概率论与数理统计书269页PPT
合集下载
概率论与数理统计课件ppt

简化数据结构,解释变量间的关系。
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间
概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
概率论与数理统计课件(最新完整版)

“骰子出现2点”
图示 A与B互斥
A B
说明 当AB= 时,可将AB记为“直和”形式 A+B. 任意事件A与不可能事件为互斥.
5. 事件的差 事件 “A 出现而 B 不出现”,称为事件 A 与
B 的差. 记作 A- B(或 AB
)
实例 “长度合格但直径不合格”是“长度合格”
与“直径合格”的差.
实例4 “从一批含有正
其结果可能为:
品和次品的产品中任意抽
取一个产品”.
正品 、次品.
实例5 “过马路交叉口时,
可能遇上各种颜色的交通
指挥灯”.
实例6 “一只灯泡的寿命” 可长可 短. 随机现象的特征: 条件不能完全决定结果
说明 1. 随机现象揭示了条件和结果之间的非确定性联
系 , 其数量关系无法用函数加以描述.
1. 包含关系 若事件 A 出现, 必然导致 B 出现 , 则称事件 B 包含事件 A,记作 B A 或 A B. 实例 “长度不合格” 必然导致 “产品不合 格” 所以“产品不合格” 包含“长度不合格”. 图示 B 包含 A.
A
B
若事件A包含事件B,而且事件B包含事件A, 则称事 件A与事件B相等,记作 A=B. 2. 事件的和(并) “ 二 事 件A, B至 少 发 生 一 个 ” 也 是 个 一事件 , 称 为 事 件A 与 事 件 B的和事件.记 作A B, 显 然 A B {e | e A或e B}. 实例 某种产品的合格与否是由该产品的长度与 直径是否合格所决定,因此 “产品不合格”是“长度 不合格”与“直径不合格”的并. 图示事件 A 与 B 的并.
(2) ABC or AB C;
( 3) ABC ;
概率论与数理统计完整ppt课件

化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计ppt课件

P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率.
二. 性质: 条件概率符合概率定义中的三个条件!! 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,相 则容
P( Bi |A) P(Bi |A.)
注 当A=S时!! P【B|S】=P【B】!! 条件概率 化为无条件概率!! 因此无条件概率可看成条
计算件条概件率概. 率有两种方法:
1. 公式法: 先计P算(A)P, (AB然 ), 后按公式计算 P(B| A) P(AB.) P(A)
二. 缩减样本空间法: 在A发生的前提下!! 确定B的缩减样本空间!!
(3) 对于两两互斥个 的事 可 A件 1,列 A2, 多, P(A1A2)P(A1)P(A2)
三. 统计定义:
【一】 频率
一. 在相同的条件下!! 共进行了n次试验!!事件A发生的
次数nA!! 称为A的频数!! nA/n称为事件A发生的频率!! 记 为fn【A】.
2. 频率的基本性质:
(1) 0f( n A) 1; (非负性)
二.概率的性质: 性1质 . P()0.
性质 2. 若A1,A2,,An是两两互不相容, 则 P(A1A2 An)
P(A1)P(A2) P(An).(有 限 可 )
性3质 . 若 AB,则有 P(BA)P(B)P(A);
P (B )P (A ).
一般地有: P【B-A】=P【B】-P【AB】.
性4质 .对任一 A, 事 P(A)件 1.
【一】 样本空间中的元素只有有限个!!
【二】 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子!!观察出现的点数.
为在事件A发生的条件下事件B发生的条件概率.
二. 性质: 条件概率符合概率定义中的三个条件!! 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,相 则容
P( Bi |A) P(Bi |A.)
注 当A=S时!! P【B|S】=P【B】!! 条件概率 化为无条件概率!! 因此无条件概率可看成条
计算件条概件率概. 率有两种方法:
1. 公式法: 先计P算(A)P, (AB然 ), 后按公式计算 P(B| A) P(AB.) P(A)
二. 缩减样本空间法: 在A发生的前提下!! 确定B的缩减样本空间!!
(3) 对于两两互斥个 的事 可 A件 1,列 A2, 多, P(A1A2)P(A1)P(A2)
三. 统计定义:
【一】 频率
一. 在相同的条件下!! 共进行了n次试验!!事件A发生的
次数nA!! 称为A的频数!! nA/n称为事件A发生的频率!! 记 为fn【A】.
2. 频率的基本性质:
(1) 0f( n A) 1; (非负性)
二.概率的性质: 性1质 . P()0.
性质 2. 若A1,A2,,An是两两互不相容, 则 P(A1A2 An)
P(A1)P(A2) P(An).(有 限 可 )
性3质 . 若 AB,则有 P(BA)P(B)P(A);
P (B )P (A ).
一般地有: P【B-A】=P【B】-P【AB】.
性4质 .对任一 A, 事 P(A)件 1.
【一】 样本空间中的元素只有有限个!!
【二】 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子!!观察出现的点数.
概率论与数理统计数学PPT课件

i 1
i 1
且 fn (A) 随n的增大渐趋稳定,记稳定值为p.
13
(二) 概率
定义1:fn ( A)的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 0 P( A) 1
2。 P(S) 1
k
k
3。 若A1, A2,…,Ak两两互不相容,则 P( Ai ) P( Ai )
3
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
①,②,…,n
Ak
)
a n
a
a},Ak
b
{ ①,②,…,a
}
无关,且与 a, b都无关,若a =0呢?对吗?
为什么?
不 是 等 可 能 概
记第k次摸到的球的颜色为一样本点:
型
S={红色,白色},Ak {红色} P( Ak ) 1 2 22
例7:某接待站在某一周曾接待12次来访,已知所有这12次 接待都是在周二和周四进行的,问是否可以推断接待时间是 有规定的?
----------与k无关
21
解2:
视哪几次摸到红球为一样本点
, , ,, 12 k n
总样本点数为
Cna
,每点出现的概率相等,而其中有
C a1 n 1
个
样本点使 Ak
发生,
P( Ak )
概率论与数理统计书ppt课件

条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。
概率论与数理统计教程ppt课件

1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
•
ห้องสมุดไป่ตู้
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
谢谢!
概率论与数理统计书
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
•
ห้องสมุดไป่ตู้
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
谢谢!
概率论与数理统计书
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯