型号足球的进价和售价、B种型号足球的进价和售价以及总利润=一个的利润×总数,列出不等式,求出a的值,再根据a为整数,即可得出答案.【解答】(1)解:设A、B两种型号的足球销售单价分别是x元和y元,列出方程组:解得A型号足球单价是200元,B型号足球单价是150元.(2)解:设A型号足球购进a个,B型号足球购进(60﹣a)个,根据题意得:150a+120(60﹣a)≤8400解得a≤40,所以A型号足球最多能采购40个.(3)解:若利润超过2550元,须50a+30(60﹣a)>2550a>37.5,因为a为整数,所以38<a≤40能实现利润超过2550元,有3种采购方案.方案一:A型号38个,B型号22个;方案二:A型号39个,B型号21个;方案三:A型号40个,B型号20个.22.(7分)如图,若∠ADE=∠ABC,BE⊥AC于E,MN⊥AC于N,试判断∠1与∠2的关系,并说明理由.【思路分析】由于∠ADE=∠ABC,可得DE∥BC,那么∠1=∠EBC;要证∠1与∠2的关系,只需证明∠2和∠EBC的关系即可.由于BE和MN同垂直于AC,那么BE与MN 平行,根据平行线的性质可得出同位角∠EBC=∠2,即可证得∠1与∠2的关系.【解答】解:∠1与∠2相等.理由如下:∵∠ADE=∠ABC,∴DE∥BC,∴∠1=∠EBC,∵BE⊥AC于E,MN⊥AC于N,∴BE∥MN,∴∠EBC=∠2,∴∠1=∠2.23.(12分)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为;(Ⅱ)若点P的“5属派生点”P′的坐标为(3,﹣9),求点P的坐标;(Ⅲ)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.【思路分析】(Ⅰ)根据“k属派生点”计算可得;(Ⅱ)设点P的坐标为(x、y),根据“k属派生点”定义及P′的坐标列出关于x、y 的方程组,解之可得;(Ⅲ)先得出点P′的坐标为(a,ka),由线段PP′的长度为线段OP长度的2倍列出方程,解之可得.【解答】解:(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为(﹣2+3×3,﹣2×3+3),即(7,﹣3),故答案为:(7,﹣3);(Ⅱ)设P(x,y),依题意,得方程组:,解得,∴点P(﹣2,1).(Ⅲ)∵点P(a,b)在x轴的正半轴上,∴b=0,a>0.∴点P的坐标为(a,0),点P′的坐标为(a,ka),∴线段PP′的长为点P′到x轴距离为|ka|,∵P在x轴正半轴,线段OP的长为a,根据题意,有|PP'|=2|OP|,∴|ka|=2a,∵a>0,∴|k|=2.从而k=±2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2014-2015学年度期末模拟考卷试卷副标题1.答题前填写好自己的、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题(题型注释),在图中标记的所有角中,与∠1互余的角有()A.2个B.4个C.5个D.6个2.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P 的坐标为(A)(1,4)(B)(5,0)(C)(6,4)(D)(8,3)3.如图,∠A0B的两边0A,0B均为平面反光镜,∠A0B=40°.在射线0B上有一点P,从P点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则∠QPB的度数是()A .60°B .80°C .100°D .120°4.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为A .53°B .55°C .57°D .60°5.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以l 个单位,秒匀速运动,物体乙按顺时针方向以2个单位,秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-l ) 6.若x ,y 满足方程组⎩⎨⎧=+=+5373y x y x .则x-y 的值等于A .-lB .1C .2D .37.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…根据这个规律探索可得,第100个点的坐标为( ).A .(14,0)B .(14,-1)C .(14,1)D .(14,2)8.某校初二(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:2 3表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( ) A .2723100x y x y +=⎧⎨+=⎩ B .272366x y x y +=⎧⎨+=⎩ C .273266x y x y +=⎧⎨+=⎩ D .2732100x y x y +=⎧⎨+=⎩9.若点P是第二象限的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)10.一学员练习驾驶汽车,两次拐弯后行驶的路线与原来的路线平行,这两次拐弯角度是()不可能...A.第一次向左拐40°,第二次向右拐40°B.第一次向右拐40°,第二次向左拐140°C.第一次向右拐40°,第二次向右拐140°D.第一次向左拐40°,第二次向左拐140°11.如图1,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②错角相等,两直线平行;③同旁角互补,两直线平行;④平面垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③12.如图,以数轴的单位长度线段为边作一个正方形,以表示数l的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是( )ABCD第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(题型注释)EF 对折,若∠1=500,则∠AEF 的度数等于 。
14.如图,在平面直角坐标系xOy 中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…根据以上规律,请直接写出OM 2016的长度为 .15.已知24221x y k x y k 且-1<x -y <0,则k 的取值围为 .16.如图,弹性小球从点P (0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,…,第n 次碰到矩形的边时的点为P n ,则点P 3的坐标是 ;点P 2014的坐标是 .17.已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解共有5个,则a 的取值围为_________。
三、计算题(题型注释)18.⎩⎨⎧-=-=+123832y x y x四、解答题(题型注释)某工厂计划生产A 、B 两种产品共60件,需购买甲、乙两种材料.生产一件A 产品需甲种材料4千克,乙种材料1千克;生产一件B 产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B 产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A 产品需加工费40元,若生产一件B 产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低....?请直接写出方案。
20.(本题满分8分)已知:如图,AD ⊥BC ,EF ⊥BC ,∠4=∠C .求证:∠1=∠2.21.(本题满分8分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :50分;B :49-45分;C :44-40分;D :39-30分;E :29-0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为________,b的值为______,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段?(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?22.第一中学组织七年级部分学生和老师到乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.23.(本题12分)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?直接写出猜想结论,不需说明理由.160件,其进价和售价如下表:1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.25.在正方形网格中,每个小正方形的边长均为1个单位长度.ABC ∆三个顶点的位置如图所示,将点A 平移到1A ,点B 平移到1B ,点C 平移到1C . (1)请画出平移后的111A B C ∆,并写出点B 经过怎样的平移得到1B ? (2) 111A B C ∆的面积是____________.(3)连接11,.BB CC 则这两条线段的数量关系是 __________.五、判断题(题型注释). . . .. 资料. .. .参考答案1.B . 2.A . 3.B . 4. 5.B . 6.A . 7.D 8.B . 9.C 10.B 11.C 12.B13.115° 14.1008215k <1. 16);(5,0) 17.-4<a ≤-3 18.⎩⎨⎧==21y x19.(1)、甲种材料每千克25元, 乙种材料每千克35元;(2)、A 种21件,B 种39件;A 种20件,B 种40件;A 种19件,B 种41件;A 种18件,B 种42件;(3)、A 种21件,B 种39件成本最低. 20.证明见试题解析. 21.(1)60;0.15;统计图略;(2)C ;(3)8352. 22.(1)3x-5;(2)145;(3)175. 23.(1)AB//CD ,理由见解析;∠∠MCD=90°;理由见解析;①∠BAC=∠PQC+∠QPC ;②∠PQC+∠QPC+∠BAC=180°. 24.(1)甲种100件,乙种60件;(2)有两种构货方案.方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.25.(1)画图见解析,把点B 先向下平移4个单位长度,再向左平移4个单位长度即得到1B . (2)4;(3)相等.。