方程式赛车传动系统设计
车辆工程专业精品毕业设计大学生方程式赛车设计(传动及最终传动系统设计)标准中文翻译

车载信息娱乐自动化测试系统只用于识别一串我们已知数量的字符。
在我们的例子中,文本信息出现在屏幕上区分不同数量的字符。
为了解决这个问题,不是识别一整串的文本,而是把文本串中的每一个字符分离开来作为一个二进制符号来识别。
图7所示是用来识别一个光盘曲目数量的例子。
我们首先使用二进制大物件把字符串中的二进制字符提取出来并且按照他们的位置进行分类。
直到把这些字符全部分开,每一个字符作为一个单独的二进制符号来识别。
然后,每一个二进制大物件处位于红色的文本工具中,字符在二进制大物件中识别并且与原有的字符进行比对。
从1到9所有的数字在这之前都用“TrainFont“视觉工具编辑并储存过。
最后,所有被识别的字符重新连接在一起,来检索整个字符串。
4.4颜色识别自动按钮用不同的颜色出现在展览板上,颜色识别是用来检索常用的按钮,活跃的CD,常用的广播电台,等等。
“ExtractColorHistogram“视觉工具就是用于此目的,这些被检索的像素在图像细节区积累一个颜色直方图。
每个颜色的像素是由三个独立的颜色组成;红、绿、蓝(RGB)。
每个颜色分量转换为一个从0到255的值;因此,累积直方图中包含256个元素组成了每个颜色分量。
三种颜色成分总和的平均值出现的区域内代表一个特定的颜色。
通过这种方法,我们可以确定一个按钮区域内的颜色,如图8。
值得指出的是,颜色检测基于RGB颜色的平均值,很简单,但在检测某些情况下可能会导致一些错误。
比如,当RGB值是(255,0,0)、(0、255、0)、(0,0,255)和(85、85、85)应该显示不同的颜色,但有相同的平均值。
然而,该方法在应用程序中开工作的很好,因为颜色检测是最小的一个活跃的按钮,因活跃的CD,和活跃的无线电与变化从深蓝色,淡蓝色。
为识别更多的颜色,我们可以使用一个色相、饱和度和亮度(HIS)颜色模型。
5自动触摸屏操作作为主要的人机界面的信息娱乐系统,触摸屏幕允许用户浏览各种菜单和与屏幕选择并且控制所需的功能,或者默认配置用户偏好。
方程式赛车动力系统设计(本科毕业设计)

一、设计步骤设计背景:本文基于扬州大学力行车队的方程式赛车进行研究,阐述 FSAE赛车动力系统匹配现状与发展的相关问题。
通过对方程式赛车的电机参数、传动比、电池组容量进行匹配设计,借以寻找一种有效的动力系统优化思路。
在保证赛车动力系统运行水平的基础上,持续改进系统功能及其运行策略,最终进一步提高FSAE 赛车动力系统的运行能力,使得所设计以及制造的方程式赛车能够满足FSAE赛事比赛的要求。
主要内容如下:(1)参考对比国内高校方程式赛车电动汽车的整车布置方式,设计本文所要求设计的扬州大学电动方程式赛车的布置方式;(2)以本校电动赛车基本参数和设计目标为基础进行动力系统参数设计,对电机、传动装置及能源系统进行结构设计和总体性能计算;(3)使用CATIA软件进行系统建模,对电机、电池、控制器以及驱动桥的位置进行合理布置,做好动力系统的总布置图;(4)按照设计任务书中对赛车的动力性和经济性的要求,对赛车的动力系统进行参数匹配,最终确定整车动力系统组成部分的选型。
在Optimum Lap软件中建立赛道模型,通过软件分析方程式赛车的比赛工况;(5)基于CRUISE软件进行赛车的性能仿真,对影响赛车的经济性与动力性的几个因素进行分析,验证所设计的动力系统各部分参数的准确性;二、设计思路图1-3 整体设计技术路线三、设计内容赛车的设计是从赛车的总布置开始,涉及车架、车身、底盘、传动、转动、可靠性和稳定性测试等多方面内容[13]。
纯电动赛车与传统的燃油赛车相比,由于动力源的差异,所以纯电动赛车没有发动机和油箱,代之以动力电池系统以及电机驱动系统。
FSEC纯电动方程式赛车是本着对传统车辆的加速、制动和操纵性能进行创新设计,赛车的总布置是一个穿插赛车设计始末的过程,总布置的确定对赛车的性能有着重要的影响。
三、系统布置整个赛车的组成结构如图2-2所示,主要有驱动系统、能源系统、车架车身、底盘系统等基本结构要素。
图 2-2 整车部分系统布置四、控制系统由于FSAE赛车实质上就是一辆纯电动汽车,因此赛车的动力系统也与纯电动汽车相似,都是由电机和电机控制器组成。
FASE方程式赛车传动设计报告

传动部分1 发动机1.1 发动机的选择:根据大赛规则,驱动赛车的发动机必须采用四冲程、排量610CC一下的活塞式发1.2 发动机的固定采用六点固定,具体固定情况如下图:2 传动系基本参数的确定:2.1变速箱的基本参数:2.2根据功率平衡方程:确定赛车的最高车速。
式中:P e——发动机有效输出功率G——重力η——传动效率Tƒ——滚动阻尼系数ua——最高车速i——坡度CD——风阻系数A——迎风面积δ——旋转质量换算m——质量根据最高车速的定义得:i=0,du/dt=0其中:加装限流阀后P e=51.45KW;G=2940N;ηT=0.85;C D=0.25;A=0.746m2;滚动阻尼系数由经验公式:f=f0+f1v100+f4(v100)4可算出查表后取:f0=0.01;f1=0.00027;f4=0.0012;由此求得:u a=118km/h。
2.3确定传动比根据公式:u a=0.377rni g i o i c式中:u a=118km/h;r=0.2667m;n=9000rpm;i g=1.272;i c=1.822;求得:i o=3.32.4 链条的选择2.5大链轮的计算因为小链轮齿数Z1=15且ic=Z2Z1所以:大链轮齿数:Z2=49分度圆直径:d=psin(180°/z)=12.7sin180°49⁄=198.22mm齿顶圆直径:d a=p(0.54+cot180°z) =204.67mm 齿根圆直径:d f=d−d1=190.30mm2.6 链速的确定由公式v=znp 60×1000得 v=14.37m/s2.7链轮中心距的确定根据所建传动部分的模型有,中心距a0=236;所以链条节数:=70.74圆整后取Lp=72然后由下式可求得实际中心距为:=244.34mm3差速器部分:3.1差速器的选择由于普通差速器的转矩是按1:1在左右半轴间分配的,所以普通差速器有一种弊端,那就是由于一侧车轮悬空而导致空转,一旦发生类似的情况,差速器将动力源源不断的传给没有阻力的空转车轮,车辆不但不能向前运动,大量的动力也会流失。
毕业设计(论文)-大学生方程式赛车设计(传动及最终传动系统设计)(含全套CAD图纸)

大学生方程式赛车设计(传动及最终传动系统设计)摘要汽车传动系统的基本功用是将发动机输出的动力传递给驱动车轮,传动系统对整车的动力性和设计中一个重要的组成部分。
本文主要研究的是FSAE方程式赛车传动系统的燃油经济性有很大的影响,故传动系统参数的确定是汽车设计,基于我院LS Racing车队三年来的比赛经验和设计理念,对赛车的传动系统进行优化和改造。
本赛车选用的是铃木CBRR600四缸发动机,差速器是选用德雷克斯勒限滑差速器(Drexler),根据发动机的特性参数、档位比和差速器的工作原理,选择合适的链传动比,计算链条的参数,设计差速器固定支架,合理的布置整个传动系统。
针对传动系统各组成部件,采用ANSYS有限元分析软件对零部件进行强度校核,优化结构使其达到质量轻、强度高的目标。
关键字:FSAE,差速器选型,德雷克斯勒限滑差速器,传动系IFormula SAE of china (transmission and final drivesystem)ABSTRACTThe basic function of auto transmission system is transfer engine power to drive wheels .The transmission system has a great influence in dynamic performance .So the parameter of drive system is one of the important part in automobile design .The article mainly research is drive system design of FSAE racing car. The car drive system optimization and transformation is based on LS Racing team competition experience and design concept in the past three years .The racing car engine is choose SUZUKI GSX-R600 have four cylinder engine .The differential is choose Drexler limited slip differential. According to the characteristics of the engine parameters, gear ratio and differential working principle ,that choose the right chain transmission ratio, calculation chain parameters, design the differential fixed bracket, reasonable arrangement of the drive system. Aimed at the transmission system components, use the ANSYS finite element analysis to check intensity of the parts, that optimize structure enables it to achieve light weight, high strength goal.KEY WORD:FSAE, Differential selection, Drexler limited slip differential, the ANSYS finite element analysis目录第一章大赛背景及发展现状 (1)§1.1 赛事背景 (1)§1.2 国外情况 (2)§1.3 国内情况 (2)第二章绪论 (4)§2.1 传动系统的组成 (4)§2.2 传动系统的功能实现 (4)§2.3 FSAE大学生方程式赛车传动系统的特点 (5)§2.4 中国大学生方程式汽车大赛(FSC)传动规则和要求 (6)§2.5 本次传动系统设计任务 (6)第三章赛车动力总成的选择与布置 (7)§3.1 整车参数与主要结构 (7)§3.2 赛车动力性计算 (9)§3.2.1 主减速比确定 (9)§3.2.2 赛车驱动力的计算 (10)§3.3 赛车动力性的验证与优化 (11)§3.3.1 拟合外特性曲线图 (11)§3.3.2 驱动力-行驶阻力平衡图 (12)§3.3.3 发动机功率-行驶阻力功率平衡图 (13)§3.3.4加速度特性曲线 (13)§3.3.5 动力因数图 (14)§3.4 传动方式确定 (14)第四章动力总成与车架的连接及与驱动轮的传动设计 (18)§4.1 差速器固定 (18)§4.2 车轮法兰设计 (20)§4.3 大小链轮的设计 (21)§4.3.1 链轮齿数1Z、和传动2Z比i的计算与确定 (21)§4.3.2齿数的选取原则 (21)§4.3.3 传动比的确定 (21)§4.3.4 链轮的计算与选取 (22)§4.4 差速器的设计与选择 (26)§4.4.1 差速器原理 (26)§4.4.2 差速器的分类 (27)§4.4.3 方程式赛车的差速器结构选择 (31)§4.4.4 差速器选用说明 (32)§4.5 万向节的选择 (32)§4.5.1 万向节的工作原理 (33)§4.5.2 等速万向节的分类 (33)§4.6 此次设计选用的万向节类型 (36)参考文献 (38)结束语 (38)第一章大赛背景及发展现状随着我国汽车工业的崛起,赛车文化日益蓬勃发展,同时为号召十二五时期党中央提出的科技强国口号,在这样一个背景下,2010年首届中国大学生方程式汽车大赛在上海国际赛车场隆重举办。
FSAE方程式赛车链传动设计

FSAE方程式赛车链传动设计FSAE(Formula Society of Automotive Engineers)方程式赛车是一种学生赛车项目,旨在培养年轻工程师在设计、制造和管理的方面的技能。
赛车链传动是一个重要的设计元素,对车辆性能和可靠性有着直接的影响。
首先,选择适当的传动比是链传动设计的关键。
传动比是发动机转速和车轮转速之间的比率,是通过选择齿轮比来实现的。
传动比的选择要考虑赛车的设计速度、扭矩要求和最大转速,以确保发动机和车轮之间的适当转速匹配。
其次,选择合适的链条类型和尺寸也是很重要的。
链条的选择要考虑到传动的功率和扭矩要求,同时要考虑到链条的重量、寿命和可靠性。
一般来说,赛车链传动常使用轻量化的竞速链条,如520或428号链条,以满足性能要求。
链传动中的一个重要参数是张紧力。
适当的链条张紧力是确保传动稳定性和可靠性的关键。
链条张紧器可以通过张紧链条来改变齿轮之间的间隙,以确保正常的传动效果。
太紧的链条会增加传动的摩擦和损耗,太松的链条可能会导致链条脱落。
因此,根据链条的材料和尺寸,以及传动的扭矩要求,应选择适当的链条张紧器。
此外,在链传动设计中,还需要考虑链条的定位和保护。
链条的定位包括导向齿轮和链条导轨的设计,以确保链条正确安装并保持在正确的位置。
链条的保护可以通过使用链条护套或链条罩来防止外部物体的干扰或链条的脱落。
最后,链传动的维护也是设计中的一个重要方面。
定期的链条检查和润滑是确保链传动正常运行和延长链条寿命的关键。
检查链条的磨损程度和松紧情况,并及时进行调整和更换,可以确保传动的可靠性和性能。
综上所述,FSAE方程式赛车的链传动设计是一个复杂而关键的设计任务。
选择适当的传动比、链条类型和尺寸,以及正确的链条张紧器、定位和保护措施,能够确保链传动的可靠性和性能。
定期的维护和检查也是保持链传动运行良好的关键。
通过合理的设计和维护,赛车链传动能够在竞赛中发挥良好的性能。
大学生方程式赛车传动系统设计与分析

河北工业大学本科毕业设计(论文)定稿
Title: Formula Student racing transmission design and analysis
Abstract :Fra bibliotekFormula Student ( FSAE) competition is a mid-engine car designed and
Keywords: Formula SAE,Transmission ratio; differentials; chain drive; design; optimization
河北工业大学本科毕业设计(论文)定稿
目录
1 绪论 ........................................................................................................................................ - 3 1.1 FSAE 中国大学生方程式赛车赛事简介 ................................................................... - 3 1.2 FSAE 传动系统 ........................................................................................................... - 4 1.2.1 传动系统基础知识 ........................................................................................... - 4 1.2.2 比赛设计要求 .................................................................................................. - 5 1.2.3 设计方案的选择与确定 ................................................................................... - 6 1.3 本文主要研究内容 ....................................................................................................... - 6 -
大学生方程式赛车传动系统设计及分析

大学生方程式赛车传动系统设计及分析
张勇;裴金源;刘伟;高昀驰
【期刊名称】《机械设计与制造工程》
【年(卷),期】2022(51)2
【摘要】以中国大学生方程式汽车大赛的设计规则为基础,首先基于型号为Honda CBR600RR的发动机相关参数,创新性地设计出链传动的最佳传动比以及链传动的基本参数,并根据相关参数进行大、小链轮的设计。
然后基于方程式赛车的设计制造经验设计新的传动系统,选用托森差速器并设计其壳体、输出轴等,实现了赛车的进一步轻量化,从而保证赛车能够拥有优良的动力性能。
最终通过对传动系统的关键部件进行ANSYS仿真分析,证明其满足设计的强度需求。
【总页数】5页(P80-84)
【关键词】方程式赛车;传动系统;链传动;ANSYS仿真分析
【作者】张勇;裴金源;刘伟;高昀驰
【作者单位】东北石油大学机械科学与工程学院
【正文语种】中文
【中图分类】U469.696
【相关文献】
1.中国大学生方程式赛车进气系统设计与流场分析
2.大学生方程式赛车悬架系统设计与仿真分析
3.大学生方程式赛车(FSAE)制动系统设计与分析
4.大学生电动方程式赛车加速踏板传感器可调传动装置设计
5.电动方程式赛车传动系统设计与试制
因版权原因,仅展示原文概要,查看原文内容请购买。
FSEC电动方程式赛车动力系统设计

FSEC电动方程式赛车动力系统设计电动方程式赛车是一项高科技、高效能的竞技运动,其动力系统设计是赛车性能优化的关键因素之一、在FSEC车队的电动方程式赛车动力系统设计中,注重提高能量利用效率、最大化功率输出和减轻整车重量,以提升赛车在赛道上的性能表现。
动力系统的设计主要包括电动机、电池组和电控系统。
电池组是电动方程式赛车的能量存储设备,其设计目标是提供高能量密度和高功率输出,以满足赛车长时间高速驾驶的需求。
在FSEC车队的动力系统设计中,采用了最先进的锂离子电池技术,这种电池具有高能量密度、长寿命和快速充电能力。
为了最大限度地减少整车重量,车队还对电池进行了轻量化设计,采用高强度、轻量化的材料,并优化电池模块的布局和结构,以减少不必要的重量。
电控系统是电动方程式赛车动力系统的“大脑”,其设计目标是实现电动机和电池组之间的协调工作,并最大限度地提高系统的效能。
FSEC 车队的电控系统采用了先进的控制算法和高性能的硬件设备,以实现高速响应、高效能和稳定的控制。
电控系统还具有智能能量管理功能,能够根据赛车的需求和路况来自动调整能量分配,以实现最佳的能量利用效率。
除了电动机、电池组和电控系统,FSEC车队的电动方程式赛车动力系统还包括涡轮增压系统、换档系统和冷却系统等辅助设备。
涡轮增压系统可以提供额外的动力输出,以增加赛车的加速性能;换档系统能够实现快速、平稳的换档操作,以最大程度地减少换档时间和功率损耗;冷却系统可以有效地降低电动机和电池组的工作温度,以提高系统的效能和稳定性。
总之,FSEC车队的电动方程式赛车动力系统设计注重提高能量利用效率、最大化功率输出和减轻整车重量,以提升赛车在赛道上的性能表现。
通过精确的电机匹配和参数调整、先进的锂离子电池技术应用、高性能的电控系统设计和辅助设备的优化,FSEC车队的电动方程式赛车动力系统能够实现高效能、高可靠性和高竞争力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3传动系统的设计
3.1概述
赛车传动系统的基本功用是将发动机发出的动力传给驱动车轮。
发动机发出的动力依次经过离合器、变速器和由万向节与传动轴组成的万向传动装置,以及安装在驱动桥中的主减速器、差速器和半轴,最后传到驱动车轮。
本赛车的采用的是发动机横置,由变速器输出轴到主减速器采取轴传动。
并且由于本赛车的离合器和变速器与发动机集成到一体,因此离合器与变速器无需设计。
本赛车需要设计与发动机总成相适应的万向传动装置与驱动桥。
3.2万向传动装置的设计
由于本赛车变速器输出轴与主减速器输入轴不在一条直线上,有一定夹角且在传动过程中相对位置不断变化,因此需要通过万向传动装置进行连接传递动力。
万向传动轴包括万向节、轴管及伸缩花键组成。
本赛车驱动桥与变速器之间的距离不大,因此采用两个万向节和一根传动轴的结构,无需中间支撑。
万向节所连接的两轴之间的夹角范围应该小于20。
3.2.1万向节的选取与设计
赛车变速器的输出轴轴端有法兰盘,可以根据该法兰盘选取合适的十字轴万向节,法兰盘的结构及尺寸如图所示。
变速器输出轴连接盘
3.2.1.1十字轴的强度计算
为了简化设计减少工作量,在万向节设计上本赛车采用已有车型的万向节,经过市场调研初步选取器轻骑微卡的万向节。
现对其强度进行校核,分析其是否满足强度要求。
十字轴的主要失效形式是轴颈根部断裂,在选择十字轴时应保证十字轴轴颈有足够的抗弯强度。
轴颈根部的强度计算:
十字轴的受力图
万向节叉和十字轴轴颈组成连接支承,在力F作用下产生支承反力,在与十字轴轴孔组成45°的B—B截面处,万向节叉承受弯曲和扭转载荷,校核其弯曲应力和扭转应力是否合格。
图为万向节叉的受力图。
万向节叉的受力图
因为本赛车采用已有车型的双十字万向节与传动轴,上节已经分析了万向节的强度情况,原车传动轴的长度不适合本赛车,因此需要对传动轴进行一定得改动,可将传动轴从中间锯断,其两端焊接到万向节叉上,中间部分采用花键连接。
改动后的传动轴长度约为120mm,最大传动夹角不超过20°。
由于原车的工作环境及载荷要坏于本赛车,因此改动后的传动轴可以满足使用条件。
3.3主减速器的设计
赛车主减速器的作用是减速增扭,并改变传动方向。
对主减速器的要求有以下几点:
(1)具有合适的主减速比,以保证汽车最佳的动力性和燃油经济性;
(2)尽可能减少外廓尺寸,保证赛车具有足够的离地间隙;
(3)结构简单,加工工艺性好,拆装、调整方便。
3.3.1主减速器结构形式的选择
主减速器有多种结构形式,主要根据齿轮类型、减速形式、从动齿轮支承形式分类。
按齿轮副结构型式分类:螺旋锥齿轮式、双曲面齿轮式、圆柱齿轮式、蜗杆
传动式。
按减速形式分类:单级式、双级式、单速式、双速式、贯通式、轮边减速式。
按从动齿轮支承形式分类:跨置式、悬臂式。
根据本赛车的主减速器传动﹤7)以及实际使用条件,本赛车选用单级弧齿锥齿轮传动,悬臂式支撑比(i
形式。
3.3.2主减速器计算载荷的确定与参数的选择
主减速器锥齿轮的切齿法主要有格里森切齿法和奥利康切齿法。
这两种方法均可加工螺旋锥齿轮,但两者加工的齿轮具有不同的特征。
格里森齿制的锥齿,从大端向小端齿高是渐缩的;奥利康齿制的锥齿则是等高的,格里森切齿法的应用最广泛。