直角三角形全等判定定理
(24.6直角三角形全等的判定定理

复习回顾
三角形全等的判定的判定方法
公理:
1、三边对应相等的两个三角形全等(SSS) 2、两边及夹角对应相等的两个三角形全等(SAS) 3、两角及其夹边对应相等的两个三角形全等(ASA)
定理:
两角及其中一角的对边对应相等的两个三角形全等(AAS)
情境问题1:
A
∠B=∠F=90°
D
B
C
E
F
可判定全等; 可判定全等; 可判定全等; 可判定全等;
情境问题1:
图中舞台背景的形状是两个直角三角形, 为了美观,工作人员想知道这两个直角三 角形是否全等,但每个三角形都有一条直 角边被花盆遮住无法测量,你能帮他想想办 法吗?
学习目标与重难点
学习目标 : 1. 掌握直角三角形全等判定定理的证明和它的 简单应用。 2.初步培养综合运用知识解决问题能力,进一 步提高推理能力。 3.培养思维的多样性。 学习重点: 直角三角形判定定理的证明。 学习难点: 直角三角形判定定理证明的灵活运 用。
∴∠ABC+∠DFE=90° (等量代换)
判断两个直角三角形全等的方法有:
(1): SSS ; (2): SAS ;
(3): ASA ; (4): AAS ;
(5): HL ;
拓 展 延
伸
1、如图,C是路段AB的中点,两人从C同时出发, 以相同的速度分别沿CD、CE方向行走,并同时到 达D,E两地,此时,DA⊥AB,EB⊥AB,路段 AD与路段BE的距离相等吗?为什么?
这两个直角三角形全等吗?
A
DBΒιβλιοθήκη CEF你能用学过的公理验证吗?
HL定理: 斜边和一条直角边对应相等的两个三角形全等 已知:如图24—20,在Rt△ABC和Rt△DEF中, ∠C=∠F=90°,AB=DE,BC=EF. 求证:Rt△ABC≌Rt△DEF.
直角三角形全等的判定

回味无穷
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
;开天录 /booktxt/7044/ 开天录;
没来告诉你,也知道很麻烦."风若尔也叹了口气."那你现在有什么打算?"巧尔问她.风若尔叹道:"还能有什么打算,去肯定是要去の,就怎么去了.""你真要进黑河谷?"巧尔她后说:"不过咱告诉你,咱可不去那种鬼地方,为了壹个盘子丢了命可不值,你姐姐咱还想多活些年头呢.""咱没说要你去."风若 尔说:"咱只是想请你出面,给咱邀请一些人罢了.""邀请人?"巧尔说:"你要找人你自己找去,可别拉上咱.""刚刚还说你爱咱呢,怎么回事呀你,壹提到正事尔你就这样呀."风若尔有些无语了.巧尔壹本正经の说:"这事尔可不是小事尔,都是丢命の事情,你说你为壹个盘子值得吗?""值得!"风若尔却沉 声道:"因为那里面有咱の信仰.""还你の信仰呢."巧尔说:"你和咱说,是什么信仰.""因为里面有咱の真爱."风若尔沉声道,"咱必须要找回它,找到咱の心.""咱说若尔,你还想着当年の事情呢?"巧尔有些无奈,她劝道:"咱说这样真の值得吗?只不过是壹个空口承诺而已,你没有必要壹直这样子守 着.""这可不是壹般の承诺,而是咱の青春,咱の壹切."风若尔说."有什么壹切不壹切の."巧尔说:"当年人家都和你说明白了,你又何苦壹厢情愿呢,你这是中了什么邪了你,这都过去了两千多年了."
有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。
19.7 直角三角形全等的判定

第19章 几何证明§19.7 直角三角形全等的判定学习目标 通过探索判定两个直角三角形全等的特殊的方法,体会特殊与一般的关系,掌握“斜边直角边”这一判定两个直角三角形全等的特殊方法;会利用“斜边直角边”判定方法和一般三角形全等的方法判定直角三角形全等;继续体会用“分析综合法”探求解题思路,在探索判定两个直角三角形全等的特殊的方法的过程中体验转化的思想。
知识概要1.直角三角形全等的判定定理如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。
(简记为H .L .) 在两个直角形中,“边、边、角”对应的情况有两种:“S .A .S ”和“H .L ”定理.注意:任意三角形全等的判定方法同样适用于直角三角形,而H .L 定理是直角三角形特有的全等判定方法。
使用该特有方法时,一定要指出直角三角形这一前提条件。
2.判定两个直角三角形全等的方法一共有5种方法判定两个直角三角形全等:S .A .S ,A .A .S ,A .S .A ,S .S .S ,H .L .。
经典题型精析(一)一般方法判定直角三角形全等例1.如图,已知DC AB //,=∠=∠D A 52°,点E 在AD 上,BE 平分ABC ∠,CE 平分BCD ∠.求证:DC AB BC +=.例2.如图,在ABC Rt ∆中,=∠ACB 90°,点E D 、分别在AC AB ,上,BC CE =,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得到CF ,连接EF 。
(1)补充完成图形; (2)若CD EF //,求证:=∠BDC 90°。
(二) H .L .定理的应用例3.已知:如图,AC 平分BAD ∠,AB CE ⊥于点E ,AD CF ⊥于点F ,且DC BC =。
求证:DF BE =.试一试:已知:如图,CD AD ⊥,CD BC ⊥,C D 、分别为垂足,AB 的垂直平分线EF 交AB 于点E ,交CD 于点F ,DF BC =。
直角三角形的全等判定

N
B
已知:如图,OM=ON,PM⊥OM,PN⊥ON.
求证:∠AOP=∠BOP.
已知△ABC ,请找出一点P,使它到三边的距离 都相等(只要求作出图形,并保留作图痕迹).
三角形的角平分线的交点到三边的距离相等。 A
B
C
议一议
蓄势待发
如图,已知∠ACB=∠BDA=900 , 要使△ABC≌△BDA, 还需要增加一个什么条件?把它们分别写出来. 增加AC=BD; C D 增加BC=AD; 增加∠ABC=∠BAD ; B A 增加∠CAB=∠DBA ;
请将证明过程规范化书写出来.
学以致用
1. 如图,两根长度为12米的绳子,一端 系在旗杆上,另一端分别固定在地面两 个木桩上,两个木桩离旗杆底部的距离 相等吗?请说明你的理由。 解:BD=CD ∵ ∠ADB=∠ADC=90°
∵AB=AC(已知) AD=AD(公共边)
∴Rt△ABD≌Rt△ACD(HL) ∴BD=CD
填一填
忆一忆
相等 ,对 1、全等三角形的对应边 ---------, 相等 应角----------2、判定三角形全等的方法有:
SAS、ASA、AAS、SSS
3、认识直角三角形 Rt△ABC 直角三角形的两个 锐角互余。
A
直 角 边 斜边角三角形, 工作人员想知道两个直角三角形是否 全等,但每个三角形都有一条直角边 被花盆遮住,无法测量。 (1) 你能帮他想个办法吗?
B’
如图在Δ ABC和Δ A’B’C’中, ∠ C= ∠ C’=RT ∠
AB=A’B’,AC=A’C’ 说明Δ ABC和Δ A’B’C’ 全等的由。 分析:AC=A’C’,无论RTΔ ABC和RTΔ A’B’C’的位置如 何。我们总是可以通过作旋转、平移、轴对称变换得到图形, 如图,即A‘C’ 和AC重合,点B'和点B分别在AC两 侧.
直角三角形全等判定定理

直角三角形全等判定定理直角三角形全等判定定理,也叫直角三角形全等条件定理、勾股定理或斯托克斯定理,是数学中一个重要的定理,它说明在任何直角三角形中,若有任意两边长度相等,则三角形就是全等三角形,即两个相等的角都是90度,且三条边长也是相等的。
斯托克斯定理曾是希腊数学家欧几里得的儿童时代创造,后来被苏格拉底改写为定理形式。
斯托克斯定理是一个有关直角三角形的数学定理,它告诉我们,如果两条边的长度相等,则该三角形是一个直角三角形。
斯托克斯定理也称为勾股定理,又称“直角三角形全等性判定定理”,它是古希腊时期最著名的定理之一,是古希腊数学家欧几里得最早发现的定理之一,他在其《几何》中对此进行了证明。
斯托克斯定理可以用来证明所有直角三角形都具有三条边和两个相等的角,这种特殊的三角形称为全等三角形。
根据斯托克斯定理,如果一个三角形的其中两条边的长度相等,则该三角形必定是一个直角三角形,而且它的三条边和两个相等的角都是相等的。
斯托克斯定理也可以用来证明股数定理,即如果a2+b2=c2,则这个三角形就是一个直角三角形,而且它的三条边和两个相等的角都是相等的。
斯托克斯定理是数学中一个重要的定理,它能够提供一个简单而又有效的方法来验证一个三角形是否为直角三角形。
它可以被用来证明某一个三角形是否全等,也可以用来检验三角形的长度是否相等。
因此,斯托克斯定理是数学中一个重要的定理,它在多个数学问题中得到广泛的应用,不但在几何和数学中得到应用,而且在工程学、计算机科学等领域中都有着重要的作用。
斯托克斯定理可以用大量数学证明来证明,但它的核心思想仍然是:任何直角三角形中,如果有任意两边长度相等,则这个三角形就是全等三角形,即两个相等的角都是90度,且三条边长也是相等的。
斯托克斯定理是一个简单而又有效的方法,它可以快速验证一个三角形是否为直角三角形,它的应用领域也十分广泛,在科学、工程学和计算机科学等领域中都有着重要的作用。
直角三角形全等的判定

直角三角形全等的判定

直角三角形全等的判定
直角三角形全等是指两个直角三角形的对边,对应边和
斜边分别相等。
在进行直角三角形全等的判定时,可以使用两种不同的方法,即SAS(边-角-边)和SSS(边-边-边)定理。
1. SAS定理:
SAS定理是指两个直角三角形的一条边、夹角和另一条边分别
相等,则这两个直角三角形全等。
具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。
b) 两个直角三角形的一条边相等。
c) 两个直角三角形的夹角(不是直角的角)相等。
d) 两个直角三角形的另一条边相等。
2. SSS定理:
SSS定理是指两个直角三角形的三条边分别相等,则这两个直
角三角形全等。
具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。
b) 两个直角三角形的三条边分别相等。
需要注意的是,在判定直角三角形全等时,必须要确定
其中一个角为直角。
因为如果两个直角三角形的所有边长相等,但没有一个角为直角,那么这两个三角形并不一定全等。
在解题时,需要根据给定的条件,判断所给的直角三角
形是否全等。
常见的判定方法包括测量边长和角度、利用勾股定理判断是否满足直角条件等。
判断过程中需要小心操作,确保测量准确、计算无误。
总之,直角三角形的全等判定是一种基本的几何判断方法,可以通过SAS定理或SSS定理来进行。
在解题时,要注意给定的条件,准确判断边长和角度是否相等,以确定两个直角三角形是否全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在Rt△ADB和Rt△ADC中
A
{ AB=AC AD=AD
∴ Rt△ADB≌Rt△ADC(HL)
∴BD=CD,∠BAD=∠CAD
等腰三角形三线合一
B
D
C
例2
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD, 垂足分别为C,D,AD=BC,求证: △ABC≌△BAD.
证明:∵ AC⊥BC, AD⊥BD
动动手 做一做
用三角板和圆规,画一个Rt△ABC,使得∠C=90°, 一直角边CA=4cm,斜边AB=5cm.
B
5cm
A
4cm
C
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”或“HL”
斜边、直角边公理 (HL)
有斜边和一条直角边对应相等的两个直角三角形全等.
忆一忆
1、全等三角形的对应边 应角-相---等-------
-相---等-----,,对
2、判定三角形全等的方法有:
SAS、ASA、AAS、SSS
认识直角三角形 Rt△ABC
A
直
斜边
角
边
C
直角边
B
直角三角形全等的判定
直角三角形全等的判定
舞台背景的形状是两个直角三角形,工作人 员想知道两个直角三角形是否全等,但每个三 角形都有一条直角边被花盆遮住,无法测量。 (1) 你能帮他想个办法吗?
∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
ቤተ መጻሕፍቲ ባይዱ
D
AB BA BC AD
∴ Rt△ABC≌Rt△BAD (HL) A
C B
小结
一般三角
形全等的 “SAS” “ ASA ” “ AAS ” “ SSS ”
判定
直角三角
形全等的 判定
“
SAS
”
“
ASA
”
“
AAS
”
“
SSS
”
“
HL
”
灵活运用各种方法证明直角三角形全等
根据ASA,AAS可测量对应一边和一锐角 根据SAS可测量其余两边与这两边的夹角。
(2)如果他只带一个卷尺,能完成这个任务吗? 工作人员测量了每个三角形没有被遮住的直
角边和斜边,发现它们分别对应相等。于是,他 就肯定“两个直角三角形是全等的”。
斜边和一条直角边对应相等→ 两个直角三角形全等
你相信这个结论吗? 让我们来验证这个结论。
∴ △BFD≌ △CED(HL).
∴ ∠B=∠C.
即 △ABC是等腰三角形.
• 布置作业 P44 T8
B
∵∠C=∠C′=90°
∴在Rt△ABC和Rt△ABC中 A
C
AB=AB BC=BC
B′
∴Rt△ABC≌Rt△A′B′ C′ (HL) A ′
C′
判断: 满足下列条件的两个三角形是否全等?为什么?
1.一个锐角及这个锐角的对边对应相等的两个直角三角形.
全等 (AAS)
判断: 满足下列条件的两个三角形是否全等?为什么?
应用
学以致用
已知:如图,D是△ABC的BC边上的中 A
点,DE⊥AC,DF⊥AB,垂足分别为E,F,
且DE=DF.
求证: △ABC是等腰三角形.
F
E
证明:∵ DE⊥AC,DF⊥AB,
B
D
C
∴ ∠BFD=∠CED=90°.
∵ D是BC的中点,
∴ BD=DC.
在△BFD和△CED中,
{BD=DC,
DF=DE,
2.一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形. 全等 ( ASA)
判断: 满足下列条件的两个三角形是否全等?为什么?
3.两直角边对应相等的两个直角三角形.
全等 ( SAS)
例1
已知:如图, △ABC中,AB=AC,AD是高 求证:BD=CD ;∠BAD=∠CAD
证明:∵AD是高
∴∠ADB=∠ADC=90°