一种新的无线电波传播路径损耗模型
无线电传输模型简介

无线电传输模型简介翻译&整理:Lyra参考资料:《爱立信:无线电波传输指南》无线电波在空间的传输受限于作用距离之外,很大程度上还取决于传输环境。
研究显示,不同的传输环境(如:城区、郊区、农村等),无线电波的传输效果不尽相同。
下面简要描述常用的无线电传输信道模型。
1) 自由空间传输模型该模型假设发射天线和接收天线相隔很远,且周围没有其他物体,则传输损耗为:4[]20log bf d L dB πλ⎛⎫=⋅ ⎪⎝⎭,(m)(m)d λ距离,单位、波长,单位上式可以改写为:32.420log 20log bf L d f =++,[],[]d km f MHz2) 平坦大地传输模型考虑地面绝对平坦,且b m h h d λ<<,20log 4b bf b m d L L h h λπ⎛⎫=+ ⎪⎝⎭,其中(m)(m)b m h h 基站天线高度,、移动站天线高度,该模型适于简单估计传输路径中无阻隔,且距离不大的传输损耗。
3) 双斜线模型图 1双斜线模型实际测量显示,信号强度与距离(对数)有上图所示关系:在靠近基站附近,斜率接近自由空间衰减模型,20dB/十倍距离;从某个距离brk d 开始,斜率开始接近平坦大地衰减模型,40dB/十倍距离。
brk d =其中,b m b m h h h h ∑=-∆=- 4) Egli 模型信号衰减程度和信号频率相关,在考虑“地形因子”的情况下,衰减为:()40log 20log 20log 40b b m f L d h h ⎛⎫=-+ ⎪⎝⎭,[]f MHz该模型适用于40MHz 以上的情况,且模型精度较低,仅在没有更多地形信息可利用的情况下可使用该模型。
5) Okumura-Hata 模型上述模型都只是简单的模型,只能用于链路损耗的粗测。
实际经验告诉我们: ● 路径损耗随着距离和频率升高而增加;● 路径损耗随着基站天线和移动站天线升高而降低;● 路径损耗受小区类型、衍射、天气、一年中的时间、障碍物类型等影响。
无线信号传播模型简介

无线信号传播模型简介1概述无线电波信道要成为稳定而高速的通信系统的媒介要面临很多严峻的挑战。
它不仅容易受到噪声、干扰、阻塞(blockage)和多径的影响,而且由于用户的移动,这些信道阻碍因素随时间而随机变化。
在这里,由于路径损耗和信号阻塞,我们试图找出接收信号强度随距离而变化的规律。
路径损耗(path loss)——被定义成接收功率和发射功率之差——是发射机的辐射和信道传播效应引起的功率损耗引起的。
路径损耗模型假设在相同的发射——接收距离下,路径损耗是相同的。
信号阻塞(signal blockage)是接收机和发射机之间吸收功率的障碍物引起的。
路径损耗引起的变化只有距离改变很大(100—1000米)时才明显;而信号阻塞(signal blockage)引起的变化对距离要敏感得多,变化的尺度与障碍物体的尺寸成比例(室外环境是10-100米,室内环境要小一些)。
由于路径损耗和信号阻塞引起的变化都是在较大的距离变化下才比较明显,它们有时候被称为大尺度传播效应。
而由于大量多径信号分量相互之间的相加(constructive)干涉和相消(destructive)干涉引起的信号强度变化在很短的距离下——接近信号的波长——就很明显,因此这种改变被称为小尺度传播效应。
下图是综合了路径损耗、阻塞和多径三种效应后,接收功率和发射功率的比值随距离而变化的假设图。
在简单介绍了信号模型后,我们先从最简单的信号传播模型讲起——自由空间损耗。
两点之间既没有衰减又没有反射的信号传播遵循自由空间传播规律。
接着我们介绍射线追踪(ray tracing)传播模型。
这些模型都是用来近似模拟可以由麦克斯韦方程组严格计算的电磁波传播模型。
当信号的多径分量比较少时,这些模型的准确度很高。
射线追踪(ray tracing)传播模型受信号传播所在区域的几何形状和导电特性的影响很大。
我们还列出了一些更简化的、参数更少的、主要应用于实际网络的工程分析和无需复杂计算的网络设计的通用传播模型。
无线通信技术-第三章

16
3.4 三种基本传播机制
• 反射:当电磁波遇到比波长大得多的物体 时发生反射,如地球表面、墙面等;
• 绕射:当接收机和发射机之间的无线路径 被尖锐的边缘阻拦时发生绕射,由阻挡表 面产生的二次波散布于空间,甚至到达阻 挡体的背面,导致波围绕阻挡体产生弯曲;
• 散射:当波穿行的介质中存在小于波长的 物体并单位体积内阻挡体的个数非常巨大 时,将发生散射,如树叶、街道标志等;
2
远场电场辐射 部分的幅度
13
Pr d Pd Ae
2 PG G t t r
4 d
2
Gr 2 Ae 4
图3-4 在自由空间中,从一个 全向点源发出的能流密度情况
14
如果接收天线建模成接收机的一个匹配阻抗 负载,那么接收天线将会感应出一个均方根 电压进入接收机,它是天线中开路电压的一 半(没有负载时,均方根电压等于开路电 压)。接收功率为:
G
4 Ae
2
c 2 c f c
路径损耗:表示信号的衰减,定义为有效
发射功率与接收功率之间的比值,单dB 10log 10log t r 4 2 d 2 Pr
7
路径损耗也可以不包括天线增益,即假设天 线具有单位增益:
23
2. 布儒斯特角
P
r sini
r cos2i
r sini r cos2i
电磁波投射到介质分界面而不发生反射时的
角度,只发生在水平极化时,其反射系数为 0。 当第一介质为自由空间,第二介质相对介电 常数为εr时,布儒斯特角满足:
sin B
1
r 1
r sini r cos 2 i r cos 2i r cos 2i
无线传播路径损耗

给定频率的无线制式,无线传播损耗主要是随距离变化的路径损耗(Path Loss),影响该路径损耗的三种最基本的传播机制为反射、绕射和散射,即有反射损耗Re flection Loss)、绕射损耗(Scattered Loss)、地物损耗(Clutter Loss)。
如果电磁波穿过墙体、车体、树木等等障碍物,还需考虑穿透损耗(Penetration Loss)。
如果将手机贴近的人体使用,还需考虑人体损耗(Body Loss)等等。
路径损耗的环境因子系数n 一般随传播环境不同而不同,一般密集城区取4〜5,普通城区取3〜4,郊区取2.5〜3。
在实际无线环境中,天线的高度可以影响路径损耗。
一般发射天线或接收天线的高度增加一倍,可以补偿6dB的传播损耗。
反射损耗随反射表面不同而不同,水面的反射损耗在0〜1dB,麦田的反射损耗在2〜4dB,城市、山体的反射损耗可达14dB〜20dB.绕射波在绕射点四处扩散,扩散到除障碍物以外的所有方向,不同情况损耗差别较大。
地物损耗主要由于地表散射造成,损耗大小视具体情况而定。
穿透损耗和建筑物的材质以及电磁波的入射角关系较大,一般情况下隔墙阻挡取5〜20dB,楼层阻挡每层20dB,厚玻璃6〜10dB,火车车厢的穿透损耗为15〜30dB,电梯的穿透损耗为30dB左右。
人体损耗一般取3个dB,也就是无线电波经过人体,一半的能量被人体吸收。
HUAWEI室内分布系统传播模壁■华为室内传播模型华为以ITU模型、Keencin-Motley模型为参考,结合大量的实践经验和数据总结,提出华为室内覆盖传播模型:PL(d) 20 r|:log( /) + 10 :|:n r|: log( d)- 13 dB+ !■/『)..•f:持率.单位MHz;n :室内路径损耗因子;d:移动台与天线之间的距离,单位为m ;招:慢衰落余童,取值与覆盖概率要求和室内慢衰落标准差有关;蜘=£耳:Pi,第画隔墙的穿透损耗;n,隔墙数量;。
自由空间路径损耗模型

自由空间路径损耗模型一、引言自由空间路径损耗模型是无线通信领域中常用的一种模型,用于描述无线信号在自由空间中传播过程中的信号损耗情况。
该模型基于电磁波的传播特性和自由空间中的阻抗特性,通过计算距离和频率等参数,可以估计信号在传播过程中的损耗情况。
本文将介绍自由空间路径损耗模型的原理、计算公式以及应用场景。
二、自由空间路径损耗模型的原理自由空间路径损耗模型是基于电磁波在自由空间中传播的特性来建立的。
根据电磁波传播的规律,信号在自由空间中的损耗主要取决于传播距离和频率。
在传播距离相同的情况下,频率越高,损耗越大。
这是因为高频信号的波长较短,更容易受到自由空间中的散射、反射和衰减等因素的影响。
三、自由空间路径损耗模型的计算公式自由空间路径损耗模型的计算公式如下:路径损耗(dB) = 20log10(d) + 20log10(f) - 147.55其中,路径损耗是以分贝(dB)为单位的,表示信号在传播过程中的损耗情况;d是传播距离,单位为米(m);f是信号的频率,单位为赫兹(Hz)。
四、自由空间路径损耗模型的应用场景自由空间路径损耗模型主要应用于无线通信系统的规划和设计中。
通过该模型,可以估计信号在不同距离和频率下的损耗情况,从而确定无线设备的传输距离和功率要求。
在无线通信系统的建设过程中,合理地选择信号的频率和功率,可以有效地提高信号的覆盖范围和质量。
自由空间路径损耗模型还可以应用于无线信号强度的预测和建模。
通过测量不同距离和频率下的信号强度,可以建立信号强度的模型,为无线定位、无线室内覆盖等应用提供参考。
五、总结自由空间路径损耗模型是无线通信领域中常用的一种模型,用于描述无线信号在自由空间中传播过程中的信号损耗情况。
该模型基于电磁波的传播特性和自由空间中的阻抗特性,通过计算距离和频率等参数,可以估计信号在传播过程中的损耗情况。
自由空间路径损耗模型在无线通信系统的规划和设计中起着重要的作用,可以优化无线设备的传输距离和功率要求。
5G无线网络中毫米波通信的路径损耗预测模型

第30卷第2期2020年6月信阳农林学院学报Journal o£Xinyang Agriculture and Forestry UniversityVol.30No.2Jun.20205G无线网络中毫米波通信的路径损耗预测模型韩静(山西工程职业学院计算机信息系,山西太原030032)摘要:在5G通信中,毫米波信道建模是一项尤为关键的技术。
为了充分了解毫米波的传输特征,首先在室外点对点网络和车联网环境下分别测量了60GHz和73GHz的信道。
然后,通过在自由空间模型和斯坦福大学信道模型中引入校正因子,建立能够准确预测60GHz毫米波路径损耗的改进模型。
其次,将在发射器和接收器之间来自多个天线指向方向的信号进行合并,提出了73GHz毫米波波束合并的路径损耗模型。
实验结果表明,本文的路径损耗预测模型能够较准确地描述60GHz和73GHz毫米波的路径损耗情况。
关键词:5G;毫米波;路径损耗模型中图分类号:TP391文献标识码:A文章编号:2095-8978(2020)02-0110-04多输入多输出(Multiple—Input Multiple—Output,MIM0)m等创新技术以及毫米波(mmWave)频段中的新频谱分配有助于缓解当前频谱不足的问题闪,并且推动第五代(5G)无线通信的发展。
为了进行准确而可靠的5G系统设计,有必要全面了解毫米波频率上的传播通道特性。
新兴的5G通信系统采用了革命性新技术、新频谱和新架构概念。
因此,设计可靠的信道通道模型以协助工程师进行设计显得尤为重要。
与低于6GHz的频率相比,毫米波在发射天线的第一米传播中会有更高的自由空间路径损耗。
而在链路的两端使用高增益天线可以克服路径损耗,还可以使用波束成形和波束合并技术来提高链路质量并消除干扰区_5]。
本文针对60GHz和73GHz频段的毫米波,建立了能够准确描述路径损耗的模型。
1改进自由空间和斯坦福大学信道模型对于3G和4G蜂窝网络,可以使用IEEE802.16e系统的斯坦福大学信道模型来估计在微波频带中工作于2GHz以上的路径损耗冏。
无线电波的传播模型分析

无线电波的传播模型分析无线电通信是人类社会发展进程中的一项重要成就,也是21世纪信息科学的重要组成部分,使用了无线电波传播技术。
无线电波是以电磁场的形式传输的,具有广泛的覆盖范围,便捷性和实时性等诸多优点。
本文将从无线电波的传播模型分析来介绍无线电通信中的传播特性和影响因素。
一、无线电波的传播模型无线电波作为电磁波,传播模型主要分为两种类型:地面波和空间波。
1.地面波地面波也叫地波,是在地球表面与大气继电器的相互作用下产生的,主要依靠短波的反射和散射。
它的传播方式具有一定的局限性,主要适用于频率较低的波段,例如中、低频的AM广播。
由于地波的传播距离有限,因此它的应用范围受到限制。
2.空间波空间波是指在大气层高度以上发送无线电信号产生的波,主要依靠大气继电器的传播方式。
空间波分为直接波、反射波和绕射波。
其中,直接波是指在天线发射的无线电波沿着一条直线传播到达接收方,主要应用于近距离的通信;反射波是指无线电波在大气层中反射,从而到达接收方;绕射波则是指无线电波在距离障碍物一定距离处发生弯曲而传输到接收方。
由于空间波传播距离远,因此被广泛应用于广播、卫星通信和移动通信等领域。
二、无线电波传播特性的影响因素1.频率无线电波向外辐射是以电磁场的形式进行的,不同频率的波对传输距离、传输损耗等有着直接的影响。
频率低的电磁波,因其波长长,具有较好的穿透性,不易受到障碍物的阻碍,有利于传播距离较远的环境;高频无线电波因其波长短,具有更弱的穿透性,主要适用于短距离传输。
根据频率的不同,无线电波传输的特性也会有所区别。
2.天线高度和功率天线是信息传输的重要载体,其高度和功率决定了无线电波的传输效果。
天线高度可以影响电波的传播距离和传输覆盖面积,高天线通信的距离更远,更通畅;天线功率的大小则决定了无线电信号传输的能力,功率越大,传输的距离越远。
在实际应用中,高度和功率的大小应该结合实际情况进行权衡,以达到最佳效果。
3.障碍物和地形无线电波的传输受到障碍物和地形的影响。
电波传播损耗预测模型

电波传播损耗预测模型1、电波传播损耗预测目的掌握基站周围所有地点处接收信号的平均强度及变化特点,以便为网络覆盖的研究以及整个网络设计提供基础。
2、方法根据测试数据分析归纳出基于不同环境的经验模型,在此基础上对模型进行校正,使其更加接近实际,更准确3、确定传播环境的主要因素(1)自然地形(高山、丘陵、平原、水域等)(2)人工建筑的数量、高度、分布和材料特性(3)该地区的植被特征(4)天气状况(5)自然和人为的电磁噪声状况(6)系统的工作频率和移动台运动等因素4、常用的几种室外电波传播损耗预测模型(1)Hata模型广泛使用的一种适用于宏蜂窝的中值路径损耗预测的传播模型。
根据应用频率的不同,分为Okumura-Hata 模型和COST 231 Hata模型。
(2)CCIR模型;(3)LEE模型;(4)COST 231 Walfisch-Ikegami 模型。
一、Okumura-Hata模型1、适用范围:频率范围f:150-1500MHz基站天线高度Hb:30-200m移动台高度Hm:1-10m距离d:1-20km2、路径损耗计算的经验公式式中—工作频率(MHz);—基站天线有效高度(m ),定义为基站天线实际海拔高度与基站沿传播方向实际距离内的平均地面海波高度之差;—移动台天线有效高度(m),定义为移动台天线高出地表的高度;d —基站天线和移动台天线之间的水平距离(km);—有效天线修正因子,是覆盖区大小的函数;—小区类型校正因子—地形校正因子,反映一些重要的地形环境因素对路径损耗的影响二、COST 231-Hata模型1、适用范围:频率范围f:1500-2000MHz基站天线高度Hb:30-200m移动台高度Hm:1-10m距离d:1-20km2、路径损耗计算的经验公式式中—大城市中心校正因子(1)COST-231Hata模型适用于1500-2000MHz,在1km以内预测不准。
Okumura-Hata适用于1500MHz以下的大于1公里范围的宏小区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万方数据
万方数据
万方数据
万方数据
2008年第1期蒋铁珍:分布式雷达探测巡航导弹的信号融合研究47
发射与接收站数增加到10时,检测性能提高基本上趋于平稳,可以看出发射接收站数不是越多检测性能越好。
图6PDVSM&N
相干积累分布式雷达的检测性能效果会更好,但相对于系统实现来说,相干处理较复杂,还有待进一步研究。
总体来看,采用分布式雷达利用空间分集的特性,检测性能好,能够很好地检测巡航导弹之类的隐身目标。
4结语
综合本文对分布式雷达的分析,可以看出分布式雷达通过角度分集、空间分集以及频率分集等技术大大提高了一般防空雷达的灵敏度、分辨力等问题,同时由于分布式雷达从多个角度对防空隐身目标进行探测,能够很好的实现目标识别,辨别敌我真假目标。
本文除了对分布式雷达的性能进行了简单的分析外,对于分布式雷达的信号级融合只是从非相干层次的目标检测级进行了融合,要想充分的了解分布式雷达的优缺点,还有大量的工作需要做,不过可以看出分布式雷达在巡航导弹一类隐身目标检测方面有着很大的应用前景。
参考文献:
[1]张东洋,张鹏,王凤山.巡航导弹防御作战传感器组网优化研究[J].飞航防御,2007(2):56-58.
[2]HANLEE.SomeNewAspectsofLow-elevation[z]//RadarCoverage.Radar-85Conf.Paper.
[3]杨振起,张永顺,骆永军.双(多)基地雷达系统[M].北京:国防工业出版社,1998.
[4]FARINAA,STUDERFA.DataProcessingforNettedRadarSystems[M]//RadarDataProcessing,V.2-Ad-
vancedTopicsandApplications。
HertfordshireUK:Re·
searchStudiesPressLTD.,1986.
[5]中航雷达与电子设备研究所.雷达系统[M].北京:国防工业出版社,2005.
[6]BAKERCJ,HUMEAL.NettedRadarSensing[J].AerospaceandElectronicSystems,IEEE,2003,18(2):
3—6.
[7]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
[8]丁鹭飞,耿富录,雷达原理[M].西安:西安电子科技大学出版社,1984.
[9]MERRILLlSKOLNIK.雷达系统导论[M].左群声,徐国良,马林,等,译.北京:电子工业出版社,2006.
[10]何友,关键,彭应宁.雷达自动检测与恒虚警处理[M].北京:清华大学出版社,1999.
作者简介
蒋铁珍(1977一),女,江苏南通人,中
国电子科技集团公司第14研究所博士后
科研工作站在站博士后,中国科学院上海
微系统所博士,目前主要研究方向为雷
达系统及雷达信号处理。
¨◆…1◆¨¨◆川I◆川I◆¨¨◆¨¨◆…I◆川I◆川I◆…l◆川I◆川I◆川l◆川l◆川I◆…I◆¨¨◆川I◆川I◆川I◆川f◆川I◆川J◆…l◆川I◆川I◆…◆…◆川I◆川I◆川I◆¨¨◆…I◆川I◆川I◆…I◆¨¨◆…◆川I◆…I◆川I◆…I◆川l◆川I◆川I◆II
(上接第43页)ChenYif抽(1980一),男,福建人,博士,研究方向为无
线信道建模、超宽带无线技术;
作者简介
扈罗全(1972一),男,江苏宜兴人,
博士,苏州出入境检验检疫局信息产品检
测中心电磁兼容实验室主任,已在包括IEEE/IET学报在内的国内外各类学术刊物和学术会议上发表论文60余篇。
SCI/EL/ISrI'P收录20余篇,研究方向为无线通信与电磁兼容,随机模型;
陆全荣(1965一),男,江苏苏州人,工程师,实验室主任,研究方向为电子产品
的检测与测量。
万方数据
一种新的无线电波传播路径损耗模型
作者:扈罗全, CHEN Yifan, 陆全荣, HU Luo-quan, CHEN Yifan, LU Quan-rong
作者单位:扈罗全,陆全荣,HU Luo-quan,LU Quan-rong(苏州出入境检验检疫局,江苏苏州,215128),CHEN Yifan,CHEN Yifan(格林威治大学工程学院,英国伦敦,SE10)
刊名:
中国电子科学研究院学报
英文刊名:JOURNAL OF CHINA ACADEWY OF ELECTRONICS AND INFORMATION TECHNOLOGY
年,卷(期):2008,3(1)
1.HU L Q;YU H;CHEN Y Path Loss Models Based on Stochastic Rays[外文期刊] 2007(03)
2.扈罗全基于随机射线的无线信道传播特性研究 2007
3.RAPPAPORT T S Wireless Communications:Principles and Practice 1996
4.张业荣;竺南直;程勇蜂窝移动通信网络规划与优化 2003
5.BERTONI H L Radio Propagation for Modern Wireless Systems 1999
6.BROWN M G;VIECHNICKI J Stochastic Ray Theory for Long-range Sound Propagation in Deep Ocean Environments[外文期刊] 1998(04)
7.颜一鸣原子核物理学 1990
8.李既平;高新民有线通信传输工程 1988
9.FRANCESCHETTI M;BRUCK J;SCHULMAN L A Random Walk Model of Wave Propagation[外文期刊] 2004(05)
10.JANASWAMY R An Indoor Pathloss Model at 60 Ghz Based on Transport Theory[外文期刊] 2006(0)
11.DEVASIRVATHAM D M J;BANERJEE C;KRAIN M J Multi-frequency Radiowave Propagation Measurements in the Portable Radio Environment[外文会议] 1990
12.HU L Q;ZHU H No-wave Approaches and Its Application to Received Power of Radio Wave Propagation 2006
13.FRANCESCHETTI G;MARANO S;PALMIER/F Propagation without Wave Equation,toward an Urban Area Model [外文期刊] 1999(09)
14.ISHIMARU A;黄润恒随机介质中波的传播与散射 1986
15.ULLMO D;BARANGER H U Wireless Propagation in Buildings:A Statistical Scattering Approach[外文期刊] 1999(09)
本文链接:/Periodical_dzkxjspl200801008.aspx。