扬州市竹西中学2017-2018学年七年级上学期期末考试数学试题(含答案)
2017~2018学年度七年级上学期期末复习数学试卷(附答案)

2017~2018学年度七年级上学期期末复习数学试卷(附答案)(本满分:120分,时间:120分钟)一、选择题(每小题3分,共30分)1.如果表示增加,那么表示( ) A.增加B.增加C.减少D.减少 2.有理数在数轴上表示的点如图所示,则的大小关系是( )A.B. C. D. 3.下列各式正确的是( )。
A .B .C . D. 4.在下列选项中,既是分数,又是负数的是( ) A .9 B. 15 C .-0.125D .-72 5.有理数、在数轴上对应的位置如上图所示,则( )A.a-b <0B.a+b >0C.a-b =0D.a-b >06.在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是( )A.-212B.-101C .-0.01 D.-5 7.某市年在校初中生的人数约为0000,用科学记数法表示为( ) A. B. C.D. 8.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050 2(精确到0.0001)9.计算2220121(2)()(1)2-⨯-⨯-得( )。
A . 1 B . -1 C .1± D.201210.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则 的值为( )!98!10050.A !99.C 9900.B !2.D (第5题图)1132>1123->-0.1(0.01)->-- 3.14-π<-二、填空题(每小题3分,共30分) 11.31-的倒数是___,321-的绝对值是___, 的相反数是 。
12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 . 13.在211-,2.1,2-,0 ,()2--中,负数的个数有 个。
江苏省扬州市竹西中学七年级数学上学期期末考试试题(含解析)

七一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的相反数是()A.B.2 C.﹣D.﹣22.下列运算中,正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1 C.﹣ab﹣ab=﹣2ab D.7x+5x=12x23.下面是一个被墨水污染过的方程:2x﹣=3x+,答案显示此方程的解是x=﹣1,被墨水遮盖的是一个常数,则这个常数是()A.1 B.﹣1 C.﹣D.4.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°5.下列说法中正确的有()①过两点有且只有一条直线.②连接两点的线段叫做两点间的距离.③两点之间,线段最短.④若AB=BC,则点B是AC的中点.⑤射线AC和射线CA是同一条射线.A.1个B.2个C.3个D.4个6.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为()A.赚6元B.不亏不赚 C.亏4元D.亏24元7.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个8.图(1)是一个正方体的侧面展开图,正方体从图(2)的位置依次翻到第1格、第2格、第3格,这时正方体朝上一面的字是()A.中B.国C.江D.苏二、填空题:(本大题共10小题,每小题3分,共30分)9.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高℃.10.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为.11.写出一个满组下列条件的一元一次方程:①某个未知数的系数是;②方程的解为3,则这样的方程可写为:.12.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC= .13.已知a﹣2b2=3,则2015﹣a+2b2的值是.14.如图,A,O,B三点在一条直线上,OM是∠AOC的平分线,ON是∠BOC的平分线.若∠1:∠2=1:2,则∠1= °.15.如图是一个运算程序的示意图,若开始输入x的值为81,则第2016次输出的结果为.16.如图,在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=3,且AO=2BO,则a+b的值为.17.如图,甲、乙两个长方形有一部分重叠在一起,甲长方形不重叠的部分是甲长方形面积的,乙长方形不重叠的部分是乙长方形面积的,且甲、乙两个长方形面积之和为100cm2,则重叠部分面积是cm2.18.生活中有人喜欢把请人传送的便条折成了如图丁形状,折叠过程如图所示(阴影部分表示纸条反面):假设折成图丁形状纸条宽xcm,并且一端超出P点2cm,另一端超出P点3cm,请用含x的代数式表示信纸折成的长方形纸条长.三、解答题:(共96分)19.计算:(1)﹣(﹣3)+7﹣|﹣8|(2)﹣22+(﹣)×30﹣5÷(﹣).20.化简:(1)(﹣3x+y)+(4x﹣3y);(2).21.解下列方程:(1)4﹣3(2﹣x)=5x;(2)﹣1=.22.先化简,后求值.(1)化简:2(a2b+ab2)﹣(2ab2﹣1+a2b)﹣2;(2)当(2b﹣1)2+3|a+2|=0时,求上式的值.23.如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.24.材料1:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39= ,(log216)2+log381= .材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:(1)计算 5!=(2)已知x为整数,求出满足该等式的x: =1.25.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?(1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下:万颖: =刘寅: =1根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x、y表示的意义,然后在,然后在方框中补全万颖同学所列的方程:万颖:x表示,刘寅:y表示,万颖同学所列不完整的方程中的方框内该填.(2)求A工程队一共做了多少天.(写出完整的解答过程)26.如图,直线AB,CD相交于点O,OE平分∠AOD,OF⊥OC,(1)图中∠AOF的余角是(把符合条件的角都填出来);(2)如果∠AOC=160°,那么根据可得∠BOD=度;(3)如果∠1=32°,求∠2和∠3的度数.27.某人去水果批发市场采购苹果,他看中了A、B两家苹果、这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克) 0~500 500以上~1500 1500以上~2500 2500以上价格(元)零售价的95% 零售价的85% 零售价的75% 零售价的70%(1)如果他批发600千克苹果,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.28.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB= ,BC= ;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P 移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.2015-2016学年江苏省扬州市竹西中学七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的相反数是()A.B.2 C.﹣D.﹣2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2的相反数是2,故选:B.【点评】本体考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列运算中,正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1 C.﹣ab﹣ab=﹣2ab D.7x+5x=12x2【考点】合并同类项.【专题】计算题.【分析】原式各项合并得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=a2b,错误;C、原式=﹣2ab,正确;D、原式=12x,错误.故选C.【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.3.下面是一个被墨水污染过的方程:2x﹣=3x+,答案显示此方程的解是x=﹣1,被墨水遮盖的是一个常数,则这个常数是()A.1 B.﹣1 C.﹣D.【考点】一元一次方程的解.【分析】把方程的解x=﹣1代入方程进行计算即可求解.【解答】解:∵x=﹣1是方程的解,∴2×(﹣1)﹣=3×(﹣1)+,﹣2﹣=﹣3+,解得=.故选:D.【点评】本题考查了一元一次方程的解,方程的解就是使方程成立的未知数的值,代入进行计算即可求解,比较简单.4.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°【考点】矩形的性质.【专题】计算题.【分析】根据折叠前后对应部分相等得∠AED′=∠AED,再由已知求解.【解答】解:∵∠AED′是△AED沿AE折叠而得,∴∠AED′=∠AED.又∵∠DEC=180°,即∠AED′+∠AED+∠CED′=180°,又∠CED′=60°,∴∠AED==60°.故选A.【点评】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.5.下列说法中正确的有()①过两点有且只有一条直线.②连接两点的线段叫做两点间的距离.③两点之间,线段最短.④若AB=BC,则点B是AC的中点.⑤射线AC和射线CA是同一条射线.A.1个B.2个C.3个D.4个【考点】直线、射线、线段;线段的性质:两点之间线段最短;两点间的距离.【分析】利用直线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案.【解答】解:①过两点有且只有一条直线,正确.②连接两点的线段长度叫做两点间的距离,故此选项错误.③两点之间,线段最短,正确.④若AB=BC,则点B是AC的中点,错误,A,B,C不一定在一条直线上.⑤射线AC和射线CA是同一条射线,错误.故选:B.【点评】此题主要考查了直线的定义、以及线段的性质和两点之间距离意义等知识,正确把握相关定义是解题关键.6.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为()A.赚6元B.不亏不赚 C.亏4元D.亏24元【考点】一元一次方程的应用.【专题】销售问题.【分析】此题只要根据题意列式即可.“有一个商店把某件商品按进价加20%作为定价”中可设未知进价为x,即可得:定价=x(1+20%).“后来老板按定价减价20%以96元出售,”中又可得根据题意可得关于x的方程式,求解可得现价,比较可得答案.【解答】根据题意:设未知进价为x,可得:x(1+20%)(1﹣20%)=96解得:x=100;有96﹣100=﹣4,即亏了4元.故选C.【点评】此题关键是读懂题意,找出等量关系.7.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个【考点】一元一次方程的应用.【专题】数形结合.【分析】设“●”“■”“▲”分别为x、y、z,由图列出方程组解答即可解决问题.【解答】解:设“●”“■”“▲”分别为x、y、z,由图可知,,解得x=2y,z=3y,所以x+z=2y+3y=5y,即“■”的个数为5,故选A.【点评】解决此题的关键列出方程组,求解时用其中的一个数表示其他两个数,从而使问题解决.8.图(1)是一个正方体的侧面展开图,正方体从图(2)的位置依次翻到第1格、第2格、第3格,这时正方体朝上一面的字是()A.中B.国C.江D.苏【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“中”与“苏”是相对面,“国”与“扬”是相对面,“江”与“州”是相对面,∵翻到第3格时,扬在下面,∴正方体朝上一面的字是国.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题:(本大题共10小题,每小题3分,共30分)9.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高7 ℃.【考点】有理数的减法.【专题】图表型.【分析】用最高气温减去最低气温列出算式,然后在依据有理数的减法法则计算即可.【解答】解:5﹣(﹣2)=5+2=7℃.故答案为:7.【点评】本题主要考查的是有理数的减法,掌握减法法则是解题的关键.10.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为5×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:500亿=5×1010.故答案为:5×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.写出一个满组下列条件的一元一次方程:①某个未知数的系数是;②方程的解为3,则这样的方程可写为: x﹣=0 .【考点】一元一次方程的解.【专题】开放型.【分析】一元一次方程的一般形式为ax+b=0,再由条件确定答案即可.【解答】解:根据题意得,符合条件的一元一次方程为x﹣=0.故答案为: x﹣=0.【点评】本题是一道开放性的题目,考查了一元一次方程的解,是基础知识要熟练掌握.12.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC= 20cm或10cm .【考点】两点间的距离.【分析】分点C在线段AB的延长线上和点C在线段AB上两种情况,结合图形计算即可.【解答】解:当点C在线段AB的延长线上时,AC=AB+BC=20cm,当点C在线段AB上时,AC=AB﹣BC=10cm,故答案为:20cm或10cm.【点评】本题考查的是两点间的距离的计算,正确画出图形、灵活运用数形结合思想是解题的关键.13.已知a﹣2b2=3,则2015﹣a+2b2的值是2012 .【考点】代数式求值.【分析】原式可变形为2015﹣(a﹣2b2),将a﹣2b2=3代入其中,即可得出结论.【解答】解:∵a﹣2b2=3,∴2015﹣a+2b2=2015﹣(a﹣2b2)=2015﹣3=2012.故答案为:2012.【点评】本题考查了代数式求值,解题的关键是将原式变形为2015﹣(a﹣2b2).14.如图,A,O,B三点在一条直线上,OM是∠AOC的平分线,ON是∠BOC的平分线.若∠1:∠2=1:2,则∠1=30 °.【考点】角平分线的定义.【分析】根据角平分线定义求出∠1+∠2=90°,根据∠1:∠2=1:2即可求出答案.【解答】解:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=∠BOC,∠2=∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,故答案为:30.【点评】本题考查了角平分线定义和角的有关计算的应用,解此题的关键是求出∠1+∠2=90°,难度不是很大.15.如图是一个运算程序的示意图,若开始输入x的值为81,则第2016次输出的结果为1 .【考点】代数式求值.【专题】图表型;规律型.【分析】由81=34可知,第4次输出结果为1,根据运算程序可知,第5次输出结果为3,第6次输出结果为1,后面两次输出结果一循环,从而可得知2016次输出结果为1.【解答】解:∵81=34,∴第四次输出结果为1,根据运算程序可知,第5次输出为3,第6次输出为1,结果两次一循环.∵(2016﹣4)÷2=2012÷2=1006,∴第1006次输出的结果为1.故答案为:1.【点评】本题考查了代数式求值以及数的变化规律,解题的关键是找到从第4次开始,输出结果两次一循环.16.如图,在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=3,且AO=2BO,则a+b的值为﹣1 .【考点】两点间的距离;数轴.【分析】根据已知条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b ﹣a=3,a=﹣2b,则易求b=1.所以a+b=﹣2b+b=﹣b=﹣1.【解答】解:如图,a<0<b.∵|a﹣b|=3,且AO=2BO,∴b﹣a=3,①a=﹣2b,②由②代入①得,b﹣(﹣2b)=3,解得b=1,∴a+b=﹣2b+b=﹣b=﹣1.故答案是:﹣1.【点评】本题考查了数轴、绝对值以及两点间的距离.根据已知条件得出a<0<b是解题的关键.17.如图,甲、乙两个长方形有一部分重叠在一起,甲长方形不重叠的部分是甲长方形面积的,乙长方形不重叠的部分是乙长方形面积的,且甲、乙两个长方形面积之和为100cm2,则重叠部分面积是10 cm2.【考点】一元一次方程的应用.【专题】几何图形问题.【分析】设甲长方形的面积为xcm2,乙长方形的面积为(100﹣x)cm2,根据甲、乙两个长方形重合面积相等建立方程求出其解即可.【解答】解:设甲长方形的面积为xcm2,乙长方形的面积为(100﹣x)cm2,由题意,得(1﹣)x=(1﹣)(100﹣x),解得:x=40.∴重叠部分面积是:40×(1﹣)=10cm2.故答案为:10【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据甲、乙两个长方形重合面积相等建立方程是关键.18.生活中有人喜欢把请人传送的便条折成了如图丁形状,折叠过程如图所示(阴影部分表示纸条反面):假设折成图丁形状纸条宽xcm,并且一端超出P点2cm,另一端超出P点3cm,请用含x的代数式表示信纸折成的长方形纸条长(5x+5)cm .【考点】翻折变换(折叠问题).【分析】根据折叠知,纸条长至少是宽的5倍,进一步求得纸条长.【解答】解:根据翻折变换规律得出:设折成图丁形状纸条宽xcm,根据题意得出:长方形纸条长为:(5x+5)cm.故答案为:(5x+5)cm.【点评】此题主要考查了翻折变换的性质,此题是一道动手操作题,要通过实际动手操作了解纸条的长和宽之间的关系.三、解答题:(共96分)19.计算:(1)﹣(﹣3)+7﹣|﹣8|(2)﹣22+(﹣)×30﹣5÷(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=3+7﹣8=2;(2)原式=﹣4+5﹣12+15=14.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.化简:(1)(﹣3x+y)+(4x﹣3y);(2).【考点】整式的加减.【分析】(1)先去括号,然后合并同类项求解;(2)直接合并同类项求解.【解答】解:(1)原式=﹣3x+y+4x﹣3y=x﹣2y;(2)原式=﹣mn2+m2n.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.21.解下列方程:(1)4﹣3(2﹣x)=5x;(2)﹣1=.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣6+3x=5x,移项合并得:2x=2,解得:x=1;(2)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.先化简,后求值.(1)化简:2(a2b+ab2)﹣(2ab2﹣1+a2b)﹣2;(2)当(2b﹣1)2+3|a+2|=0时,求上式的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)本题应对整式进行去括号,合并同类项,将整式化为最简式.(2)根据非负数的性质,可求出a、b的值,再将a、b的值代入上式的最简式进行求值即可.【解答】解:(1)原式=2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1;(2)∵(2b﹣1)2+3|a+2|=0,又(2b﹣1)2≥0,3|a+2|≥0,∴(2b﹣1)2=0,|a+2|=0,∴b=,a=﹣2,将b=,a=﹣2代入a2b﹣1,得(﹣2)2×﹣1=1.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.23.如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为28 ;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加 2 个小正方体.【考点】作图-三视图;几何体的表面积.【分析】(1)有顺序的计算上下面,左右面,前后面的表面积之和即可;(2)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(3)根据保持这个几何体的主视图和俯视图不变,可知添加小正方体是中间1列前面的2个,依此即可求解.【解答】解:(1)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28×1=28故该几何体的表面积(含下底面)为2.(2)如图所示:(3)由分析可知,最多可以再添加2个小正方体.故答案为:28;2.【点评】考查了作图﹣三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.24.材料1:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39= 2 ,(log216)2+log381=17.材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:(1)计算 5!= 120(2)已知x为整数,求出满足该等式的x: =1.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】材料1:各式利用题中的新定义计算即可得到结果;材料2:(1)原式利用新定义计算即可得到结果;(2)已知等式利用题中的新定义化简,求出解即可得到x的值.【解答】解:材料1:log39=log332=2;(log216)2+log381=16+=17;材料2:(1)5!=5×4×3×2×1=120;(2)已知等式化简得: =1,即|x﹣1|=6,解得:x=7或﹣5.故答案为:2;17;(1)120【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?(1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下:万颖: = 1刘寅: =1根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x、y表示的意义,然后在,然后在方框中补全万颖同学所列的方程:万颖:x表示A、B合做的天数,刘寅:y表示A工程队一共做的天数,万颖同学所列不完整的方程中的方框内该填 1 .(2)求A工程队一共做了多少天.根据所列方程,可得x表示的是:A、B合做的天数;y 表示的是:A工程队一共做的天数,工作总量为“1”;(2)按照两位同学的思路求解即可.【解答】解:(1)x表示A、B合做的天数(或者B完成的天数);y表示A工程队一共做的天数;万颖同学所列不完整的方程中的方框内该填:1;(2)设A工程队一共做的天数为y天,由题意得: =1,解得:y=12答:A工程队一共做的天数为12天.【点评】本题考查了一元一次方程的应用,解答本题的关键是表示出两工程队的工作效率,根据工作总量为单位1,建立方程.26.如图,直线AB,CD相交于点O,OE平分∠AOD,OF⊥OC,(1)图中∠AOF的余角是∠BOC、∠AOD(把符合条件的角都填出来);(2)如果∠AOC=160°,那么根据对顶角相等可得∠BOD=160 度;(3)如果∠1=32°,求∠2和∠3的度数.【考点】对顶角、邻补角;余角和补角.【分析】(1)由垂线的定义和角的互余关系即可得出结果;(2)由对顶角相等即可得出结果;(3)由角平分线的定义求出∠AOD,由对顶角相等得出∠2的度数,再由角的互余关系即可求出∠3的度数.【解答】解:(1)∵OF⊥OC,∴∠COF=∠DOF=90°,∴∠AOF+∠BOC=90°,∠AOF+∠AOD=90°,∴∠AOF的余角是∠BOC、∠AOD;故答案为:∠BOC、∠AOD;(2)∵∠AOC=160°,∴∠BOD=∠AOC=160°;故答案为:对顶角相等; 160;(3)∵OE平分∠AOD,∴∠AOD=2∠1=64°,∴∠2=∠AOD=64°,∠3=90°﹣64°=26°.【点评】本题考查了角平分线的定义、对顶角相等的性质、互为余角关系;熟练掌握对顶角相等得性质和角平分线的定义是解决问题的关键.27.某人去水果批发市场采购苹果,他看中了A、B两家苹果、这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克) 0~500 500以上~1500 1500以上~2500 2500以上价格(元)零售价的95% 零售价的85% 零售价的75% 零售价的70%(1)如果他批发600千克苹果,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.【考点】列代数式;代数式求值.【专题】阅读型.【分析】由题意列出他到两家批发苹果所用钱数与批发量的关系式,把600千克代入公式即可计算,把1800千克代入即可比较哪家便宜.【解答】解:(1)A家:600×6×92%=3312元,B家:500×6×95%+100×6×85%=3360元;各(1分),共(2分)(2)A家:6x×90%=,B家:500×6×95%+100×6×85%+(x﹣1500)×6×75%=;各(2分),共(4分)(3)A: =9720元,B: ==9300元.故选择B家更优惠.各(3分),共(6分)【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.28.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB= 10 ,BC= 18 ;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P 移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.【考点】两点间的距离;数轴.【专题】几何动点问题.【分析】(1)根据数轴上点的坐标求出线段的长;(2)用t表示出AB、BC,计算即可;(3)分0<t≤10、10<t≤15和15<t≤28三种情况,结合数轴计算即可.【解答】解:(1)AB=18﹣8=10,BC=8﹣(﹣10)=18,故答案为:10;18;(2)不变,由题意得,AB=10+t+2t=10+3t,BC=18﹣2t+5t=18+3t,BC﹣AB=8,故BC﹣AB的值不随着时间t的变化而改变;(3)当0<t≤10时,PQ=t,当10<t≤15时,PQ=t﹣3(t﹣10)=30﹣2t,当15<t≤28时,PQ=3(t﹣10)﹣t=2t﹣30,故P、Q两点间的距离为t或30﹣2t或2t﹣30.【点评】本题考查的是两点间的距离的计算、数轴的认识以及几何动点问题,正确认识数轴、根据点的坐标求出数轴上两点间的距离是解题的关键,注意数形结合思想在解题中的应用.。
2017-2018学年第一学期期末测试七年级数学试题及答案

2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
扬州市七年级上册数学期末试卷(含答案)

扬州市七年级上册数学期末试卷(含答案) 一、选择题1.当x取2时,代数式(1)2x x-的值是()A.0 B.1 C.2 D.3 2.下列方程是一元一次方程的是()A.213+x=5x B.x2+1=3x C.32y=y+2 D.2x﹣3y=13.已知线段 AB=10cm,直线 AB 上有一点 C,且 BC=4cm,M 是线段 AC 的中点,则 AM 的长()A.7cm B.3cm C.3cm 或 7cm D.7cm 或 9cm 4.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab25.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣16.按如图所示图形中的虚线折叠可以围成一个棱柱的是()A.B.C.D.7.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为()A.3.31×105B.33.1×105C.3.31×106D.3.31×1078.下列调查中,调查方式选择正确的是( )A.为了了解1 000个灯泡的使用寿命,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解生产的一批炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查9.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A.不赔不赚B.赚了9元C.赚了18元D.赔了18元10.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t小时,两车相距50千米,则t的值为()A.2或2.5 B.2或10 C.2.5 D.211.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上D .AD 上 12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.15.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.169________17.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单日期 交易明细10.16 乘坐公交¥ 4.00-10.17 转帐收入¥200.00+10.18 体育用品¥64.00-10.19 零食¥82.00-10.20餐费¥100.00-18.分解因式: 22xy xy +=_ ___________19.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.20.因式分解:32x xy -= ▲ .21.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.22.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.23.A 学校有m 个学生,其中女生占45%,则男生人数为________.24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.27.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.28.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.29.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.30.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.31.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.32.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】 解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案.【详解】解:A 、213+x =5x 符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.3.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.4.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a<0,b<0,∴ab>0,又∵-1<b <0,ab >0,∴ab 2<0.∵-1<b <0,∴0<b 2<1,∴ab 2>a ,∴a <ab 2<ab .故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.5.D解析:D【解析】【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.6.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A 、D 进行判断;根据侧面的个数与底面多边形的边数相同对B 、C 进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A 、D 选项错误;当底面为三角形时,则棱柱有三个侧面,所以B 选项错误,C 选项正确.故选:C .【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.7.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.9.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.10.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.11.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.16.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】=,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.17.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 18.【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本+解析:xy(2y1)【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.19.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.20.x(x﹣y)(x+y).【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ),故答案为x (x ﹣y )(x+y ).21.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.22.42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.23.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】-,乘以总人数就是男生的人数.将男生占的比例:145%【详解】-=,则男生人数为55%m,男生占的比例是145%55%故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.24.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.27.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.28.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.29.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7. ∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解. 31.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MN AB =412=13; ②当点N 在线段AB 的延长线上时,如图2.∵AN ﹣BN=MN .又∵AN ﹣BN=AB ,∴MN=AB=12,∴MN AB =1212=1. 综上所述:MN AB =13或1. 【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.32.(1)x=1;(2) x =-3或x =5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。
扬州市2017-2018学年七年级上期末数学试题含答案

2017-2018学年度第一学期七年级数学期末试卷(全卷满分:150分 考试时间:120分钟)亲爱的同学,首先祝贺你已迈入初中的大门!相信一学期以来你定有很多收获,现在是你展示自我的时候了!一定要细心答题哦!祝你成功! 一、精心选一选(本题共8小题,每小题3分,共24分) 1.21—的倒数是( ▲ ) A .21- B .21C .—2D .22.下列式子中正确的是( ▲ )A .―3―2=―1B .325a b ab +=C .77--=D .550xy yx -=3.直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( ▲ )A . 不超过3cmB . 3cmC . 5cmD . 不少于5cm4.小明在日历上圈出五个数,呈十字框形,它们的和是40,则中间的数是( ▲ )A .7B .8C .9D .10 5.如图,某测绘装置上一枚指针原来指向南偏西600,把这枚指针按顺时针方向旋转41周,则结果指针的指向( ▲ )A .南偏东30ºB .南偏东60ºC .北偏西30ºD .北偏西60º6.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( ▲ ) A .98+x =x -3 B .98-x =x -3 C .(98-x )+3=x D .(98-x )+3=x -37.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④过一点有且只有一条直线与已知直线平行。
其中错误的有( ▲ )A .1个B .2个C .3个D .4个8.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从A(第15题)二、认真填一填(本题共10小题,每小题3分,共30分)9.扬州今年冬季某天测得的最低气温是-6℃,最高气温是5℃,则当日温差是 ▲ ℃. 10.如图,为抄近路践踏草坪是一种不文明的现象.请你用学过的数学知识解释出现这一现象的原因:________ ▲ __________.11.钓鱼岛是中国领土一部分.钓鱼岛诸岛总面积约5平方千米,岛屿周围的海域面积约170 000平方千米.170 000用科学计数法表示为 ▲ . 12.一个角的补角是它的余角的3倍,则这个角的度数是 ▲ . 13. 代数式2231a a ++的值是6,那么代数式2695a a ++的值是 ▲ .14.小华同学在解方程=-15x ( )3+x 时,发现 “( )”处的数字模糊不清,但察看答案可知解为,2=x 则“( )”处的数字为 ▲ .15.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是 ▲ .16.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售, 仍可获利60元,则这款服装每件的进价为 ▲ 元.17.已知线段AB=20cm ,直线..AB 上有一点C ,且BC=6cm , M 是线段AC 的中点,则线段AM 的长度为 ▲ .18.如图所示, 两人沿着边长为90m 的正方形,按A→B→C→D→A……的方向行走,甲从A 点以65m/min 的速度、乙从B 点以75m/min 的速度行走, 当乙第一次追上甲时,将在正方形的 ▲ 边上.南 东(第5题)(第8题)(第18题)三、运算大比武 19.(本题满分8分)计算:(1)537(72)9818⎛⎫-+⨯- ⎪⎝⎭(2)63)211(14-⨯÷--- 20.(本题满分8分)先化简,再求值:)3(2)2(42222b a ab ab b a +---,其中2-=a ,3=b . 21.(本题满分8分)解方程:(1)4)5(211=--x x (2) 341125x x -+-=22.(本题满分8分) 已知关于x 的方程23x m mx -=+与x -1=2(2x -1),它们的解互为倒数,求m 的值.四、漫游图形世界23.(本题满分10分)如图,点P 是AOB ∠的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到 ▲ 的距离,线段 ▲ 的长度是点C 到直线OB 的距离.因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是 ▲ . (用“<”号连接) 24.(本题满分10分)如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请在下面的网格中画出添加小正方体后所得几何体所有可能的左视图.25.(本题满分10分)如图,点O 是直线AB 、CD 的交点,OE ⊥AB ,OF ⊥CD ,OM 是∠BOF 的平分线,∠AOC=32. (1)填空:①由OM 是∠BOF 的平分线,可得∠ ▲ =∠ ▲ ; ②根据 ▲ ,可得∠BOD = ▲ 度; ③根据 ▲ ,可得∠EOF=∠AOC ; (2)计算:求∠COM 的度数.(写出过程)MFEODC BA五、实践与运用26.(本题满分10分)国庆期间,小明、小亮等同学随家长一同到瘦西湖公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2) 请你帮助小明算一算,用哪种方式购票更省钱?说明理由.27. (本题满分12分)某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.(1)请你在下表的空格里填写一个适当的代数式:(2)已知第15排座位数是第5排座位数的2倍,求a的值;(3)在(2)的条件下计算第21排有多少座位?28. (本题满分12分),三角板A PD命题、审核:陈翠玲、蒋红丽2017-2018 学年度第一学期七年级数学期末试卷答案及评分标准一、精心选一选(本题共8小题,每小题3分,共24分)二、认真填一填(本题共10小题,每小题3分,共30分)9. 11 ; 10. 两点之间,线段最短 ;11.5107.1⨯;12. 45° ; 13. 20 ; 14. 3 ;15. 强 ;16. 180 ; 17. 7或13 ;18. AD . 19. (本题满分8分,每小题4分)(1)537(72)9818⎛⎫-+⨯- ⎪⎝⎭(2)63)211(14-⨯÷--- 解:原式=-40+27-28 (3分) 解:原式= -1-1 (3分) =-41 (4分) =-2 (4分) 20.(本题满分8分))3(2)2(42222b a ab ab b a +---,其中2-=a ,3=b .解:原式=b a ab ab b a 22226248-+- (4分) =2222ab b a - (6分)当a=-2,b=3时,原式=60 (8分) 21.(本题满分8分,每小题4分)(1)4)5(211=--x x (2) 341125x x -+-= 解:11x-2x+10=4 (2分) 解:5(x-3)-2(4x+1)=10 (2分) 9x=-6 (3分) 5x-15-8x-2=10 (3分)x=—32(4分) x= —9 (4分) 22.(本题满分8分)先解x -1=2(2x -1)得x=31(3分) ∴23x m mx -=+的解为x=3 (4分) 代入方程求出m= -59(8分)23. (本题满分10分)(1)(2)作图略 (各2分,共4分)(3) OA , PC ; (4) PH ﹤PC ﹤OC (用“<”号连接).(每空2分) 24. (本题满分10分)(1)图略 (每图2分,共4分) (2)图略 (每图3分,共6分)25. (本题满分10分)(1)①∠ FOM =∠ BOM ;②根据 对顶角相等 ,可得∠BOD = 32 度;③根据 同角的余角相等 ,可得∠EOF=∠AOC ;(每空1分,共5分) (2) 119° (10分) 26.(本题满分10分) 解:(1)设:x 个成人,(15- x )个学生。
七年级上册扬州数学期末试卷测试卷(解析版)

七年级上册扬州数学期末试卷测试卷(解析版)一、选择题1.下列运算中,正确的是( ) A .325a b ab += B .325235a a a += C .22330a b ba -=D .541a a -=2.下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .若 AC=BC ,则点 C 是线段 AB 的中点3.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .4.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 5.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( ) A .赚了 B .亏了 C .不赚也不亏 D .无法确定6.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元. A .100B .140C .90D .1207.-5的相反数是( ) A .-5B .±5C .15D .58.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A .272+x =(196-x ) B .(272-x )= (196-x ) C .(272+x )= (196-x ) D .×272+x = (196-x )9.下列叙述中正确的是( ) A .相等的两个角是对顶角B .若∠1+∠2+∠3 =180º,则∠1,∠2,∠3互为补角C .和等于90 º的两个角互为余角D .一个角的补角一定大于这个角10.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2 B .-1 C .1D .211.若,,则多项式与的值分别为( ) A .6,26B .-6,26C .-6,-26D .6,-2612.下列各式进行的变形中,不正确的是( ) A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则23a b = D .若32a b =,则94a b =13.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线14.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .115.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥二、填空题16.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)17.动点,A B 分别从数轴上表示10和2-的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,__________秒后,点,A B 间的距离为3个单位长度.18.比较大小:π1-+ _________3-(填“<”或“=”或“>”).19.如图,OC 是∠AOB 的平分线,如果∠AOB=130°,∠BOD=24°48',那么∠COD=_____.20.如图,直线AB ,CD 相交于点O ,∠EOC=70°,OA 平分∠EOC,则∠BOD=________.21.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .22.比较大小:227-__________3-. 23.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b =______.(用含字母a 的代数式表示)24.如图,已知3654AOB '∠=︒,射线OC 在AOB ∠的内部且12AOC BOC ∠=∠,则AOC ∠=___.25.有下列三个生活、生产现象: ①用两个钉子就可以把木条固定在干墙上; ②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有_____(填序号).三、解答题26.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a = ,b = ;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN =1? 27.先化简,在求值:221523243m mn mn m ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2m =-,12n =28.如图,A ,O ,B 三点在同一直线上,∠BOD 与∠BOC 互补. (1)∠AOC 与∠BOD 的度数相等吗,为什么?(2)已知OM 平分∠AOC ,若射线ON 在∠COD 的内部,且满足∠AOC 与∠MON 互余; ①∠AOC =32°,求∠MON 的度数;②试探究∠AON 与∠DON 之间有怎样的数量关系,请写出结论并说明理由.29.解下列方程 (1)235x +=;(2) 913.7-(12)-4.37x -=. 30.解方程; (1)3(x +1)﹣6=0 (2)1132x x +-= 31.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.32.如图,已知所有小正方形的边长都为1,点A 、B 、C 都在格点上,借助网格完成下列各题.(1)过点A 画直线BC 的垂线,并标出垂足D ; (2)线段______的长度是点C 到直线AD 的距离;(3)过点C 画直线AB 的平行线交于格点E ,求出四边形ABEC 的面积.33.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 35.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题: (1)求111112233420192020++++⨯⨯⨯⨯的值;(2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.36.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 37.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .40.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数: (2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.41.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.42.已知,,a b 满足()2440a b a -+-=,分别对应着数轴上的,A B 两点. (1)a = ,b = ,并在数轴上面出,A B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,点Q 到达点C 后停止运动.求点P 和点Q 运动多少秒时,,P Q 两点之间的距离为4,并求此时点Q 对应的数.43.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据同类项与合并同类项的知识进行选择排除即可. 【详解】A .3a 与2b 不是同类项不能合并,所以A 错误; B.32a 与23a 字母指数不同,不是同类项,所以B 错误;C.23a b 与23ba 所含字母相同且相同字母的指数相同,是同类项可以合并,计算正确;D.54a a a -=所以D 错误; 故答案为C. 【点睛】本题考查的是整式的运算,能够熟练掌握同类项与合并同类项的知识点是解题的关键.2.D解析:D 【解析】 【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可. 【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A 、B 、C 三点在一条直线上时,当AC=BC 时,点 C 是线段 AB 的中点;故错误; 故选:D . 【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C解析:C【解析】 【分析】 【详解】由四棱柱的四个侧面及底面可知,A 、B 、D 都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C . 故选C .4.D解析:D 【解析】由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.5.B解析:B 【解析】 【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出. 【详解】设第一件衣服的进价为x , 依题意得:x (1+25%)=90, 解得:x =72,所以赚了解90−72=18元;设第二件衣服的进价为y ,依题意得:y (1−25%)=150, 解得:y =120,所以赔了120−90=30元, 所以两件衣服一共赔了12元. 故选:B . 【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.6.C解析:C 【解析】 【分析】设该商品进价为x元,则售价为(x+70)×75%,进一步利用售价-进价=利润列出方程解答即可.【详解】设该商品进价为x元,由题意得(x+70)×75%-x=30,解得:x=90,答:该商品进价为90元.故选:C.【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.7.D解析:D【解析】【分析】根据相反数的定义直接求解即可.【详解】解:-5的相反数是5,故选D.【点睛】本题考查相反的定义,熟练掌握基础知识是解题关键.8.C解析:C【解析】试题解析:解:设应该从乙队调x人到甲队,196﹣x=(272+x),故选C.点睛:考查了一元一次方程的应用,得到调动后的两队的人数的等量关系是解决本题的关键.9.C解析:C【解析】【分析】根据余角、补角、对顶角的定义进行判断即可.【详解】解:A、两个对顶角相等,但相等的两个角不一定是对顶角;故A错误;B、补角是两个角的关系,故B错误;C、如果两个角的和是一个直角,那么这两个角互为余角;故C正确;D、锐角的补角都大于这个角,而直角和钝角不符合这样的条件,故D错误.故选:C.【点睛】此题考查对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.10.C解析:C【解析】【分析】把2x =-代入250x a -+=即可求解.【详解】把2x =-代入250x a -+=得-4-a+5=0解得a=1故选C.【点睛】此题主要考查方程的解,解题的关键是熟知把方程的解代入原方程.11.D解析:D【解析】【分析】分别把与转化成(a 2+2ab )+(b 2+2ab)和(a 2+2ab )-(b 2+2ab)的形式,代入-10和16即可得答案. 【详解】∵,, ∴=(a 2+2ab )+(b 2+2ab)=-10+16=6, a 2-b 2=(a 2+2ab )-(b 2+2ab)=-10-16=-26,故选D. 【点睛】本题考查整式的加减,熟练掌握运算法则是解题关键. 12.D解析:D【解析】【分析】根据等式的性质,逐项判断即可.【详解】解:32a b =,等式两边同时加2得:3222a b +=+,∴选项A 不符合题意;32a b =,等式两边同时减5得:3525a b -=-,∴选项B 不符合题意;32a b =,等式两边同时除以6得:23a b =,∴选项C 不符合题意; 32a b =,等式两边同时乘以3得;96a b =,∴选项D 符合题意.故选:D .【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.13.D解析:D【解析】【分析】根据各项定义性质判断即可.【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线.故选D.【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.14.A解析:A【解析】【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343. 所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A.【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.15.B解析:B【解析】试题分析:由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选B.考点:由三视图判断几何体.二、填空题16.【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故解析:a b【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故答案为:a+b.【点睛】本题考查了两点间的距离,列代数式,关键是根据图形得到AD+BC=AB+CD.17.或【解析】【分析】设经过t秒时间A、B间的距离为个单位长度,分两种情况:①B在A的右边;②B在A的左边.由BA=3分别列出方程,解方程即可;【详解】解:设经过t秒时间A、B间的距离为个单位解析:3或5【解析】【分析】设经过t秒时间A、B间的距离为3个单位长度,分两种情况:①B在A的右边;②B在A 的左边.由BA=3分别列出方程,解方程即可;【详解】解:设经过t秒时间A、B间的距离为3个单位长度,此时点A表示的数是:10-7t,点B 表示的数是:-2-4t.①当B在A的右边时:(10-7t)-(-2-4t.)=3,解得:t=3;②当B在A的左边时:(-2-4t.)-(10-7t)=3,解得:t=5;故答案为:3或5【点睛】本题考查一元一次方程的应用和数轴,解题关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出等量关系列出方程,再求解.18.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.解析:>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.19.2°【解析】【分析】由角平分线定义,求出∠BOC 的度数,然后利用角的和差关系,即可得到答案.【详解】解:∵OC 是∠AOB 的平分线,∠AOB=130°,∴,∴;故答案为:.【点睛】解析:2°【解析】【分析】由角平分线定义,求出∠BOC 的度数,然后利用角的和差关系,即可得到答案.【详解】解:∵OC 是∠AOB 的平分线,∠AOB=130°, ∴111306522BOC AOB ∠=∠=⨯︒=︒, ∴652448'4012'40.2COD BOC BOD ∠=∠-∠=︒-︒=︒=︒;故答案为:40.2︒.【点睛】 本题考查了角的计算,利用角平分线的性质得出∠BOC 是解题关键,又利用了角的和差. 20.35°【解析】试题分析:∵∠EOC=70°,OA 平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角解析:35°【解析】试题分析:∵∠EOC=70°,OA平分∠EOC,∴∠AOC=12∠EOC=12×70°=35°,∴∠BOD=∠AOC=35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角相等的性质,熟记定义并准确识图是解题的关键.21.3【解析】【分析】求出BC长,根据中点定义得出CDBC,代入求出即可.【详解】∵AB=4cm,AC=10cm,∴BC=AC﹣AB=6cm.∵D为BC中点,∴CDBC=3cm.故答案解析:3【解析】【分析】求出BC长,根据中点定义得出CD12=BC,代入求出即可.【详解】∵AB=4cm,AC=10cm,∴BC=AC﹣AB=6cm.∵D为BC中点,∴CD12=BC=3cm.故答案为:3.【点睛】本题考查了有关两点间的距离的应用,关键是求出BC的长和得出CD12=BC.22.【解析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵,∴;故答案为:.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则. 解析:<【解析】【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵223 7>,∴223 7-<-;故答案为:<.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则.23.a-5【解析】【分析】设阴影部分上面的数字为x,下面为x+7,根据日历中数字特征确定出a与b的关系式即可.【详解】设阴影部分上面的数字为x,下面为x+7,根据题意得:x=b-1,x+7解析:a-5【解析】【分析】设阴影部分上面的数字为x,下面为x+7,根据日历中数字特征确定出a与b的关系式即可.【详解】设阴影部分上面的数字为x,下面为x+7,根据题意得:x=b-1,x+7=a+1,即b-1=a-6,整理得:b=a-5,【点睛】此题考查了一元一次方程的应用,以及列代数式,弄清题意是解本题的关键.24.【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设∵∴∴∵∴∴∴故答案为:【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.解析:1218'︒【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设AOC x ∠= ∵12AOC BOC ∠=∠ ∴=2BOC x ∠∴=23AOB AOC BOC x x x ∠=∠+∠+=∵3654AOB '∠=︒∴33654x '=︒∴1218x '=︒∴1218AOC '∠=︒故答案为:1218'︒ 【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.25.②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线; ②把弯曲的公路改直能缩短路程,解析:②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线; 故答案为②.考点:线段的性质:两点之间线段最短.三、解答题26.(1)a=-8,b=4;(2)-1或6;(3)115秒,135秒或234秒. 【解析】【分析】(1)根据()232+4=0ab b +-,利用绝对值及偶次方的非负性即可求出;(2)若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,分三种情况讨论; (3)当MN =1时,根据运动情况,可分三种情形讨论,列出方程解答.【详解】(1)解:(1)∵()232+4=0ab b +-,∴ab=-32,b-4=0,∴a=-8,b=4.(2)根据题意,若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,线段AB 的中点表示的数为-2,设点P 表示的数为x ,分三种情况讨论:①当-2≤x<0时,则x+8-(4-x )=2(-x ),解得:x=-1;②当0≤x<4时,则x+8-(4-x )=2x ,方程无解③当x≥4时,则x+8-(x-4)=2x ,解得:x=6.综上:存在点P ,表示的数为-1或6.(3)设运动时间为t ,根据运动情况,可知MN=1的情况有三种:①M 在A →O 上,且M 在N 左侧,则2t+3t+1=12,解得t=115. ②M 在A →O 上,且M 在N 右侧,则2t+3t-1=12,解得t=135. ③M 在O →A 上,且N 到达点A ,此时,M 在A →O 上所用时间为8÷2=4(s ), M 在O →A 上速度为4个单位每秒,∵MN=1,∴(8-1)÷4=74, ∴此时时间t=4+74=234, 综上:当MN=1时,时间为115秒,135秒或234秒. 【点睛】本题考查了数轴上的动点问题、一元一次方程的应用、数轴、偶次方,解题的关键是:(1)利用偶次方的非负性,求出a ,b 的值;(2)分清多种情况找准等量关系,正确列出一元一次方程.27.26m mn -+,11【解析】【分析】根据整式的加减运算进行化简,再代入m,n 即可求解.【详解】解:原式225264m mn mn m ⎡⎤=---+⎣⎦ ()22546m mn m =-+-22546m mn m =--+26m mn =-+当2m =-,12n =时 原式()()21226112=---⨯+=. 【点睛】此题主要考查整式的化简求值,解题的关键熟知整式的加减运算法则.28.(1)∠AOC =∠BOD ,理由详见解析;(2)① 58°;②∠AON =∠DON ,理由详见解析.【解析】【分析】(1)根据补角的性质即可求解;(2)①根据余角的定义解答即可;②根据角平分线的定义以及补角与余角的定义,分别用∠AOM的代数式表示出∠AON与∠DON即可解答.【详解】解:(1)∠AOC=∠BOD,∵∠BOD与∠BOC互补,∴∠BOD+∠BOC=180°,∵∠AOC+∠BOC=180°,∴∠AOC=∠BOD;(2)①∵∠AOC与∠MON互余,∴∠MON=90°﹣∠AOC=58°;②∠AON=∠DON,理由如下:∵OM平分∠AOC,∴∠AOC=2∠AOM,∠COM=∠AOM,∵∠AOC与∠MON互余,∴∠AOC+∠MON=90°,∴∠AON=90°﹣∠AOM,∴∠CON=90°﹣3∠AOM,∵∠BOD与∠BOC互补,∴∠BOD+∠BOC=180°,∴∠CON+∠DON+2∠BOD=180°,又∵∠BOD=∠AOC=2∠AOM,∴∠DON=180°﹣∠CON﹣2∠BOD=180°﹣(90°﹣3∠AOM)﹣4∠AOM=90°﹣∠AOM.∴∠AON=∠DON.【点睛】本题主要考查角平分线的定义,补角、余角的求法和角的和与差,掌握角平分线的定义,补角余角的求法,找准角之间的关系是解题的关键.29.(1)x=1;(2)x=132-【解析】【分析】(1)移项、合并同类项、系数化1即可;(2)去分母、去括号、移项、合并同类项、系数化1即可.【详解】解:(1)235x +=移项、合并同类项,得22x =系数化1,得1x =(2) ()913.712 4.37x --=- 去分母,得()95.991230.1x --=-去括号,得95.991830.1x -+=-移项,得1830.1995.9x =-+-合并同类项,得18117x =-系数化1,得132x =-【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.30.(1)x =1;(2)x =﹣0.25.【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)去括号得:3x +3﹣6=0,移项合并得:3x =3,解得:x =1;(2)去分母得:2(x +1)﹣6x =3,去括号得:2x +2﹣6x =3,移项合并得:﹣4x =1,解得:x =﹣0.25.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.31.海路长240千米,公路长280千米.【解析】【分析】根据题意列方程求解即可. 【详解】 设:汽车行驶x 小时,则轮船行驶(x-3)小时,根据题意可列方程,24x=40(x-3)-40,解方程得,x=10,∴公路长40(x-3)=280千米,海路长为24x=240千米. 【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找出等量关系. 32.(1)画图见解析;(2)线段CD 的长度是点C 到直线AD 的距离;(3)四边形ABEC 的面积为:15【解析】【分析】(1)利用格线画AD ⊥BC 于点D;(2)利用点到直线的距离进行解答即可;(3)画13⨯ 方格的对角线得到CE//AB,利用平行四边形特征求出四边形ABEC 的面积【详解】(1)∵如图:2222221251251310AD =+==+==+=,BD ,AB ,又∵()()()2225+510= ∴222+AD BD AB =∴∠︒ADB =90∴AD ⊥BC∴如图所示:AD 为所求;(2)线段CD 的长度是点C 到直线AD 的距离;(3)如图所示:E 为所求;CE//AB,连接BE∵222263455125BC AD +==+=3,,1115355222ABC S BC AD =⨯⨯=⨯=∵AB CE == ∴//=CE AB CE AB ,∴四边形ABEC 是平行四边形 ∴1522152ABEC ABC S S ==⨯= ∴四边形ABEC 的面积为:15【点睛】 本题考查了勾股定理和勾股逆定理以及平行四边形的面积,掌握勾股定理求线段长度和勾股逆定理以及平行四边形的面积是解题的关键.33.(1)-2a ;(2)297mn m -.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a -7a=-2a .(2)解:原式=227324mn m mn m -+-=297mn m -.【点睛】本题考查整式的计算,关键在于掌握计算法则.四、压轴题34.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;。
江苏省扬州市竹西中学17—18学年上学期七年级期末考试数学试题(答案)$828820

2017~2018学年第一学期期末测试七年级数学试卷2018.1(满分150分,时间120分钟) 一、选择题(本大题共有8小题,毎小题3分,共24分.)1.﹣2的相反数是 ( )A .12- B .12C .2D .±2 2.下列运动属于平移的是( ) A .转动的电风扇的叶片B .行驶的自行车的后轮C .打气筒打气时活塞的运动D .在游乐场荡秋千的小朋友 3.单项式﹣3xy 2的系数和次数分别为( ) A .3,1B .﹣3,1C .3,3D .﹣3,34. 下列为同类项的一组是( ) A .332与xB .2xy -与241yx C .7与31- D .ab 与a 7 5.点C 在线段AB 上,下列条件中不能确定....点C 是线段AB 中点的是( ) A .AC =BC B .AC + BC= ABC .AB =2ACD .BC =0.5AB6.如图,一副三角板(直角顶点重合)摆放在桌面上, 若 ∠AOD =150°,则∠BOC 等于( ) A .30° B .45° C .50° D .60°7.如图,一个几何体上半部分为四棱锥,下半部分为正方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是 ( )8.已知∠AOB =30°,又自∠AOB 的顶点O 引射线OC .若∠AOC :∠AOB =4:3,那么∠BOC = ( ) A .10°B .40°C .45°D .70°或10°二、填空题(本大题共有10小题,毎小题3分,共30分. )9.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为 千米. 10.若23-=-y x ,那么的值是y x 623-+ . 11.若52=m ,62=n ,则n m +2= . 12.若有理数a 、b 满足2a -+(b +1)2=0,则a +b 的值为 .13.已知4x =-是关于x 的方程384x x a -=-的解,则a = .14.已知∠α=35°28′,则∠α的补角为 .15.如图,直线AB 、CD 相交于点O ,∠AOC=70°,∠BOE=25°,则∠DOE= . 16.如果a =(-99)0 ,b =(-0.1)-1,c =(-35)-2,那么a 、b .c 三数大小关系为__________.(用“>”连接) 17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________.18.下面是一种利用图形计算正整数乘法的方法,请根据图1﹣图4四个算图所示的规律,可知图5所表示的等式为 .三、解答题(本大题共有10小题,共96分. 请在该题号指定区域内作答,解答时应写出必要的文字说明、证明过程或演箅步骤) 19. (本题共10分)计算: (1)3)45()43(-+--+; (2) 4﹣(﹣2)﹣2﹣32÷(3.14﹣π)20.(本题共8分)先化简,再求值:a 3·(-b 3)2+(-12ab 2)3,其中a =14,b =4.21.(本题共10分)解方程:(1)2y +l=-5y +8 (2) 223146x x +--=22.(本题共8分)如图,所有小正方形的边长都为1,A 、B 、C 都在格点上. (1)过点C 画直线AB 的平行线(不写作法,下同); (2)过点A 画直线BC 的垂线,并注明垂足为G ; 过点A 画直线AB 的垂线,交BC 于点H.(3)线段 的长度是点A 到直线BC 的距离, 线段AH 的长度是点 到直线 的距离. (4)线段AG 、AH 的大小关系为AG AH.23.(本题8分)如图是由一些棱长都为1cm 的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加 块小正方体.24.(本题10分)关于x 的方程2(x ﹣3)﹣m=2的解和方程3x ﹣7=2x 的解相同. (1)求m 的值;(2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.AB C25.(本题10分)从扬州乘“K”字头列车A 、“T”字头列车B 都可直达南京,已知A 车的平均速度为60km/h ,B 车的平均速度为A 车的1.5倍,且走完全程B 车所需时间比A 车少45分钟. (1)求扬州至南京的铁路里程;(2)若两车以各自的平均速度分别从扬州、南京同时相向而行,问经过多少时间两车相距15km ?26.(本题10分)(1)你发现了吗?(23)2=23×23,(23)2-=21113322222()333=⨯=⨯,由上述计算,我们发现(23)2 (23)2-(2)请你通过计算,判断3354()()45-与之间的关系。
七年级上册扬州数学期末试卷测试卷(解析版)

七年级上册扬州数学期末试卷测试卷(解析版)一、选择题1.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >02.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x 的和为( )A .30B .35C .42D .39 3.钟面上8:45时,时针与分针形成的角度为( )A .7.5°B .15°C .30°D .45°4.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .35.下列各组中的两个单项式,属于同类项的一组是( ) A .23x y 与23xyB .3x 与3xC .22与2aD .5与-36.下列说法不正确的是( ) A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .两点之间线段最短7.如图正方体纸盒,展开后可以得到( )A .B .C .D .8.下列运算正确的是( ) A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -=9.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D10.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是() A .1B .3C .7D .911.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4B .-2C .2D .412.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109 B .2.85×108 C .28.5×108 D .2.85×106 13.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小14.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变D .商品的销售量不变15.下列各题中,运算结果正确的是( ) A .325a b ab += B .22422x y xy xy -= C .222532y y y -=D .277a a a +=二、填空题16.已知a b c d ,,,表示4个不同的正整数,满足23490a b c d +++=,其中1>d ,则a b c d +++的最大值是__________.17.已知23a b -=,则736a b +-的值为__________.18.马拉松(Marathon)国际上非常普及的长跑比赛项目,全程距离26英里385码,折合约为42000米,用科学记数法表示42000为 ______.19.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.20.已知a +2b =3,则7+6b +3a =________.21.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.22.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.23.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.24.0的绝对值是_____. 25.若623mxy -与41n x y -的和是单项式,则n m = _______.三、解答题26.解方程 (1)528x +=- (2)4352x x -=+ (3)()4232x x -=-- (4)2151136x x +--= 27.先化简,再求值:()()22224333a b ab aba b ---+.其中 1a =-、 2b =-.28.计算:(1)()360.655---+-+ (2)()()202031113122⎛⎫---÷⨯-- ⎪⎝⎭29.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点O 画AD 的平行线CE ,过点B 画CD 的垂线,垂足为F ; (2)四边形ABCD 的面积为____________30.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表: 居民每月用电量单价(元/度)不超过50度的部分0.5 超过50度但不超过200度的部分 0.6 超过200度的部分0.8已知小智家上半年的用电情况如表(以200度为标准,超出200度记为正、低于200度记为负) 一月份 二月份 三月份 四月份 五月份 六月份 ﹣50+30﹣26﹣45+36+25根据上述数据,解答下列问题(1)小智家用电量最多的是 月份,该月份应交纳电费 元; (2)若小智家七月份应交纳的电费200.6元,则他家七月份的用电量是多少? 31.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点 A , B 表示的数分别为 a , b ,则 A , B 两点之间的距离AB=a-b ,线段 AB 的中点M 表示的数为2a b.如图,在数轴上,点A,B,C 表示的数分别为-8,2,20.(1)如果点A 和点C 都向点B 运动,且都用了4秒钟,那么这两点的运动速度分别是点A 每秒_______个单位长度、点C 每秒______个单位长度;(2)如果点A 以每秒1个单位长度沿数轴的正方向运动,点C 以每秒3个单位长度沿数轴的负方向运动,设运动时间为t 秒,请问当这两点与点B 距离相等的时候,t 为何值? (3)如果点A 以每秒1个单位长度沿数轴的正方向运动,点B 以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C 点时就停止不动,设运动时间为t 秒,线段AB 的中点为点P ;① t 为何值时PC=12; ② t 为何值时PC=4.32.如图,点A ,B 在长方形的边上.(1)用圆规和无刻度的直尺在长方形的内部作∠ABC =∠ABO ;(保留作图痕迹,不写作法)(2)在(1)的条件下,若BE 是∠CBD 的角平分线,探索AB 与BE 的位置关系,并说明理由.33.如图,在方格纸中,A 、B 、C 为3个格点,点C 在直线AB 外.(1)仅用直尺,过点C 画AB 的垂线m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系.四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.35.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 37.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”) (2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.38.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.39.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .40.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?41.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.42.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).43.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据图示知b <a <0,然后利用不等式的性质对以下选项进行一一分析、判断. 【详解】 解:如图:根据数轴可知,b <a <0, A 、a >b ,正确; B 、ab >0,故B 错误; C 、0b a -<,故C 错误; D 、0a b +<,故D 错误; 故选:A. 【点睛】本题考查了利用数轴比较大小,解题的关键是根据数轴得到b <a <0.2.D解析:D 【解析】 【分析】根据题意可知第一次所得的结果≤26,第二次所得的结果>26,列不等式组并解除不等式组得解后再计算满足条件的所有整数的和即可. 【详解】由题意得31263(31)126xx-≤⎧⎨--⎩①>②,解不等式①得,x≤9,解不等式②得,x>103,∴x的取值范围是103<x≤9,∴满足条件的所有整数x的和为4+5+6+7+8+9=39.故答案选D.【点睛】本题考查一元一次不等式组的应用,解题的关键是正确理解程序所表示的意义,能根据题意列出不等式组.3.A解析:A【解析】试题解析:钟面上8:45时,分针指向9,时针在8和9之间,夹角的度数为:4530307.5.60-⨯=故选A.4.A解析:A【解析】【分析】根据线段中点的性质,可得MC,NC的长,根据线段的和差,可得答案.【详解】解:(1)由点M、N分别是线段AC、BC的中点,得MC=12AC=12×4=2,NC=12BC=12×6=3.由线段的和差,得:MN=MC+NC=2+3=5;故选:A.【点睛】本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键.5.D解析:D【解析】【分析】所含字母相同,相同字母的指数也相同的项叫同类项,由此可确定.【详解】A选项,相同字母的指数不同,不是同类项,A错误;B选项,3x字母出现在分母上,不是整式,更不是单项式,B错误;C选项,不含有相同字母,C错误;D选项,都是数字,故是同类项,D正确.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.6.C解析:C【解析】【分析】根据对顶角的性质,补角的定义,线段、直线的定义和性质判断即可.【详解】解:A、B、D选项均正确,C选项,一个角的补角不一定大于这个角,只有当这个角为锐角时,其补角大于这个角,当这个角为直角时,其补角等于这个角,当这个角为钝角时,其补角小于这个角,C说法错误.故选:C【点睛】本题考查了角、线段、直线的基本概念,了解相关的性质和定义是解题的关键.7.A解析:A【解析】【分析】根据折叠后白色圆与蓝色圆所在的面的位置进行判断即可.【详解】A.两个白色圆和一个蓝色圆折叠后互为邻面,符合题意;B.两个白色圆所在的面折叠后是对面,不符合题意;C.白色圆与一个蓝色圆所在的面折叠后是对面,不符合题意;D.白色圆与一个蓝色圆所在的面折叠后是对面,不符合题意.故答案选A.【点睛】本题考查了正方体的展开图,解决本题的关键是熟练掌握正方体的展开图,明白对面相隔不相邻这一原则.8.D解析:D【解析】【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键,注意不是同类项不能合并.9.A解析:A【解析】【分析】A、B、C、D四个点,哪个点离原点最远,则哪个点所对应的数的绝对值最大,据此判断即可.【详解】∵A、B、C、D四个点,点A离原点最远,∴点A所对应的数的绝对值最大;故答案为A.【点睛】本题考查绝对值的意义,绝对值表示数轴上的点到原点的距离,理解绝对值的意义是解题的关键.10.A解析:A【解析】【详解】a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,a9=7,…不难发现此组数据为6个一循环,2018÷6=336…2,所以第2018个数是1.故选A.【点睛】本题考查了规律型——数字的变化类,此类问题关键在于找出数据循环的规律.11.A解析:A【解析】【分析】-=-1,然后去括号、合并同类项,再利用整体代入法求根据相反数的性质并整理可得a4b值即可.【详解】-互为相反数,解:∵a和14b-=0∴a+14b-=-1整理,得a4b()()2210723b a a b -++--=242071421b a a b -++--=3121a b --=()341a b --=()311⨯--=-4故选A .【点睛】此题考查的是相反数的性质和整式的化简求值题,掌握相反数的性质、去括号法则和合并同类项法则是解决此题的关键.12.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】285 000 000=2.85×108.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m 大3.【详解】解:∵3+m=m+3,m+3表示比m 大3,∴3+m 比m 大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.14.C解析:C【解析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.15.C解析:C【解析】【分析】根据合并同类项的运算法则进行计算,即可得到答案.【详解】解:A 、32a b +无法计算,故A 错误;B 、2242x y xy -无法计算,故B 错误;C 、222532y y y -=,故C 正确;D 、78a a a +=,故D 错误;故选:C.【点睛】本题考查了合并同类项的运算法则,解题的关键是熟练掌握合并同类项的运算法则.二、填空题16.70【解析】【分析】要使a+b+c+d 最大,则d 应尽可能小,根据已知,得到d=2,进一步确定c 尽可能小,则c=1,由四个数不相同,则b 取3,从而计算出a ,即可得到结论.【详解】∵d >1,d解析:70【解析】【分析】要使a +b +c +d 最大,则d 应尽可能小,根据已知,得到d =2,进一步确定c 尽可能小,则c =1,由四个数不相同,则b 取3,从而计算出a ,即可得到结论.∵d>1,d为正整数,要使a+b+c+d最大,则d应尽可能小,∴d=2,同样的道理,c应尽可能小.∵c为正整数,∴c=1,∴a+b2+13+24=90,∴a+b2=73.同理,b尽可能小,a尽可能大.∵a、b、c、d表示4个不同的正整数,∴b=3,∴a=64,∴a+b+c+d=64+3+1+2=70.故a+b+c+d的最大值是70.故答案为:70.【点睛】本题考查了有理数的混合运算.解题的关键是根据已知依次确定d、c、b的取值.17.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.18.2×104【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×104【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将42000用科学记数法表示为4.2×10.故答案是:4.2×104【点睛】本题考查科学记数法,熟练掌握科学记数法的基本形式是解决本题的关键.19.过一点有且只有一条直线与已知直线垂直【解析】【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论.【详解】∵OM⊥l,ON⊥l,∴OM与ON重合(平面内,经过一点有且只有解析:过一点有且只有一条直线与已知直线垂直【解析】【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论.【详解】∵OM⊥l,ON⊥l,∴OM与ON重合(平面内,经过一点有且只有一条直线与已知直线垂直),故答案为:平面内,经过一点有且只有一条直线与已知直线垂直.【点睛】本题考查了垂线,利用了垂线的性质:平面内过一点有且只有一条直线与已知直线垂直.20.16【解析】【分析】将原式进行变形,然后整体代入求值即可.【详解】解:7+6b+3a=7+3(a+2b)当a+2b=3时,原式=7+3×3=16故答案为:16本题考查代数值解析:16【解析】【分析】将原式进行变形,然后整体代入求值即可.【详解】解:7+6b+3a=7+3(a+2b)当a+2b=3时,原式=7+3×3=16故答案为:16【点睛】本题考查代数值求值,利用整体代入思想解题是本题的解题关键.21.一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答解析:一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.22.1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A 应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长解析:1或5【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.23.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75, 17340.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56 cm,∴注水1分钟,丙的水位上升510463⨯=cm,①当甲比乙高16cm时,此时乙中水位高56cm,用时1分;②当乙比甲水位高16cm 时,乙应为76cm,757=665÷分,当丙的高度到5cm时,此时用时为5÷103=32分,因为73<52,所以75分乙比甲高16cm.③当丙高5cm时,此时乙中水高535624⨯=cm,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm,当乙的水位达到5cm时开始流向甲,此时用时为355+5243⎛⎫-÷⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm,当甲的水位高为546cm时,乙比甲高16cm,此时用时155201734146340⎛⎫+-÷=⎪⎝⎭分;综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm.【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点. 24.0【解析】【分析】根据绝对值的意义求解即可.【详解】解:根据绝对值的意义,得|0|=0.【点睛】本题考查绝对值,比较基础,应熟练掌握基础知识.解析:0【解析】【分析】根据绝对值的意义求解即可.【详解】解:根据绝对值的意义,得|0|=0.【点睛】本题考查绝对值,比较基础,应熟练掌握基础知识.25.8【解析】【分析】根据同类项的特点即可求解.【详解】∵与的和是单项式∴与是同类项,故6-m=4,n-1=2∴m=2,n=3∴8故答案为:8.【点睛】此题主要考查整式的运算,解解析:8【解析】【分析】根据同类项的特点即可求解.【详解】∵623m xy -与41n x y -的和是单项式 ∴623m x y -与41n x y -是同类项,故6-m=4,n-1=2∴m=2,n=3∴n m =8故答案为:8.【点睛】此题主要考查整式的运算,解题的关键是熟知同类项的特点.三、解答题26.(1)x=-2;(2)x=4;(3)x=2;(4)x=-3【解析】【分析】(1)先移项合并同类项,再系数化1;(2)先移项合并同类项,再系数化1;(3)先去括号,再移项合并同类项,最后系数化1;(4)先去分母,再去括号,然后一项合并类项,最后在系数化1.【详解】解:(1)528x +=-,移项合并同类项得:5x=-10系数化1得:x=-2;(2)4352x x -=+移项合并同类项得:2x=8系数化1得:x=4;(3)()4232x x -=--去括号得:4-x=2-6+3x移项合并同类项得:4x=8系数化1得:x=2;(4)2151136x x +--= 去分母得:2(2x+1)-(5x-1)=6去括号得:4x+2-5x+1=6移项合并同类项得:-x=3系数化1得:x=-3【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的步骤是解题的关键.27.223a b ab -; 2-【解析】【分析】原式去括号合并得到最简结果,将a ,b 值代入计算即可求值.【详解】解:()()2222 4333a b ab ab a b ---+2222 12439a b ab ab a b =-+-22 3a b ab =-,当 1a =-、 2b =-时,原式()()()()()()22 31212=642=-⨯---⨯----=-.【点睛】本题考查了整式的加减化简求值,掌握去括号和合并同类项法则是解答此题的关键.28.(1)-11;(2)12-【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)原式60.650.6=---+ 11=-.(2)原式()1111823=-⨯-- 312=- 12=-. 【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则. 29.(1)见解析;(2)20【解析】【分析】(1)根据平行线、垂线的定义即可作图;(2)根据割补法即可求解.【详解】(1)如下图:(2)S四边形ABCD=6×6-12×4×3-12×2×1-12×6×3=36-6-1-9=20【点睛】此题主要考查几何图形基础,解题的关键是熟知平行线、垂线及三角形的面积公式. 30.(1)五,143.8;(2)他家七月份的用电量是307度.【解析】【分析】(1)根据超出的多少得出答案,然后再根据用电量分段计算电费即可;(2)估算出用电量超过200度,设未知数列方程求解即可.【详解】解:(1)五月份超过200度36度,是最多的,共用电236度,0.5×50+0.6×(200-50)+0.8×(236-200)=143.8元,故答案为:五,143.8;(2)∵200.6>0.5×50+0.6×150,∴用电量大于200度,设用电量为x度,由题意得,0.5×50+0.6×150+0.8(x﹣200)=200.6,解得,x=307,答:他家七月份的用电量是307度.【点睛】本题主要考查一元一次方程的应用,能够根据题意列出方程是解题的关键.31.(1)2.5;4.5;(2)t=4或7;(3)①112;②20【解析】【分析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017~2018学年第一学期期末测试七年级数学试卷2018.1(满分150分,时间120分钟)一、选择题(本大题共有8小题,毎小题3分,共24分.)1.﹣2的相反数是()A.12-B.12C.2 D.±22.下列运动属于平移的是()A.转动的电风扇的叶片B.行驶的自行车的后轮C.打气筒打气时活塞的运动 D.在游乐场荡秋千的小朋友3.单项式﹣3xy2的系数和次数分别为( )A.3,1 B.﹣3,1 C.3,3 D.﹣3,34. 下列为同类项的一组是()A.332与x B.2xy-与241yx C.7与31- D.ab与a75.点C在线段AB上,下列条件中不能确定....点C是线段AB中点的是( )A.AC =BC B.AC + BC= AB C.AB =2AC D.BC =0.5AB 6.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30° B.45° C.50° D.60°7.如图,一个几何体上半部分为四棱锥,下半部分为正方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是()8.已知∠AOB=30°,又自∠AOB的顶点O引射线OC.若∠AOC:∠AOB=4:3,那么∠BOC = ( )A.10°B.40°C.45°D.70°或10°二、填空题(本大题共有10小题,毎小题3分,共30分. )第6题9.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为 千米. 10.若23-=-yx ,那么的值是y x 623-+ . 11.若52=m,62=n ,则n m +2= .12.若有理数a 、b 满足2a -+(b +1)2=0,则a +b 的值为 . 13.已知4x =-是关于x 的方程384xx a -=-的解,则a = . 14.已知∠α=35°28′,则∠α的补角为 .15.如图,直线AB 、CD 相交于点O ,∠AOC=70°,∠BOE=25°,则∠DOE= . 16.如果a =(-99)0,b =(-0.1)-1,c =(-35)-2,那么a 、b .c 三数大小关系为__________.(用“>”连接)17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________.18.下面是一种利用图形计算正整数乘法的方法,请根据图1﹣图4四个算图所示的规律,可知图5所表示的等式为 .三、解答题(本大题共有10小题,共96分. 请在该题号指定区域内作答,解答时应写出必要的文字说明、证明过程或演箅步骤) 19. (本题共10分)计算:(1)3)45()43(-+--+; (2) 4﹣(﹣2)﹣2﹣32÷(3.14﹣π)20.(本题共8分)先化简,再求值:a 3·(-b 3)2+(-12ab 2)3,其中a =14,b =4.ADC BEO第15题21.(本题共10分)解方程:(1)2y+l=-5y+8 (2)223146x x+--=22.(本题共8分)如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写作法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离,线段AH的长度是点到直线的距离.(4)线段AG、AH的大小关系为AG AH.23.(本题8分)如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.24.(本题10分)关于x的方程2(x﹣3)﹣m=2的解和方程3x﹣7=2x的解相同.(1)求m的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.AB C25.(本题10分)从扬州乘“K”字头列车A 、“T”字头列车B 都可直达南京,已知A 车的平均速度为60km/h ,B 车的平均速度为A 车的1.5倍,且走完全程B 车所需时间比A 车少45分钟.(1)求扬州至南京的铁路里程;(2)若两车以各自的平均速度分别从扬州、南京同时相向而行,问经过多少时间两车相距15km ?26.(本题10分)(1)你发现了吗?(23)2=23×23,(23)2-=21113322222()333=⨯=⨯,由上述计算,我们发现(23)2 (23)2-(2)请你通过计算,判断3354()()45-与之间的关系。
(3)我们可以发现:()m b a - ()m a b(0ab ≠)。
(4)利用以上的发现计算:43-57157⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫⎝⎛27.(本题10分)几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行知识探索.【回忆】(1)如图,A、B是河l两侧的两个村庄.现要在河l上修建一个抽水站C,使它到A、B两村庄的距离的和最小,请在图中画出点C的位置.【探索】(2)如图,A、B两个村庄在一条笔直的马路的两端,村庄 C在马路外,要在马路上建一个垃圾站O,使得AO+BO+CO最小,请在图中画出点O的位置.(3)如图,A、B、C、D四个村庄,现建一个垃圾站O,使得AO+BO+CO+DO最小,请在图中画出点O的位置.28.(本题12分)如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角尺绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB的度数,∠MOB=.(2)将图1中的三角尺绕点O逆时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数.(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.(4)将图1中的三角尺绕点O以每秒钟15°的转速顺时针旋转一周,当时间t为秒钟时,ON所在的直线恰好平分∠AOC.(直接写答案)2017-2018学年度第一学期期末考试七年级数学试卷(答案)一、选择题:(每题3分,共24分)1——8 C C D C B A B D二、填空题:(每题3分,共30分)9.1.496×108 10. -1 11. 30 12. 113. -3 14. 144°32ˊ15.45°16.a> c >b17. 2x+8=3x-12 18. 21×13=273三、解答题(共96分)19. (每小题5分,共10分)(1)原式=5(2)原式= -5.2520. (8分)原式=7/8a3b6………………………5分=56 ………………………8分21.(每小题5分,共10分)(1)y=1(2)x=022.(本题8分)(1)图略………………………1分(2)图略………………………3分(3)AG 、H、AB ………………………6分(4)< ………………………8分23. (本题8分)(1)图略………………………3+3分(2)6 ………………………8分24.(本题10分)(1)m=6 ………………………4分(2)当点P在线段AB上时,AQ=5…………………………7分当点P在线段AB的延长线上时,AQ=9………………10分25.(本题10分)(1)扬州至南京的铁路里程为135km。
………………………4分(2)经过0.8小时,即相遇前,两车相距15km ;…………………7分 经过1小时,即相遇后,两车相距15km 。
…………………10分26.(本题10分) (1)我们发现(23)2 = (23)2- …………………2分(2)计算得64125453=⎪⎪⎭⎫ ⎝⎛, 64125543-=⎪⎪⎭⎫ ⎝⎛ ∴3-35445⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛…………………………………………4分 (3)我们可以发现:()m ba- = ()m a b(0ab ≠)。
…………………6分(4)利用以上的发现计算:43-57157⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫⎝⎛ ==⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛43577155189575771533=⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛………10分 27.(本题10分) 【回忆】…………………………3分【探索】C………………………………………7分O…………………………………………10分O28.(本题12分)(1)∠MOB=300.………………………………………2分(2)∠CON的度数为1500.…………………………………………5分(3)∠AOM-∠NOC=300……………………………………………8分(4)当时间t为 8或20 秒钟时,ON所在的直线恰好平分∠AOC…………12分。