+常用的抽样方法
工作抽样方法

工作抽样方法工作抽样方法是指在进行工作调查和研究时,从总体中选择一部分样本来代表总体,以求得关于总体的信息和结论。
正确选择和使用抽样方法能够保证研究结果的可靠性和有效性。
下面将介绍几种常用的工作抽样方法。
一、简单随机抽样法简单随机抽样法是指在总体中每个个体具有相同的选择机会,且每个抽样单位之间相互独立的抽样方法。
简单随机抽样法的步骤如下:1. 确定总体:首先需要明确研究对象的总体是什么,总体可以是某个组织的所有员工,也可以是某个行业的从业人员等。
2. 确定样本容量:根据总体的大小和抽样精度要求,确定抽样的样本容量。
一般情况下,样本容量越大,研究结果的准确性越高。
3. 编制总体名单:根据总体的特点,编制出总体的名单,确保总体中的每个个体都能够被抽中。
4. 使用随机数表或随机数发生器进行随机抽样:根据所确定的样本容量,使用随机数表或随机数发生器,从总体名单中随机选择样本。
5. 进行抽样调查:根据抽样得到的样本名单,进行抽样调查,收集样本的相关数据。
6. 进行数据分析和总体推断:对抽样调查得到的数据进行统计分析,得出关于总体的推断。
简单随机抽样法的优点是抽样结果容易推广到整个总体,适用于总体分布均匀的情况。
缺点是对总体并不知道太多的情况下,有可能遗漏了某些重要的个体。
二、系统抽样法系统抽样法是在总体名单上按照一定的规律选择样本的方法。
系统抽样法的步骤如下:1. 确定总体和样本容量:同样需要明确研究对象的总体和所需的样本容量。
2. 编制总体名单:根据总体的特点,编制出总体的名单。
3. 确定抽样间距:根据总体的大小和所需的样本容量,计算出抽样间距,即每隔多少个个体抽取一个样本。
4. 随机选择一个起始个体:使用随机数表或随机数发生器,选择一个起始个体。
5. 按照抽样间距选择样本:从起始个体开始,按照抽样间距依次选择样本。
6. 进行抽样调查和数据分析:根据抽样得到的样本名单,进行抽样调查和数据分析。
系统抽样法的优点是具有操作简便、可行性强、节省调查时间和费用等特点。
收集数据时可采用的抽样方法包括

收集数据时可采用的抽样方法包括
1. 简单随机抽样:从总体中随机选择一定数量的个体作为样本,确保每一个个体都有相同的机会被选中。
2. 系统抽样:按照一定的系统规则,在总体中选取个体作为样本。
例如,在总体中每隔十个个体选择一个作为样本。
3. 分层抽样:将总体分为若干个层次,然后从每个层次中随机抽取一定数量的个体作为样本。
确保每个层次在样本中都有代表性。
4. 整群抽样:将总体分为若干个群体(或者区域),然后从其中随机选择一部分群体作为样本。
在选中的群体中,选择全部个体或者从中进行再抽样。
5. 方便抽样:根据研究者的方便选择样本。
这种方法容易产生偏差,因为样本不是随机选择的,可能无法代表总体。
6. 判断抽样:根据研究者的判断选择样本。
这种方法也容易产生偏差,因为选择样本的标准可能存在主观偏见。
7. 游览抽样:在某些特定地点或时间段,选择在该地点或时间段内出现的个体作为样本。
这种方法可能导致样本的局限性,不具有代表性。
注意:上述内容是根据问题描述进行回答,没有包含标题相同的文字。
常见的抽样方案包括哪些

常见的抽样方案包括哪些
抽样是统计学中一种常用的数据收集方法,它通过从总体中选择一部分样本来推断总体的特征。
在实际应用中,常见的抽样方案有很多种。
本文将介绍几种常见的抽样方案。
一、简单随机抽样
简单随机抽样是一种基本的抽样方法,它要求每个样本具有相同的概率被选中。
简单随机抽样的优点是易于实施,且能够保证样本的代表性。
在这种抽样方案中,每个样本都有平等的机会被选中,从而消除了主观偏差。
二、系统抽样
系统抽样是在总体中选取一个起始元素,然后按照一定的间隔选取其他样本。
例如,从一批产品中随机选取第一个样本,然后每隔一定数量的产品选取一个样本。
系统抽样具有简单随机抽样的优点,同时能够增加样本的多样性。
三、整群抽样
整群抽样是将总体划分为若干个相似的群体,然后选择其中一部分群体作为样本。
这种抽样方案常用于总体具有明显群体特征的情况,如地区、行业等。
通过选择代表性的群体进行抽样,可以减少样本的数
量,提高效率。
四、分层抽样
分层抽样是将总体划分为若干个相互独立的层次,然后从每个层次中分别抽取样本。
分层抽样能够保证每个层次的特征在样本中得到充分反映,从而提高推断的准确性。
这种抽样方案常用于总体具有明显层次结构的情况,如不同年龄段、收入水平等。
综上所述,常见的抽样方案包括简单随机抽样、系统抽样、整群抽样和分层抽样等。
每种抽样方案都有其适用的场景和优劣势,研究者在选择抽样方案时应根据具体情况进行综合考虑,以确保得到准确可靠的统计结论。
常用的抽样方法范文

常用的抽样方法范文1. 简单随机抽样(Simple Random Sampling)简单随机抽样是最基本、也是最常用的抽样方法。
在简单随机抽样中,每个个体有相等的概率被选入样本,抽样过程中所有个体都是相互独立的。
为了实施简单随机抽样,可以使用随机数表或随机数发生器来选择样本。
2. 系统抽样(Systematic Sampling)系统抽样是一种有规则的抽样方法,个体在总体中有固定的顺序,并以一个间隔来进行抽样。
例如,在总体中每隔k个个体选择一个样本,这个k即为系统抽样的抽样间隔。
系统抽样不需要随机数,适用于总体有明确次序的情况。
3. 分层抽样(Stratified Sampling)分层抽样是将总体根据其中一种特征或属性分成若干层次,从每层中抽取一定数量的个体作为样本,以保证样本的代表性和可靠性。
分层抽样可以使得样本更具代表性,减少抽样误差,广泛应用于统计调查和市场研究等领域。
4. 整群抽样(Cluster Sampling)整群抽样是将总体划分成若干互不相交的群体或群组,然后随机选取部分群组作为样本进行调查。
该方法主要适用于总体分布不均匀的情况,可以减少抽样的工作量。
5. 分段抽样(Sequential Sampling)分段抽样是一种动态抽样方法,在调查过程中逐步选取样本,每次抽样都会根据预先设定的规则加入新的样本,直到满足预定的样本容量。
分段抽样可以逐步接近总体的真实情况,并提高样本的效率。
6. 整体抽样(Quota Sampling)整体抽样是设置固定的配额来选择样本,使得样本能够代表总体的一些特征或属性。
这种抽样方法常用于市场调查,其中样本需要按照一些人口统计特征进行配额,如年龄、性别、职业等。
此外,还有一些特殊的抽样方法,如多阶段抽样、整齐抽样、模型抽样等,根据具体问题和研究目的选择合适的抽样方法是非常重要的。
合理的抽样方法可以保证样本的代表性和可靠性,从而为统计调查、研究分析等提供有力的支持。
常用抽样方法范文

常用抽样方法范文
1.简单随机抽样
简单随机抽样是最基本的一种抽样方法,它是从总体中按照随机的原
则选择样本。
简单随机抽样的特点是每个样本都有相同的机会被选中,并
且每个样本之间是相互独立的。
2.系统抽样
3.分层抽样
分层抽样是根据总体的特征将总体划分为若干个层级,然后从每个层
级中按照其中一种抽样方法选择样本。
这种方法可以确保每个层级都有合
适的样本比例,从而更好地反映总体的特征。
4.整群抽样
整群抽样是将总体划分成若干个互不相交的群体,然后从其中一部分
群体中选择样本。
这种方法适用于总体内个体之间的相似性较高,群体内
个体之间的差异较小的情况。
5.效应抽样
效应抽样是一种根据研究目标选择合适的个体进行抽样的方法。
例如,在药物研究中,可根据药物的特性和研究对象的需求选择抽样方法,以确
保研究结果的有效性和可靠性。
除了以上常用的抽样方法,还有一些其他的抽样方法,如整理性抽样、初始抽样、逐步回归抽样等。
每种抽样方法都有其适用的场景和限制条件,研究人员需要根据具体情况选择合适的抽样方法。
总之,抽样方法的选择对研究结果的可靠性和推广性起着重要的作用。
研究人员需要根据研究目标、总体特征以及可行性等因素选择合适的抽样
方法,并结合抽样误差的估计和样本大小的确定,以保证研究结果的科学
性和准确性。
几种抽样方法范文

几种抽样方法范文抽样方法是指从总体中选取样本的方式和方法。
在统计学中,抽样方法对研究结果的可靠性和有效性有着重要的影响。
下面将介绍几种常见的抽样方法。
1.简单随机抽样:简单随机抽样是指每个个体被选入样本的概率是相等的。
在这种抽样方法中,每个个体都有同等的机会被选中。
简单随机抽样是最基本、最常用的抽样方法,其优点是简单易操作,适用于总体分布未知或均匀分布的情况。
2.系统抽样:系统抽样是从总体中按照一定的规则选取个体。
首先,将总体按照一定的顺序进行编号,然后通过设定一个随机起始点,按照固定的间隔抽取样本。
系统抽样适用于总体有一定的规律性分布时,其优点是相对简单且能保证样本的代表性。
3.分层抽样:分层抽样是将总体划分为若干个具有相似特征的层,然后从每一层中随机抽取样本。
这种抽样方法可以保证样本在不同层次上均匀分布,从而能更好地反映总体的特征。
分层抽样适用于总体的差异性较大,且不同层次具有代表性的情况。
4.整群抽样:整群抽样是将总体划分为几个互不相交的群体,然后随机选取若干个群体作为样本。
整群抽样可以减少抽样的工作量,但也可能导致样本不够随机。
这种抽样方法适用于总体可划分为群体并且群体内个体相对均匀的情况。
5.专家抽样:专家抽样是指通过专业人士的主观判断和评估来选取样本。
专家抽样适用于总体无法划分或者划分困难的情况,尤其是在研究异常或特殊事件时常常使用。
这种抽样方法的优点是能够专注于具体的问题,但也存在主观性和偏见问题。
以上是几种常见的抽样方法,它们的选择应根据具体研究目的和总体特征来确定。
无论哪种抽样方法,都需要保证样本具有一定的代表性,以确保研究结果的可靠性和有效性。
常见的抽样方案有哪几种类型

常见的抽样方案有哪几种类型常见的抽样方案有哪几种类型摘要:抽样是研究和调查领域中常用的一种数据收集方法。
在统计学中,抽样是从总体中选择部分个体进行观察和测量,以推断总体的特征。
本文将介绍六种常见的抽样方案,包括简单随机抽样、系统抽样、分层抽样、整群抽样、多阶段抽样和方便抽样,并对每种抽样方案的原理、适用场景和优缺点进行详细讨论。
1. 简单随机抽样简单随机抽样是最基本也是最常见的抽样方法之一。
它的原理是从总体中随机选择样本,每个个体被选中的概率是相等的。
简单随机抽样可以保证样本的代表性,能够准确地反映总体的特征。
然而,由于样本选择的随机性,可能会导致抽样误差较大的问题。
因此,在使用简单随机抽样时,需要注意样本容量的大小,以及通过增加样本数量来降低抽样误差的方法。
2. 系统抽样系统抽样是一种按照一定的规律从总体中选择样本的方法。
它的原理是通过设定一个抽样间隔,从总体中选择每隔固定间隔的个体作为样本。
系统抽样相对于简单随机抽样来说,更加方便且容易实施。
然而,当总体中存在周期性或者规律性的分布时,系统抽样可能会导致样本的偏差,从而影响结果的准确性。
因此,在使用系统抽样时,需要注意选择合适的抽样间隔,并通过随机起点来降低抽样误差。
3. 分层抽样分层抽样是将总体划分为若干个层次,然后在每个层次中进行抽样的方法。
它的原理是根据总体中的某个特征将个体分为不同的层次,然后在每个层次中进行抽样。
分层抽样能够保证每个层次的代表性,提高样本的准确性。
然而,分层抽样需要提前了解总体的分层情况,并确定每个层次的样本容量,这对于一些复杂的总体来说可能会带来一定的困难。
4. 整群抽样整群抽样是将总体划分为若干个群体,然后在每个群体中选择全部个体或者部分个体作为样本的方法。
它的原理是将总体划分为若干个群体,然后从每个群体中选择全部个体或者部分个体进行抽样。
整群抽样适用于总体中的个体具有相似特征的情况,能够减少样本选择的工作量和成本。
抽样方法有些抽样方法大全

抽样方法有些抽样方法大全抽样方法是指从总体中选取一部分样本进行调查或研究的方法。
抽样方法的选择对于研究结果的可靠性和推广性有着重要的影响。
下面是一些常用的抽样方法:1. 简单随机抽样(Simple Random Sampling):在总体中的每个个体具有相同的被选中的机会,通过随机抽取样本来代表总体。
2. 分层抽样(Stratified Sampling):将总体分成若干层次,每一层次中的个体具有相似的特征,然后从每个层次中随机抽取样本。
3. 整群抽样(Cluster Sampling):将总体划分为若干个群组,然后通过随机抽取部分群组来代表总体,然后在所选的群组中进行全面调查。
4. 系统抽样(Systematic Sampling):根据固定的抽样间隔,从总体中随机选择一个起始点,然后按照固定的间隔依次选取样本。
5. 多阶段抽样(Multistage Sampling):将总体分层和分群组,然后通过多个抽样阶段来实现抽样,通常用于大规模调查。
6. 比率抽样(Ratio Sampling):根据总体中的其中一特征的比例,确定样本的大小。
例如,如果总体中男性比例是60%,则样本中男性比例也应该是60%。
7. 效应抽样(Convenience Sampling):根据研究者的方便或可获得性,选择样本。
这种方法容易产生偏差,结果可能无法推广到整个总体。
8. 整齐抽样(Quota Sampling):根据总体中一些特征的比例,确定样本的大小。
例如,如果总体中男性比例是60%,则样本中男性数量也应该是60%。
9. 小组抽样(Snowball Sampling):从已经选择的样本中获取参与者的指引,逐渐扩大样本规模,并在招募新样本时依靠参与者的推荐。
10. 专家抽样(Expert Sampling):指选择一些具有特定知识、经验或技能的专家作为样本,以获取专业领域的意见或建议。
以上是一些常用的抽样方法,每种方法都有其适用的场景和限制,研究者需要根据研究目的、总体特征、样本大小和可行性等因素综合考虑选择最合适的抽样方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、优缺点
(1)抽样方法简便 (2)易得到一个按比例分配的样本,抽样误差较小 (3)仍需对每个观察单位编号 (4)当观察单位按顺序有周期趋势或单调性趋势时, 产生明显偏性
3、抽样误差
无固定的计算公式,常按单纯随机抽样方法来计算, 与总体的性质和被抽样个体间的间隔有关。
三、整群抽样(cluster sampling) 1、抽样方法
随机化回答是指在调查中使用特定的随机化装置,使得被 调查者以预定的概率来回答敏感性问题。这一技术的宗旨就 是最大限度地为被调查者保守秘密,从而取得被调查者的信 任。
RRT技术的基本原理在于当被调查者确信调查者及其他 人无法从被调查者的回答中获知他们的真实行为时,能更加 真实地对敏感问题进行回答。并且RRT技术保护调查对象的 个人隐私,能充分得到调查对象的配合,最终可显著降低无 应答率和误答率,得到高质量的调查结果。
先将总体按某种特征分成若干层,再从每一 层内随机抽取一定数量的观察单位,合起来组成 样本。
(1)按比例分配:按总体各层观察单位数的多少分配
ni
Ni
n N
(2)最优分配:按各层观察单位数多少及其变异大小
分配
均数 :
ni n
Ni i Ni i
率
:
ni n
Ni i 1 i Ni i 1 i
随机化应答模型
(一)沃纳模型(Warner model) 1965年由Warner提出的,其设计思想是向被调查者显
示两个与敏感性问题(具有特征A)有关,但完全对立的问 题,让调查者按预定的概率从中选一个回答,调查者无权 过问被调查者回答的是哪一个问题,从而起到了为被调查 者保密的效果。
(二)西蒙斯模型 1967年由西蒙斯提出的,其基本思想仍以沃纳模型为基
(1)两个相关联问题模式: 设计两个相对立的陈述。
例如 问题1:你曾经吸过毒吗? 问题2:你从未吸过毒吗?
①是 ②否 ①是 ②否
(2)两个不相关联问题模式:
第一陈述为敏感性问题,第二陈述是与第一陈
述无关的非敏感性问题,可以得到确切的答案。
例如 问题1:你曾经吸过毒吗? ①是 ②否
问题2:你是工人吗?
先将总体划分为若干个“群”组,每个群包括若干 个观察单位,再随机抽取n个群,被抽到的各群的全部 观察单位则组成样本。
2、优缺点
(1)在较大规模的现场调查中,易组织,较节省。 (2)若各群间的差异较大,该抽样方法的误差较大。
3、抽样误差
四、分层抽样(stratified sampling)
1、抽样方法
①是 ②否
2.设置一个随机装置进行调查
使用一个内装许多黑、白两色小球的 匣子,黑白球的比例接近1:1,但不等于 1:1,例如可以是60%和40%。
混合均匀后,被调查者从匣子中随机 摸取一球,摸取的是黑球还是白球只有被 调查者知道。若摸取的是黑球,则回答第 一个问题,否则,回答第二个问题。
答卷上只有答案选择,没有题号,可 按如下格式设计:“请将你的回答在相应 的编号处做上记号√:①是 ②否”。
2、所调查总体标准差,若不了解,须通过 预试验的标准差S或前人的资料作出估计;
3、第一类错误的概率 4、对有限总体抽样时,还须了解总体观察 单位数。
二、计算公式
均数的抽样 : 率的抽样 :
u 2
n
2
,
X
u2 1
n
2
d Response Techniques (RRT)
敏感问题的分类: 属性特征敏感问题 数量特征敏感问题
对于敏感性问题,若采用直接回答的形 式,被调查者难免产生抵触情绪,不愿据 实回答,这样导致调查数据失真、调查结 果无效。
因此寻求解决敏感性问题调查的有效方 法至关重要。
随机应答技术 Randomized Response Techniques (RRT)
敏感问题(sensitive problem)
是指涉及个人(或单位)的隐私或利益的 问题以及大多数人认为不便在公开场合表 态或陈述的问题,在某些情况下,还包括 一些违法犯罪的行为。
敏感问题的特点: 一般是社会舆论导向所不认同的或反 对的行为或观点 不同特征的人群有不同的敏感问题 不同敏感问题在敏感程度上存在差异
2、优缺点
(1)在一定程度上控制了抽样误差,尤其是最优分配法 (2)应尽量使层内差别小而层间差别大,以提高效率 (3)事先应了解各层的总体含量,最优分配还应了解标准差
多阶段随机抽样
样本含量的估计
单纯随机抽样
一、先决条件
1、容许误差,预计样本统计量与相应总体 参数的最大相差控制在什么范围。常取可信区间 长度一半。
3、抽样误差的估计 有限总体与无限总体
总体类型 无限总体
有限总体
均数标准误
s n
s 1 n nN
率的标准误
p1 p
n 1
p1 p 1 n
n 1
N
二、系统抽样(systematic sampling)
又称等距/机械抽样 1、抽样方法
先将总体的观察单位按某顺序号等分成n个部分 再从第一部分随机抽第k号观察单位,依次用相等间 隔,机械地从每一部分各抽取一个观察单位组成样本。
常用的抽样方法
一、单纯随机抽样(simple random sampling)
1、抽样方法
根据研究目的选定总体,首先对总体中所有的 观察单位编号,遵循随机原则,采用不放回抽取方 法,从总体中随机抽取一定数量观察单位组成样本。
具体方法 ①随机数字法 ② 抽签法
2、优缺点
①对所有观察单位编号,当数量大时,有难度 ② 抽样误差的计算较方便
础,但有一些改进,它将沃纳模型中与敏感性问题相对的 具有特征A的问题改为一个与敏感性问题不相关的其它问 题。
(三)“随机变量和”回答模型
一、随机应答技术的步骤
1.向应答者提出一对问题
设计一对问题,使两个问题的答案种数和编码 完全一致,应答者随机选取一个问题,将答案编码 选出,在答案上做出相应的记号。由于答卷上没有 问题的编号,只有一套答案编码,人们无从知晓应 答者回答的是哪一个问题,因而起到保密作用。
3.根据概率理论进行计算
(1) 问题1:你曾经吸过毒吗? ①是 ②否 问题2:你从未吸过毒吗? ①是 ②否
假设黑球所占的比例为P,白球所占的比例为 1-P,应答者中回答“是”的总比例为r,那么对 第一个问题回答“是”的比例RA可以由下式推算 :