系统辨识的基本概念

合集下载

离散控制系统的系统辨识技术

离散控制系统的系统辨识技术

离散控制系统的系统辨识技术离散控制系统的系统辨识技术是在离散时间下对系统进行建模和参数估计的一种方法。

通过系统辨识技术,我们可以获取到系统的数学模型和参数,从而实现对系统的控制。

本文将介绍离散控制系统的系统辨识技术及其应用。

一、系统辨识的基本概念系统辨识是指通过实验和数据分析,推导出系统的数学模型和参数的过程。

在离散控制系统中,由于系统的输入和输出变量是按照离散时间采样得到的,因此需要采用特定的辨识方法进行处理。

常见的离散控制系统的系统辨识方法包括:参数辨识、经验模型辨识和神经网络辨识等。

参数辨识方法通过对系统的输入-输出数据进行数学建模和参数估计,得到系统的差分方程或状态空间模型。

经验模型辨识方法则利用系统的输入-输出数据建立经验模型,这种方法不需要对系统做具体的建模,适用于复杂系统。

而神经网络辨识方法是通过训练神经网络模型来拟合系统的输入-输出数据,从而得到系统的模型和参数。

二、离散控制系统的参数辨识方法参数辨识是离散控制系统中常用的系统辨识方法之一。

参数辨识方法假设系统的数学模型已知,但其中的参数未知或者不准确,通过实验数据对这些参数进行估计。

在实际应用中,参数辨识方法可以分为两类:基于频域的辨识方法和基于时域的辨识方法。

基于频域的辨识方法主要利用系统的频率响应函数来识别参数,例如最小二乘法、极大似然法等。

而基于时域的辨识方法则是利用系统的时序数据来进行参数估计,例如递推最小二乘法、扩展卡尔曼滤波法等。

三、离散控制系统的经验模型辨识方法经验模型辨识方法是一种不需要假设系统的具体数学模型的系统辨识方法。

该方法通过将系统的输入-输出数据进行数据处理和分析,从中提取系统的特征,建立经验模型。

常见的经验模型辨识方法包括:自回归移动平均模型(ARMA)、自回归滑动平均模型(ARIMA)和动态线性模型(DLM)等。

这些方法都是通过对系统的输入-输出数据进行统计分析和数据建模,从中获得系统的经验模型参数。

系统辨识(No.1)

系统辨识(No.1)

5.
确定离线辨识还是在线辨识 离线辨识是在所有实验数据采集完了之后才计算 结果。但在基于辨识的自适应控制系统中,辨识必须 是在线的。

第二步:选择模型结构(模型结构辨识)
模型结构M是参数空间的一个连通开子集DM 到 模型类M*的一个可微映射。
M :R
* 5
M
*
b1 s b 0 M G s : G s 2 a 2 s a1 s a 0 D M p : p a 0 , a 1 , a 2 , b1 , b 2




第三步:参数估计 第四步:模型验证
输入信号u(k)作用下,模型和实物输出比较。 检验残差
系统辨识框图
辨识目的与 验前知识 辨识方案选择
被辨识系统的输 入输出观测信息 结构参数与模 型参数的确定
模型验证
不满足
最终模型
第二章 经典辨识方法
一.经典辨识方法原则上适应任意复杂的过程
二. 对过程施加特定的实验信号,同时测定过程的输出, 可以求得实际过程的非参数模型。
4.


渊源


根轨迹法和频率域法为代表的经典控制理论已不能胜 任将控制技术提到更高的水平的要求。 状态空间法、动态规划以及极大值原理为代表的现代 控制理论发展的需要。 数字计算机的广泛使用,为辨识系统所需进行的计算 提供了有效的工具,使辨识算法的实现成为可能。 系统工程主要是用定量方法来研究大系统的一门学科, 其基础工作也是建立数学模型。 生物计量学以及经济计量学等都要用到系统辨识技术。 它们有一套自己的辨识和估计的模式。 信息理论中很重要的一个内容是滤波,滤波的前提也 需要先构成模型。 在许多科学和工程领域内,能否定量分析和建立所研 究问题的数学模型,已成为衡量该领域认识水平的一 个尺度。

系统辨识与模型预测控制

系统辨识与模型预测控制

系统辨识与模型预测控制系统辨识与模型预测控制是现代控制理论中的关键概念,它们在工程领域中被广泛应用于系统建模及控制设计中。

本文将详细介绍系统辨识与模型预测控制的基本概念、原理、方法和应用。

一、系统辨识系统辨识是指通过实验数据对系统的动态行为进行建模和估计的过程。

它可以帮助我们了解系统的性质和结构,并在控制系统设计中提供准确的数学模型。

系统辨识的主要任务是确定系统的参数和结构,并评估模型的质量。

1.1 参数辨识参数辨识是系统辨识的主要内容之一,它通过收集系统的输入和输出数据,并根据建模方法对参数进行估计。

常用的参数辨识方法包括最小二乘法、极大似然法、频域法等。

参数辨识的结果对建模和控制设计具有重要的指导意义。

1.2 结构辨识结构辨识是指确定系统的数学结构,即选择合适的模型形式和结构。

常用的结构辨识方法有ARX模型、ARMA模型、ARMAX模型等。

结构辨识的关键是根据系统的性质和实际需求选择适当的模型结构,以保证模型的准确性和有效性。

二、模型预测控制模型预测控制是一种基于系统动态模型的控制方法,它通过在线求解最优控制问题实现对系统的控制。

模型预测控制通过对系统未来动态行为的预测,结合控制目标和约束条件,求解优化问题得到最优控制输入。

它具有优良的鲁棒性和适应性,并且能够处理多变量、非线性以及时变系统的控制问题。

2.1 模型建立模型预测控制的第一步是建立系统的数学模型,通常采用系统辨识的方法得到。

模型可以是线性的或非线性的,根据实际需求选择适当的模型结构和参数。

2.2 控制器设计模型预测控制的核心是设计控制器,控制器的目标是使系统输出跟踪参考轨迹,并满足约束条件。

控制器设计通常通过求解一个离散时间最优控制问题来实现,常用的方法有二次规划、线性规划、动态规划等。

2.3 优化求解模型预测控制的关键是求解最优控制问题,将系统的模型和控制目标转化为一个优化问题,并通过数值优化方法求解得到最优解。

常用的优化算法包括线性规划、非线性规划、遗传算法等。

系统辨识的基本概念

系统辨识的基本概念
核心概念
系统辨识涉及到的主要概念包括输入/ 输出数据、模型结构、算法和系统内 部结构等。这些概念相互关联,共同 构成了系统辨识的基本框架。
02
系统辨识的应用领域
控制系统
控制系统是工程和科学中一个非常重 要的领域,它涉及到对动态系统的建 模、分析和控制。系统辨识在控制系 统中有着广泛的应用,主要用于建立 系统的数学模型。通过输入和输出数 据,利用系统辨识方法可以估计出系 统的参数和状态,进一步用于控制系 统的设计和优化。
背景
随着现代工业和科技的快速发展,许多复杂系统如控制系统 、通信系统、生物系统等都需要精确的数学模型来进行有效 的分析和控制。系统辨识作为获取这些数学模型的关键技术 ,在许多领域中都得到了广泛应用。
系统辨识的定义
定义
系统辨识是根据系统的输入和输出数 据,通过特定的算法和模型结构,来 推断系统的内部结构和动态特性。
例如,在语音识别中,系统辨识可以用于建立语音信号的模型,提高语音识别的准确率;在雷达信号处理中,系统辨识可以 用于估计目标的距离和速度等参数。
机器学习
机器学习是人工智能的一个重要分支,它涉及到从数据中学习和提取知识。系统辨识在机器学习中也 有着重要的应用,主要用于模型的建立和优化。通过系统辨识方法,可以从数据中估计出模型的参数 和结构,进一步用于机器学习的算法设计和优化。
考虑模型的泛化能力
确保模型不仅在训练数据上表现良好,还能对未知数 据进行有效的预测。
进行模型优化和调整
根据验证结果,对模型进行优化和调整,以提高模型 的预测精度和泛化能力。
04
系统辨识的方法
最小二乘法
最小二乘法是一种数学优化技术,通过最小化误差的平方和来寻找数据的最佳函 数匹配。在系统辨识中,最小二乘法常用于参数估计,通过输入和输出数据,估 计系统的参数。

系统辨识讲义

系统辨识讲义

一个极简单的参数方法例子
我们测得0—N采样时刻的输入输出数据,即
u (0), u (1)," , u ( N − 1), u ( N ) y (0), y (1)," , y ( N − 1), y ( N )
假定系统的模型属于如下的模型类:
y ( k ) + ay ( k − 1) = bu (k − 1) + v(k )
k =1
N
∂V (θ ) N = ∑ 2ay 2 (k − 1) + 2 y (k ) y (k − 1) − 2by (k − 1)u (k − 1) ∂a k =1 ∂V (θ ) N = ∑ 2bu 2 (k − 1) − 2 y (k )u (k − 1) − 2ay (k − 1)u (k − 1) ∂b k 等:子空间辨识
1990年代,为了克服PEM针对多变量系统辨识
时需要进行非线性优化,以及IV不能同时辨识 出噪声模型的缺点。Bart De Moor, Verhaegen 等提出了针对多变量系统的subspace identification methods。该类方法不是基于优化 某个criterion,主要用到矩阵的奇异值分解, 无需非线性优化,因而计算量较小。
1.2 模型
数学模型是用来描述系统行为的数学语
言。 非线性系统的数学模型是非线性状态方 程和输出方程。线性系统的数学模型可 以有多种相互等价的形式:状态空间方 程、传递函数、阶跃响应、差分方程等。
扰 动 输入
系统
输出
1.3 建模的两大类方法
机理分析法(first principles modeling)或称为白
何求取参数估计值。least-squares, prediction error, instrumental variable 参数估计算法的统计性质:无偏性、一致性。 如何验证所得模型的有效性?如何选择模型阶数?

系统辨识的基本概念

系统辨识的基本概念

系统正确描述系统动态性能的数学摸型——就成了自 动控制 理论 和工程实践的重要组成部分。
系统辨识就是从对系统进行观察和测量所获得的信
息重提取系统数学模型的一种理论和方法。日渐成熟。
建模——成为各门学科的共同语言。
系统辨识的基本概念
2
1.1 系统和模型
1.1.1 系统
(system/process)
到95%时的调节时间。
26
系统辨识的基本概念
4、数据的零值化处理
•差分法(Isermann,1981)
•平均法
•剔除高频成分(一般采用低通滤波器)
5、模型结构辨识
模型验前结构的假定、模型结构参数的确定。
6、模型参数辨识(本课程的主要内容)
当模型结构确定后,进行的就是模型参数辨识
7、模型检验
模型检验是辨识不可缺少的步骤。常用的有“白色度”检验
18
系统辨识的基本概念
● 误差准则
L
J() f ((k))
k1
也叫等价准则、误差准则、损失函数或准则函数。
用的最多的是: f((k))2(k)
● 输出误差准则: ( k ) z ( k ) z m ( k ) z ( k )[ u ( k )]
● 输入误差准则: ( k ) u ( k ) u m ( k ) u ( k ) 1 [z ( k )]
12
系统辨识的基本概念
又置:
logP(k) logV (k) logc

y(k) z(k)
logP(k),1 logV (k),2
logc
h(k) [z(k),1]t
[1,2]
则y(k和 ) h(k)都是可观测的变量应,的对最小二乘格式

系统辨识方法及其在控制系统中的应用

系统辨识方法及其在控制系统中的应用

系统辨识方法及其在控制系统中的应用系统辨识是指通过对系统的输入输出信号进行分析和处理,推导出系统的数学模型或者参数。

系统辨识方法在控制系统中有着广泛的应用,能够帮助工程师们设计出更加稳定有效的控制系统。

本文将介绍系统辨识的基本概念、常用的系统辨识方法以及其在控制系统中的具体应用。

一、系统辨识的基本概念系统辨识是研究系统行为、结构以及性能的过程,能够将实际系统的行为模型化为数学模型。

系统辨识的基本思想是通过对系统的输入输出信号的采集和分析,利用数学方法建立系统的数学模型。

这个数学模型可以是线性的或者非线性的,通过对系统的辨识可获得系统的状态空间方程、传递函数或者差分方程等。

二、常用的系统辨识方法1. 基于频率域的辨识方法基于频率域的辨识方法采用了傅里叶变换和频谱分析的原理,将时域的输入输出信号转化到频域中进行分析。

其中常用的方法有频率响应函数法、相位度量法等。

这些方法适用于线性时不变系统的辨识。

2. 基于时域的辨识方法基于时域的辨识方法主要通过对系统的输入输出信号进行采样,然后应用数学统计方法进行辨识。

其中常用的方法有最小二乘法、经验模态分解方法等。

这些方法适用于线性时变系统或者非线性系统的辨识。

3. 基于模态分析的辨识方法基于模态分析的辨识方法使用信号的模态函数进行分析,通过将系统的动力学特性分解为若干个基本模态,得到系统的数学模型。

这些方法适用于非线性系统或者复杂的多变量系统的辨识。

三、系统辨识在控制系统中的应用1. 控制系统设计系统辨识可以帮助工程师们建立系统的数学模型,从而可以进行系统的分析和设计。

通过对系统辨识得到的模型进行控制器的设计和仿真,优化系统的性能和稳定性。

2. 状态估计系统辨识可以根据系统的输入输出信号,估计出系统的当前状态。

这对于某些无法直接测量或者难以获取的状态变量是非常有用的,可以提高控制系统的精度和性能。

3. 故障诊断与监测系统辨识可以通过对系统的输入输出信号进行分析,检测和诊断系统的故障。

使用MATLAB进行系统辨识与参数估计的基本原理

使用MATLAB进行系统辨识与参数估计的基本原理

使用MATLAB进行系统辨识与参数估计的基本原理近年来,随着人工智能和机器学习的发展,系统辨识和参数估计变得越来越重要。

在工程和科学领域,系统辨识与参数估计可以帮助我们理解和预测复杂系统的行为,从而为决策和控制提供有力支持。

而MATLAB作为一种强大的科学计算软件,在系统辨识与参数估计方面提供了丰富的工具和功能。

本文将介绍MATLAB 中进行系统辨识与参数估计的基本原理。

一、系统辨识的概念系统辨识是指通过一系列的实验和数据分析,确定出系统的数学模型或特性。

在实际工程和科学问题中,我们经常遇到许多系统,如电子电路、生化反应、飞行控制系统等。

通过系统辨识,我们可以了解系统的行为规律,预测未来状态,从而进行优化和控制。

在MATLAB中,可以使用系统辨识工具箱(System Identification Toolbox)进行系统辨识。

该工具箱提供了一系列的函数和算法,可以帮助我们建立和分析系统模型。

例如,使用arx函数可以基于自回归模型建立离散时间系统的模型,使用tfest函数可以进行连续时间系统的模型辨识。

二、参数估计的基本原理参数估计是系统辨识的一个重要部分,它是指通过已知的输入输出数据,估计系统模型中的参数。

在实际应用中,我们通常只能通过实验数据来获得系统的输入输出信息,而无法直接观测到系统内部的参数。

因此,参数估计成为了一种重要的技术,用于从数据中推断出系统的模型参数。

在MATLAB中,参数估计的基本原理是最小二乘估计。

最小二乘估计是指寻找能够最小化实际输出与模型输出之间的误差平方和的参数值。

在MATLAB中,可以使用lsqcurvefit函数进行最小二乘估计,该函数可以用来拟合非线性模型或者线性模型。

此外,还可以使用最大似然估计(MLE,Maximum Likelihood Estimation)进行参数估计,MATLAB通过提供相应的函数,如mle函数和mlecov 函数,支持最大似然估计的使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 2. 3.
输入输出数据 模型类 等价准则
● 实用的辨识定义 辨识有三个要素——数据、模型类和准则。辨识就是按照一个准则在一组 模型类中选择一个与数据拟合得最好的模型(近似描述)。
9
辨识(Identification)?
(1) 辨识是研究建立系统或生产过程数学模型的一种理论和 方法。 (2) 辨识是一种从含有噪声的测量数据中提取被研究对象数学 模型的统计方法。 (3) 辨识模型是对象输入输出特性在某种准则意义下的一种 近似。近似的程度取决于人们对系统先验知识的认识和 对数据集性质的了解程度,以及所选用的辨识方法是否 合理。 (4) 辨识技术帮助人们在表征被研究的对象、现象或系统、 过程的复杂因果关系时,尽可能准确地确立它们之间的 定量依存关系。 (5) 辨识是一种实验统计的建模方法。 10
30
1.7 系统辨识的应用
辨识在工业上有着广泛的应用领域。 1、用于控制系统的设计和分析:获得被控系统的数学模型之后,以此模型 为基础课设计出比较合理的控制系统或用于分析原有系统的性能,以便提 出改进。
31
2、用于在线辨识 如何选择模型结构、误差准则和模型精度等问题是很重要的。
3、用于天文、水文、能源、客流量等问题的预报预测 在模型结构确定的情况下,建立实变模型,并预测时变模 型的参数,对过程状态进行预估。 4、用于监视过程参数并实现故障诊断。 故障诊断是近年来的新的应用领域。 32
15
图示1.7是被辨识过程,那么描述它的模型必须 是能化为图1.8所示的辨识表达格式,即最小二乘格 式,输出量是输入量的线性组合。
z(k ) h (k ) e(k )
T
注意:辨识表达式的输入量h(t)已不再是原来的输入量u(t)
了,噪声项e(k)也不是原来的测量噪声w(k)了
16
1.4 辨识算法的基本原理
14
例3:将下列模型化成最小二乘格式:
y(t ) 1 2 sin t 3et
其中,y(t)在各采样点是可观测的变量。θ1,θ2和θ3为 待定常数。
置 h(t ) [1, sin t , e t ]t t [ , , ] 1 2 3 h(t )是可观测的变量,则最 小二乘格式 y (t ) h t (t ) e(t ) 其中e(t )是y (t )的测量误差
最小二乘格式:
T
T
z(k) = h (k) + e(k)
12
注意:Z(k),h(k)是可观测的
例2:对给定质量的气体,不同体积V对应不同的压力P,
根据热力学原理,压力和体积之间存在如下关系:
PV c
中,γ和c未待定常数,P和V在各采样点是可观测的。预将 上式模型化成最小二乘格式。
是本质线性模型,它一定能化成最小二乘格式。两边取上 述模型对数。
27
4、数据的零值化处理 •差分法(Isermann,1981) •平均法 •剔除高频成分(一般采用低通滤波器) 5、模型结构辨识
模型验前结构的假定、模型结构参数的确定。
6、模型参数辨识(本课程的主要内容) 当模型结构确定后,进行的就是模型参数辨识
7、模型检验
模型检验是辨识不可缺少的步骤。常用的有“白色度”检验 法,交叉检验法。这是建模的难点,VVA(校核、验证、确 认)
28
VVA(校核、验证、确认) 建立模型并对其进行校核、验证与确认(Verification、 Validation、Accreditation,简写为VVA)是仿真工作必不可
少的一项环节。建模与仿真的正确性和置信度评估则是仿真
技术永恒的生命线,对它的研究最早开始于对仿真模型的校 验研究。
29

25
● 持续激励 在辨识时间之内过程的动态必须被输入信号持续激励。 即在实验期间,输入信号必须充分激励过程的所有模态。 从谱分析角度看,输入信号的频谱必须足以覆盖过程的频 谱。 ● Cramer-Rao不等式 定理:如果模型噪声向量 nL是零均值白噪声,并设模型噪 ˆ 声服从正态分布,则最小二乘参数估计值 LS是有效估计 值,即参数估计值偏差的协方差阵达到Cramé r-Rao不等 ~ 2 1 1 式的下界 Cov{ } E {( H H ) } M LS n L L 其中M为Fisher信息矩阵:
1.
2.

J (M 1 )
取迹(A-最优)
取行列式(D-最优)
● 辨识输入信号的选择 1. 持续激励输入信号的要求 2. 最优输入信号设计的要求 ● 采样时间的选择 1. 满足采样定理,即采样速度不低于信号截止频率的两倍
2. 与模型最终应用时的采样时间尽可能保持一致
3. 经验公式: T0 T95 /(5 ~ 15) , T95 是过程阶跃响应达 T0 表示采样时间, 到95%时的调节时间。
1.3 辨识问题的表达形式
● 最小二乘格式
h(k ) h1 (k ), h2 (k ),, hN (k ) 1 , 2, ,, N 输出量是输入向量的线性组合:
z (k ) i hi (k ) e(k ) h (k ) e(k )
系统建模 与辨识
System Modelling and Identification
上课时间:14-15学年第一学期 星期四5、6节、周五1、2节 地点:西1一102、203 授课对象:控制工程14级 授课:刘翠玲、刘雪连
第1章 建模与系统辨识概述
主要内容:
1.1 系统和模型 1.2 系统辨识的定义 1.3 辨识问题的表达形式 1.4 辨识算法的基本原理 1.5 误差准则及其关于参数空间的线性问题 1.6 辨识的内容和步骤 1.7 辨识的应用
i 1
N

● 化差分方程为最小二乘格式
线性过程或本质线性过程其模型都可以化成最小二乘格式
11
● 化最小二乘格式的举例
例1: z (k ) + a z(k - 1) + + a z(k - n ) 1 n
设:
= b1u(k - 1) + + b n u(k - n) + e(k)
T
h (k ) = [-z (k - 1) ,,-z(k - n ), u (k - 1), , u(k - n )] = [a 1 , , a n , b1 , , b n ]
数学模型的类型:(已见过的)
代数方程 如经济学上的Cobb-Dougluas生产关系模型:

Y AL K
a1

a2
Y——产值;L——劳动力;K——资本 微分方程 差分方程 状态方程
y a1 y a2 y bu(t )
y(k 1) ay(k ) bu(k )
● 基本原理图
17
可以看到:
被辨识系统(对象)的模型类别的选择上需要做出预
先设定——模型类;
将某种控制量(输入激励信息)作用于被辨识系统,
并测其响应——IO信息;
引入反映被辨识系统(对象)和所用模型之间接近程 度的“距离”的概念——准则。 所获得的模型是相对的,一个系统的模型拟合有无穷多 个,假设和约束确定适合特定目的的模型。
8
1.2 系统辨识的定义
● Zadeh对辨识的定义(1956年) 辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一 个与所测系统等价的数学模型。 ● L.Liung的定义(1978年) 在模型类中,按照某个准则,选择一个与被辨识系统的观测数据拟合的 最好的模型。 ● 辨识的三大要素:
系统辨识的精度
原因:结构近似、数据污染和数据长度有限。 辨识结果精度需要有评价的标准,不同的标准会有不同的精 度。
最终的评价标准是它在实际应用中的效果。

系统辨识的基本方法
根据数学模型的形式:
非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、
谱分析法。
参数辨识——现代辨识方法(最小二乘法等)
19
● 误差准则
J ( ) f ( ( k ))
k 1
L
也叫等价准则、误差准则、损失函数或准则函数。 用的最多的是: ● 输出误差准则: ● 输入误差准则: ● 广义误差准则:
f ( (k )) 2 (k )
( k ) z( k ) z m ( k ) z( k ) [u( k )]
AX BU X Y CX DU
1.1.3 建模方法
● 机理法:“白箱”理论——基于物理、化学定理定律。
● 测试法:“黑箱”理论 ● 两者结合:“灰箱”理论 ● 模糊推理建模法:一种基于模糊推理的关于控制系统 的建模方法 ● 建模的基本原则: 目的性:不同的目的建模的方法不同 实在性:模型的物理概念要明确 可辨识性:模型结构合理、输入是持续的、数据要充分 节省性:模型参数尽量少
18
1.5 误差准则及其关于参数空间的线性问题
● 新息的概念 逐步逼近的算法,模型参数 的估计值为 ˆ ,在k时刻,过

ˆ(k 1) ,则 程输出预报值为 z ˆ(k ) h (k )
或新息(Innovation)。
ˆ ( k ) ,此称为输出预报误差 z ( k ) z( k ) z 计算预识中图1.14)
24
1、明确辨识目的:决定模型类型、精度要求、采用何种 辨识方法(控制、仿真、预测预报、过程诊断、估计物 理参数) 2、掌握先验知识:对试验设计起指导性作用。 3、 实验设计 实验设计包括选择和决定: • 输入信号(幅度、频带等) • 采样时间 • 辨识时间 • 开环或闭环辨识 • 离线或在线辨识(辨识方案)
模型:把关于实际过程的本质的部分信息简缩
成有用的描述形式。它是用来描述过程的运动规 律,是过程的一种客观写照或缩影,是分析、预 报、控制过程行为的有利工具。是人们对客观事 物的主观描述。
相关文档
最新文档