历年山东省东营市中考数学试卷(含答案)
2023年山东省东营市中考数学试卷(含答案)054118

2023年山东省东营市中考数学试卷试卷考试总分:107 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1. 下列运算正确的是A.B.C.D.2. 将一副三角尺按如图摆放,点在上,点在的延长线上,,,,,则的度数是 A.B.C.D. 3. 在四张完全相同的卡片上,分別画有等腰三角形、平行四边形、矩形、圆,现从中随机抽取一张,卡片上的图形既是轴对称图形又是中心对称图形的概率是( ) A. B.C.D.4. 东胜到呼市相距千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的倍.从东胜到呼市的时间缩短了小时.设列车提速后所需时间为小时,根据题意,可列方程 A.B.C.D.( )+a 2a 3=a 52⋅3a 3a 3=6a 3(3ab 2)2=6a 2b 4(a +b)(a −b)=−a 2b 2E AC D BC EF //BC ∠B =∠EDF =90∘∠A =45∘∠F =60∘∠CED ()15∘20∘25∘30∘1234 2.21.2x ()−=1.2234x 2342.2x =×2.2234x+1.2234x −=1.22342.2x 234x ×2.2=234x+1.2234x5. 已知圆锥的母线长为,将其侧面沿着一条母线展开后所得扇形的圆心角为,则该扇形的面积是( )A.B.C.D.6. 如图,,相交于点,.若,则与的面积之比为()A.B.C.D.7. 如图,点是正六边形内部一个动点,,则点到这个正六边形六条边的距离之和为.A.B.C.D.8. 如图,二次函数的图象与轴交于,两点,与轴正半轴交于点,它的对称轴为直线.则下列选项中正确的是( )A.B.C.64π8π12π16πAD BC O AB//CD AB =1,CD =2△ABO △DCO 1:21:42:14:1P ABCDEF AB =1cm P ( )cm 6333–√63–√y =a +bx+c(a >0)x 2x A B y C x =−1abc <04ac −>0b 2c −a >09. 如图,在▱中,点在边上,,连接交于点,则的面积与的面积之比为( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10. 年月日,我国发射的“嫦娥号”月球探测器首次实现了地外天体采样返回,成就举世瞩目.地球到月球的平均距离约是千米,数据用四舍五入法精确到千位、并用科学记数法表示为________.11. 因式分解:=________.12. 若,则点落在________上.13. 有一组数据:,,,,,这组数据的方差是________.14. 某同学想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地还多米,当他把绳子的下端拉开米后,发现下端刚好接触地面,旗杆的高度是________.15. 在半径为 的圆内有两条平行弦,一条弦长为,另一条弦长为,则两条平行弦之间的距离为________.16. 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.17. 方程组的解是________;直线与直线的交点是________.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 ) 18. 解下列小题计算:;先化简再求值,其中. ABCD E DC DE :EC =3:1AE BD F △DEF △BAF 3:49:19:163:1202012175384400384400a −2ax+a x 2mn =0P(m,n)55668155cm 6cm 8cm △ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC {y =3x−1,y =x+3y =3x−1y =x+3(1)|−2|+−+6cos 3–√(3−π)012−−√30∘(2)÷1−3m m 22−9m 2m=−5本次调查的学生共有________人,并补全条形统计图;估计该校名学生中“不了解”的人数是________人;“非常了解”的人中有两名男生和两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.20. 如图,在中,,是边上一点,以为圆心,为半径作,交边于点,过作的切线交边于点.求证:.21. 如图,一次函数的图象与反比例函数的图象交于,两点,且点坐标为,一次函数交轴于点.试确定上述反比例函数和一次函数的表达式;求的面积;直接写出使反比例函数大于一次函数的的取值范围.22. 国际油价随着供需关系持续波动,特别是主要产油国的日产量会影响油价的走势,某段时间,某石油输出大国每天石油的日产量约为万桶时,石油的国际油价是每桶美元,每桶成本约为美元,据统计,当日产量减少万桶时,每桶国际油价将会提高美元,但每桶价格高于美元时,石油需求量又会大幅减少,从而影响该国的国家经济.(1)若某段时间国际石油的价格是美元/桶,则该国当日的石油日产量是多少万桶?(2)该国为了实现一天的利润为亿美元,则日产量是多少万桶?23. 如图,菱形是边长为,,对角线、交于点.(1)操作发现:小芳同学将绕点旋转得,当落在上时(如图),连接,请直接写出与的位置关系和数量关系;(2)问题解决:小芳同学继续旋转(,不重合),如图,连接、,她认为(1)中的结论仍然成立.你同意吗?说明理由.(3)深入思考:若直线与直线的交点为,请直接写出的最大值.(1)(2)2400(3)4△ABC AB =AC O AB O OB ⊙O BC E E ⊙O AC F EF ⊥AC y =−x+b y =m x A B A (−2,1)x C (1)(2)△AOB (3)x 12005640507100773.31ABCD 2∠BAD =60∘AC BD O △CBD O △CEF CF AD 2ED ED AC △CEF A C 3ED AC ED AC H BH如图,求抛物线的解析式;如图,点在轴下方的抛物线上,交轴于点,连接、,若,求点的坐标;如图,在()的条件下,过点作交于点,点在第一象限的抛物线上,连接、,若,求点的坐标.(1)1(2)2D x CD x E BC BD =10S △BCD D (3)32B BF ⊥BD CD F P PF OD ∠PFC =∠ODB P参考答案与试题解析2023年山东省东营市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1.【答案】D【考点】平方差公式合并同类项幂的乘方与积的乘方同底数幂的乘法【解析】根据合并同类项法则,单项式乘以单项式,幂的乘方和积的乘方,平方差公式逐个判断即可.【解答】解:,和不能合并,故本选项不符合题意;,,故本选项不符合题意;, ,故本选项不符合题意;, ,故本选项符合题意.故选.2.【答案】A【考点】平行线的性质三角形的外角性质【解析】由==,=,=,利用三角形内角和定理可得出=,由,利用“两直线平行,内错角相等”可得出的度数,结合三角形外角的性质可得结论.【解答】解:∵,,∴.∵,,∴.∵,∴,∴.故选.A a 2a 3B 2⋅3=6a 3a 3a 6C =9(3a )b 22a 2b 4D (a +b)(a −b)=−a 2b 2D ∠B ∠EDF 90∘∠A 45∘∠F 60∘∠ACB 45∘EF //BC∠EDC ∠B =90∘∠A =45∘∠ACB =45∘∠EDF =90∘∠F =60∘∠DEF =30∘EF //BC ∠EDC =∠DEF =30∘∠CED =∠ACB−∠EDC =−=45∘30∘15∘A中心对称图形概率公式轴对称图形【解析】由等腰三角形、平行四边形、矩形、圆中是轴对称图形和中心对称图形的有矩形、圆,直接利用概率公式求解即可求得答案.【解答】解:等腰三角形、平行四边形、矩形、圆中是中心对称图形的有平行四边形、矩形、圆,是轴对称图形的有等腰三角形、矩形、圆,…既是轴对称又是中心对称图形的有矩形、圆,.现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是故选:.4.【答案】D【考点】由实际问题抽象出分式方程【解析】此题暂无解析【解答】解:根据题意得,提速之前的时间为:,故可列方程组为:.故选.5.【答案】C【考点】圆锥的计算【解析】利用圆锥的侧面展开图为一扇形,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:该扇形的面积.故选.12B x+1.2×2.2=234x+1.2234xD ==12π×π×120∘62360∘C相似三角形的判定与性质【解析】此题暂无解析【解答】解:由可知,,由可知,与的面积之比为.故选.7.【答案】C【考点】等边三角形的性质与判定锐角三角函数的定义正多边形和圆含30度角的直角三角形【解析】【解答】解:可采用特殊点的方法,即当点为正六边形的中心时,过作于,如图所示.根据正六边形的性质可知,,即,,,正六边形各边的距离之和.故选.8.【答案】AB//CD △ABO ∼△DCO =AB CD 12△ABO △DCO 1:4B P P PH ⊥BC H ∠BPC =60∘∠BPH =∠BPC =×=121260∘30∘BH =BC =×1=(cm)121212∴PH ===BH tan30∘123√33–√2∴=6PH =6×=3(cm)3–√23–√C二次函数图象与系数的关系抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】由图象开口向上,可知,与轴的交点在轴的上方,可知,根据对称轴方程得到,于是得到,故错误;根据一次函数=的图象与轴的交点,得到,求得,故错误;根据对称轴方程得到=,当=时,=,于是得到,故错误;当=(为实数)时,代入解析式得到===,于是得到=,故正确.【解答】解:,由抛物线与轴交于正半轴,可知,∵对称轴为直线,,∴,∴,∴,故错误;,二次函数的图象与轴交于,两点,∴,∴,故错误;,∵,∴,∵当时,,∴,∴,故错误;,当(为实数)时,,,,,∴,故正确.故选.9.【答案】C【考点】平行四边形的性质相似三角形的性质与判定【解析】可证明,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形为平行四边形,∴,∴.∵,∴,∴,∴.a >0y x c >0b >0abc >0A y a +bx+c(a >0)x 2x −4ac >0b 24ac −<0b 2B b 2a x −1y a −b +c <0c −a <0C x −−2n 2n y a +bx+c x 2a(−−2+b(−−2)n 2)2n 2a (+2)+c n 2n 2y a (+2)+c ≥c n 2n 2D A y c >0x =−1a >0−=−1<0b 2a b >0abc >0A B y =a +bx+c(a >0)x 2x A B Δ=−4ac >0b 24ac −<0b 2B C −=−1b 2a b =2a x =−1y =a −b +c <0a −2a +c <0c −a <0C D x =−−2n 2n y =a +bx+cx 2=a +b(−−2)+c(−−2)n 22n 2=a +2a(−−2)+c(−−2)n 22n 2=a (+2)+c n 2n 2∵a >0≥0n 2+2>0n 2y =a (+2)+c ≥c n 2n 2D D △DFE ∽△BFA ABCD DC//AB △DFE ∼△BFA DE :EC =3:1DE :DC =3:4DE :AB =3:4:=9:16S △DFE S △BFA10.【答案】【考点】科学记数法与有效数字【解析】此题暂无解析【解答】此题暂无解答11.【答案】【考点】提公因式法与公式法的综合运用【解析】此题暂无解析【解答】此题暂无解答12.【答案】坐标轴【考点】点的坐标【解析】根据坐标轴上点的坐标特点解答.【解答】解:∵点,满足,∴或;∴点位于轴或者轴上,即点在坐标轴上.故答案为:坐标轴.13.【答案】【考点】3.84×105a(x−1)2P(m,n)mn =0m=0n =0P x y P 1.2【解析】先求出这组数据的平均数,然后再根据方差的公式求出方差即可.【解答】解:由题意,得这组数据的平均数,则这组数据的方差.故答案为:.14.【答案】米【考点】勾股定理的应用【解析】设旗杆的高度为,由题意可知绳子的长为,根据题意画出草图,在直角三角形中运用勾股定理求解即可.【解答】解:如图所示,设旗杆的高度,则绳子长,由题意,得,在中,由勾股定理,得,即,解得.故答案为:米.15.【答案】或【考点】勾股定理的应用垂径定理的应用【解析】【解答】解:令=,=,过点作⊥于,交于.=×(5+5+6+6+8)=6x¯¯15=×[(5−6+(5−6+(6−6+(6−6+(8−6]=1.2s 215)2)2)2)2)21.212x x+1AC =x AB =x+1BC =5Rt △ABC A =B +A B 2C 2C 2(x+1=+)2x 252x =12121cm 7 cmAB 6 cm CD 8 cm O OE AB E CD F当、在圆心同旁时,∵,∴.∵过圆心,⊥,∴==.∵=,∴由勾股定理可知 =.同理 =,∴=-=.当、在圆心两旁时,同理可知=+=,故答案为:或.16.【答案】【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.故答案为:.17.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.AB CD AB//CD OF ⊥CD OE OE AB EB 12AB 3cm OB 5cm EO 4cm OF 4cm EF OE OF 1 cm AB CD EF OE OF 7cm 1 cm 7 cm 65∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘65∘{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )18.【答案】解:原式=原式,,当时,原式.【考点】零指数幂、负整数指数幂整式的混合运算——化简求值特殊角的三角函数值实数的运算【解析】此题暂无解析【解答】解:原式=原式,,当时,原式.19.【答案】解:本次调查的学生总人数为(人).故答案为:.“了解”的学生人数为(人),“了解较少”的学生人数为(人),“不了解”的学生人数为(人),补全条形统计图如下:设两名女生为,,两名男生为,,画树状图如下,共有种等可能的结果,其中恰好抽到一男一女的结果有种,(1)2−+1−2+6×3–√3–√3–√2=3(2)=÷1m(m−3)2(m+3)(m−3)=×=1m(m−3)(m+3)(m−3)2m+32m m=−5==−5+32×(−5)15(1)2−+1−2+6×3–√3–√3–√2=3(2)=÷1m(m−3)2(m+3)(m−3)=×=1m(m−3)(m+3)(m−3)2m+32m m=−5==−5+32×(−5)15(1)4÷8%=505050×22%=1150×40%=2050−4−11−20=15720(3)A 1A 2B 1B 2128=82∴(恰好抽到一男一女).【考点】条形统计图扇形统计图用样本估计总体列表法与树状图法【解析】用“非常了解”人数除以它所占的百分比即可得到调查的总人数;根据总人数和百分比求出“了解”“了解较少”的人数,用总人数减去“非常了解”“了解”“了解较少”的人数可得“不了解”人数,补全条形图.总人数乘以样本中“不了解”学生所占比例.先画树状图展示所有个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:本次调查的学生总人数为(人).故答案为:.“了解”的学生人数为(人),“了解较少”的学生人数为(人),“不了解”的学生人数为(人),补全条形统计图如下:“不了解”的学生所占比例为,(人),故该校名学生中“不了解”的人数是人.故答案为:.设两名女生为,,两名男生为,,画树状图如下,共有种等可能的结果,其中恰好抽到一男一女的结果有种,∴(恰好抽到一男一女).20.【答案】证明:连接,如图,∵,∴,∵,∴,∴,∴,∵为切线,∴,∴.P ==81223(1)(2)(3)12(1)4÷8%=505050×22%=1150×40%=2050−4−11−20=15(2)1−40%−22%−8%=30%2400×30%=7202400720720(3)A 1A 2B 1B 2128P ==81223OE OB =OE ∠B =∠OEB AB =AC ∠B =∠C ∠OEB =∠C OE//AC EF OE ⊥EF EF ⊥AC等腰三角形的判定与性质切线的性质切线的判定与性质【解析】连接,如图,先证明,再利用切线的性质得,从而得到;【解答】证明:连接,如图,∵,∴,∵,∴,∴,∴,∵为切线,∴,∴.21.【答案】解:把代入得,解得,∴一次函数解析式为;把代入得,∴反比例函数解析式为.当时,,则直线与轴的交点坐标为,∴的面积.根据函数图像可知反比例函数大于一次函数的的取值范围为或.【考点】反比例函数与一次函数的综合【解析】(1)把代入=中求出得到一次函数解析式;然后把代入中求出得到反比例函数解析式;(2)先求出直线=与轴的交点坐标,然后利用三角形面积公式计算的面积;(3)结合图象写出反比例函数图象在一次函数图象上方对应的自变量的范围即可.【解答】解:把代入得,解得,∴一次函数解析式为;把代入得,∴反比例函数解析式为.当时,,则直线与轴的交点坐标为,∴的面积.根据函数图像可知反比例函数大于一次函数的的取值范围为或.22.OE OE//AC OE ⊥EF EF ⊥AC OE OB =OE ∠B =∠OEB AB =AC ∠B =∠C ∠OEB =∠C OE//AC EF OE ⊥EF EF ⊥AC (1)A(−2,1)y =−x+b 2+b =1b =−1y =−x−1A(−2,1)y =m xm=−2×1=−2y =−2x (2)x =0y =−x−1=−1y =−x−1y (0,−1)△AOB =×1×(2+1)=1232(3)x −2<x <0x >1A(−2,1)y −x+b b A(−2,1)y =m x m y −x−1y △AOB (1)A(−2,1)y =−x+b 2+b =1b =−1y =−x−1A(−2,1)y =m x m=−2×1=−2y =−2x (2)x =0y =−x−1=−1y =−x−1y (0,−1)△AOB =×1×(2+1)=1232(3)x −2<x <0x >1该国当日的石油日产量是万桶该国为了实现一天的利润为亿美元,日产量为万桶【考点】一元二次方程的应用【解析】(1)设该国当日的石油日产量是万桶,根据“当日产量减少万桶时,每桶国际油价将会提高美元”列出每桶国际油价提高的油价为美元,再根据“原每桶油价+提高的油价=现油价”列出一元一次方程进行解答便可;(2)根据“(现油价-成本)现日产量=总的日利润”列出一元二次方程进行解答便可.【解答】设该国当日的石油日产量是万桶,根据题意列出方程,解得,=,答:该国当日的石油日产量是万桶.设该国为了实现一天的利润为亿美元,日产量为万桶,根据题意得,=,解得,=,,当=时,,应舍去,答:该国为了实现一天的利润为亿美元,日产量为万桶.23.【答案】(1)如图中,当落在上时,,,,∴,即.(2)如图中,结论仍然成立.理由:连接、.∵,都是等边三角形,,,,∴,,,∴,∴,∵,∴,10503.31100x 507×71200−x 50×x 56+×7=771200−x 50x 105010503.3y y(56+×7−40)1200−y 5033000y 11100≈214.3y 2y 214.356+×7>1001200−214.350 3.311001CF AD DE ⊥AC DE =DF 3–√AC =3DF DE =AC 3–√3AC =DE 3–√2OA OC △ABD △EFC BD =EF OB =OD OE =OF AO ⊥BD CO ⊥EF OA =OC ∠AOD =∠COE =90∘∠AOC =∠DOE ==OA OD OC OE 3–√△AOC ∽△DOE =AC AO∴,,延长交于,交于.∵,,∴,∴,∴.(3)如图中,如图中,取的中点,连接、.∵是等边三角形,,∴,由(2)可知,,∴,∵,∴的最大值为.【考点】四边形综合题【解析】(1)结论:,;(2)结论成立.连接、.只要证明,再利用“字型”证明垂直即可;(2)利用三边关系确定最值问题;【解答】(1)如图中,当落在上时,,,,∴,即.(2)如图中,结论仍然成立.理由:连接、.∵,都是等边三角形,,,,∴,,,∴,==AC DE AO OD 3–√∠OED =∠ACO ED AC H EH OC K ∠OEK +∠OKE =90∘∠OKE =∠CKH ∠CKH+∠KCH =90∘∠KHC =90∘EH ⊥AC 33AD K BK KH △ABD AK =DK BK =×2=3–√23–√∠AHD =90∘KH =AD =112BK +KH ≥BH BH +13–√DE ⊥AC AC =DE 3–√OA OC △AOC ∽△DOE 81CF AD DE ⊥AC DE =DF 3–√AC =3DF DE =AC 3–√3AC =DE 3–√2OA OC △ABD △EFC BD =EF OB =OD OE =OF AO ⊥BD CO ⊥EF OA =OC ∠AOD =∠COE =90∘∴,∵,∴,∴,,延长交于,交于.∵,,∴,∴,∴.(3)如图中,如图中,取的中点,连接、.∵是等边三角形,,∴,由(2)可知,,∴,∵,∴的最大值为.24.【答案】解:()∵抛物线的解析式为,∴抛物线的对称轴为.∵,∴,∴,∴.∵抛物线经过点和点,∴解得∴抛物线的解析式为,如图,过点作轴于点,设,设直线的解析式为,∵直线经过,∴ 解得∴直线的解析式为,∴,∠AOC =∠DOE ==OA OD OC OE 3–√△AOC ∽△DOE ==AC DE AO OD 3–√∠OED =∠ACO ED AC H EH OC K ∠OEK +∠OKE =90∘∠OKE =∠CKH ∠CKH+∠KCH =90∘∠KHC =90∘EH ⊥AC 33AD K BK KH △ABD AK =DK BK =×2=3–√23–√∠AHD =90∘KH =AD =112BK +KH ≥BH BH +13–√1y =a −6ax+cx 2x =−=3−6a 2a A(1,0)B(5,0)OC =OB =5C(0,5)y =a −6ax+c x 2A(1,0)C(0,5){a −6a +c =0,c =5,{a =1,c =5,y =−6x+5x 2(2)1D DT ⊥x T D(t,−6t+5)t 2CD y =kx+b y =kx+b C(0,5),D(t,−6t+5)t 2{5=b,−6t+5=kt+b,t 2{k =t−6,b =5,CD y =(t−6)x+5E(−,0)5t−6E =−5∴ ∴.∵,∴,即,解得(舍去)或,∴.如图,过点作轴于点,过点作交的延长线于点,过点作轴于点,由()知,,直线解析式为,∴.∴.∵,∴.∵轴,∴ ,∴,∴,∴,∴.∴,设,∴,∴,解得,∴,∴.∵,∴,∴,∴.∵,∴,∴,∴ ,∴ .∵∴,∴,设,∴.∴,∴,∴,解得(舍去)或,∴.【考点】二次函数综合题【解析】此题暂无解析OE =−5t−6BE =5+5t−6=10S △BCD +=BE ⋅OC +BE ⋅DT =10S △BCE S △BDE 1212(5+)(5−+6t−5)=10125t−6t 2t =1t =4D(4,−3)(3)2F FH ⊥x H P PG ⊥FH HF C D DT ⊥x T 2D(4,−3)CD y =−2x+5BT =OB−OT =1,DT =3tan ∠OBD ==3DT BT BF ⊥BD ∠FBH+∠OBD =90∘FH ⊥x ∠FHB =90∘∠FBH+∠HFB =90∘∠OBD =∠HFB tan ∠OBD =tan ∠HFB =3FH BH BH =3FH F (m,−2m+5)FH =−2m+5,BH =5−m 5−m=3(−2m+5)m=2F (2,1)FH =BT ∠FHB =∠BTD =,∠HFB =∠TBD 90∘△FHB ≅△BTD BF =BD ∠BDF =∠BFD =45∘OT =4,TD =3OD =5OD =OC ∠OCD =∠ODC ∠ODB =+∠ODC =+∠OCD 45∘45∘∠PFC =∠PFG+∠GFC =∠PFG+∠OCD,∠ODB =∠PFC,∠PFG =45∘GP =GF P (n,−6n+5)n 2GP =n−2GF =n−2GH =n−2+1=n−1−6n+5=n−1n 2n =1n =6P (6,5)【解答】解:()∵抛物线的解析式为,∴抛物线的对称轴为.∵,∴,∴,∴.∵抛物线经过点和点,∴ 解得∴抛物线的解析式为,如图,过点作轴于点,设,设直线的解析式为,∵直线经过,∴ 解得∴直线的解析式为,∴,∴ ∴.∵,∴,即,解得(舍去)或,∴.如图,过点作轴于点,过点作交的延长线于点,过点作轴于点,由()知,,直线解析式为,∴.∴.∵,∴.∵轴,1y =a −6ax+c x 2x =−=3−6a 2a A(1,0)B(5,0)OC =OB =5C(0,5)y =a −6ax+c x 2A(1,0)C(0,5){a −6a +c =0,c =5,{a =1,c =5,y =−6x+5x 2(2)1D DT ⊥x T D(t,−6t+5)t 2CD y =kx+b y =kx+b C(0,5),D(t,−6t+5)t 2{5=b,−6t+5=kt+b,t 2{k =t−6,b =5,CD y =(t−6)x+5E(−,0)5t−6OE =−5t−6BE =5+5t−6=10S △BCD +=BE ⋅OC +BE ⋅DT =10S △BCE S △BDE 1212(5+)(5−+6t−5)=10125t−6t 2t =1t =4D(4,−3)(3)2F FH ⊥x H P PG ⊥FH HF C D DT ⊥x T 2D(4,−3)CD y =−2x+5BT =OB−OT =1,DT =3tan ∠OBD ==3DT BT BF ⊥BD ∠FBH+∠OBD =90∘FH ⊥x∴ ,∴,∴,∴,∴.∴,设,∴,∴,解得,∴,∴.∵,∴,∴,∴.∵,∴,∴,∴ ,∴ .∵∴,∴,设,∴.∴,∴,∴,解得(舍去)或,∴.∠FHB =90∘∠FBH+∠HFB =90∘∠OBD =∠HFB tan ∠OBD =tan ∠HFB =3FH BH BH =3FH F (m,−2m+5)FH =−2m+5,BH =5−m 5−m=3(−2m+5)m=2F (2,1)FH =BT ∠FHB =∠BTD =,∠HFB =∠TBD 90∘△FHB ≅△BTD BF =BD ∠BDF =∠BFD =45∘OT =4,TD =3OD =5OD =OC ∠OCD =∠ODC ∠ODB =+∠ODC =+∠OCD 45∘45∘∠PFC =∠PFG+∠GFC =∠PFG+∠OCD,∠ODB =∠PFC,∠PFG =45∘GP =GF P (n,−6n+5)n 2GP =n−2GF =n−2GH =n−2+1=n−1−6n+5=n−1n 2n =1n =6P (6,5)。
东营 中考数学试题及答案

东营中考数学试题及答案东营中考数学试题及答案一、选择题1. 设函数 f(x) = 3x - 2,若 f(x) = 7,那么 x 的值是多少?A) -1B) 1C) 3D) 52. 简化下列代数式:(4a^2b^3)(-2ab^4)的N次方A) -4a^2b^3Nab^4B) -8a^2b^7NC) 8a^2b^7ND) 8a^2b^7N^23. 某公司收入的年增长率是25%,则该公司的收入在4年之后的倍数是多少?A) 1.25B) 1.64C) 2.48D) 2.894. 若 sin A = 0.6,那么 cos A 的值是多少?A) 0.3B) 0.4C) 0.6D) 0.85. 一个正方体的表面积是54平方厘米,那么它的体积是多少立方厘米?A) 8B) 27C) 64D) 216二、解答题1. 某数等于它的1/6与它自身的和减去36,求这个数。
解:设这个数为 x,根据题意可得方程 x = x/6 + x - 36。
整理得 6x = x + 6x - 216,化简得 5x = 216,解得 x = 43.2。
所以,这个数为 43.2。
2. 若三角形 ABC 中,∠B = 90°,AC = 5 cm,BC = 12 cm,求∠A 的正弦值和余弦值。
解:根据勾股定理,我们可以求得 AB 的长度为√(12^2 - 5^2) =√(144 - 25) = √119 cm。
因此,根据三角函数的定义,正弦值为sin A = AB/AC = √119/5,余弦值为cos A = AC/AB = 5/√119。
3. 两个角的和为 120°,它们互补,则两个角的度数各是多少?解:设两个角分别为 x 和 90° - x,根据题意可得方程 x + (90° - x) = 120°。
化简得 90° = 120°,显然不成立。
因此,这个题目没有实际解。
山东省东营市中考数学试卷及答案

二0一一年东营市初中学生学业考试数 学 试 题第Ⅰ卷(选择题 共36分)一、选择题:本大题共l2小题.在每小题给出的四个选项中.只有一项是正确的.请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. 12的倒效是( ) A .2 B ,2- C .12- D .122.下列运算正确的是( )A .336x x x +=B .624x x x ÷=C .m n mn x x x ⋅=D .5420()x x -= 3,一个几何体的三视图如图所示.那么这个几何体是( )4. 方程组31x y x y +=⎧⎨-=-⎩的解是( )A .12x y =⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =⎧⎨=⎩D .01x y =⎧⎨=-⎩ 5.一副三角板,如图所示叠放在一起.则图中∠α的度敦是( )A .75°B .60°C .65°D .55°6.分式方程312422x x x -=--的解为( ) A .52x =B .53x =C .5x =D .无解7.一个圆锥的侧面展开图是半径为l 的半圆,则该圆锥的底面半径是( 1A . 1B .34 C .12 D .138. 河堤横断面如图所示.堤高BC=5米,迎水坡AB 的坡比是1:3 (坡比是坡面的铅直高度BC 与水乎宽度AC 之比).则AC 的长是( )A ,53米 8.10米 C. 15米 D .103米9.某中学为迎接建党九十周年.举行了“童心向党.从我做起”为主题的演讲比赛。
经预赛.七、八年级各有一名同学进入决赛.九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是( )A .12 B .13 C .14 D .1610.如图,直线l 和双曲线(0)k y k x=>交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合).过点A 、B 、P 分捌向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP .设△AOC 妁面积为1S .△BOD 的面积为2S 。
山东省东营市中考数学试卷含答案解析版修订稿

山东省东营市中考数学试卷含答案解析版 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017东营)下列四个数中,最大的数是()A.3 B.√3C.0 D.π【考点】2A:实数大小比较.【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<√3<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|√32|=2﹣√3C.√8√3√5D.﹣(﹣a+1)=a+1【考点】78:二次根式的加减法;28:实数的性质;36:去括号与添括号;4C:完全平方公式.【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣√3,故本选项正确;C、原式=2√2﹣√3,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017东营)若|x2﹣4x+4|与√2x−x−3互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【考点】A6:解一元二次方程﹣配方法;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【专题】11 :计算题.【分析】根据相反数的定义得到|x2﹣4x+4|+√2x−x−3=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+√2x−x−3=0,所以|x2﹣4x+4|=0,√2x−x−3=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【考点】E6:函数的图象.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°【考点】JA:平行线的性质.【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°, ∴∠3=180°﹣∠APQ=165°, ∴∠1=165°,故选:D .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A .47B .37C .27D .17【考点】X5:几何概率;I6:几何体的展开图.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A 、B 、C 、D 、E 、F 、G ,如图所示, 从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D 、E 、F 、G ,∴能构成这个正方体的表面展开图的概率是47, 故选(A )【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017东营)如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA 的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=12BF=4,OA=12AE.∵AB=5,在Rt△AOB中,AO=√25−16=3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°【考点】MP:圆锥的计算.【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=12lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有xxx180=23πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=√3,则△ABC移动的距离是()A .√32B .√33C .√62D .√3﹣√62【考点】Q2:平移的性质.【分析】移动的距离可以视为BE 或CF 的长度,根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以EC :BC=1:√2,推出EC 的长,利用线段的差求BE 的长.【解答】解:∵△ABC 沿BC 边平移到△DEF 的位置,∴AB ∥DE ,∴△ABC ∽△HEC ,∴x △xxx x △xxx =(xx xx )2=12, ∴EC :BC=1:√2,∵BC=√3,∴EC=√62,∴BE=BC ﹣EC=√3﹣√62.故选:D . 【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.(3分)(2017东营)如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PHPC其中正确的是( )A .①②③④B .②③C .①②④D .①③④【考点】S9:相似三角形的判定与性质;KK :等边三角形的性质;LE :正方形的性质.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC 是等边三角形,∴BP=PC=BC ,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE ;故①正确;∵PC=CD ,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD ≠∠PDB ,∴△PFD 与△PDB 不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC ,∴△DPH ∽△CPD ,∴xx xx =xx xx, ∴DP 2=PHPC ,故④正确;故选C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计亿条全球进出口贸易基础数据…,亿用科学记数法表示为×108.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:亿用科学记数法表示为×108.故答案为:×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017东营)分解因式:﹣2x2y+16xy﹣32y= ﹣2y(x﹣4)2.【考点】55:提公因式法与公式法的综合运用.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及其方差s2如下表所示:甲乙丙丁x1′05″331′04″261′04″261′07″29S2如果选拔一名学生去参赛,应派乙去.【考点】W7:方差;W1:算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵x丁>x甲>x乙=x丙,∴从乙和丙中选择一人参加比赛,∵S乙2<S丙2,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n个数据,x1,x2, (x)n的平均数为x,则方差S2=1x[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是①②③.【考点】S9:相似三角形的判定与性质;M5:圆周角定理.【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC ∽△EDC.进而得出xxxx=xxxx,得出CD2=CECO.【解答】解:①∵OC ⊥AB , ∴∠BOC=∠AOC=90°. ∵OC=OA ,∴∠OCA=∠OAC=45°. ∵AC ∥OD ,∴∠BOD=∠CAO=45°, ∴∠DOC=45°, ∴∠BOD=∠DOC ,∴OD 平分∠COB .故①正确; ②∵∠BOD=∠DOC , ∴BD=CD .故②正确; ③∵∠AOC=90°, ∴∠CDA=45°, ∴∠DOC=∠CDA . ∵∠OCD=∠OCD , ∴△DOC ∽△EDC , ∴xx xx =xx xx, ∴CD 2=CECO .故③正确. 故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017东营)如图,已知菱形ABCD 的周长为16,面积为8√3,E 为AB 的中点,若P 为对角线BD 上一动点,则EP+AP 的最小值为 2√3 .【考点】PA:轴对称﹣最短路线问题;L8:菱形的性质.【分析】如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8√3,∴AB=BC=4,ABCE′=8√3,∴CE′=2√3,在Rt△BCE′中,BE′=√42−(2√3)2=2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2√3,故答案为2√3.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25 尺.【考点】KV:平面展开﹣最短路径问题;KU:勾股定理的应用.【专题】16 :压轴题;35 :转化思想.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为√202+152=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B 处测得塔顶的仰角为β,又测量出A 、B 两点的距离为s 米,则塔高为 xxxxxxxxxxxxx −xxxx米.【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】在Rt △BCD 中有BD=xxxxxx,在Rt △ACD 中,根据tan ∠A=xx xx =xx xx +xx 可得tanα=xx xx xxxx+x ,解之求出CD 即可得. 【解答】解:在Rt △BCD 中,∵tan ∠CBD=xxxx,∴BD=xxxxxx,在Rt △ACD 中,∵tan ∠A=xx xx =xxxx +xx,∴tanα=xxxx xxxx+x ,解得:CD=xxxxxxxxxxxxx −xxxx ,故答案为:xxxxxxxxxxxxx −xxxx.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017东营)如图,在平面直角坐标系中,直线l :y=√33x ﹣√33与x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,…,则点A 2017的横坐标是 22017−12.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】先根据直线l:y=√33x﹣√33与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A 3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为21−12,A2的横坐标为22−12,A3的横坐标为23−12,进而得到A n 的横坐标为2x−12,据此可得点A2017的横坐标.【解答】解:由直线l:y=√33x﹣√33与x轴交于点B1,可得B1(1,0),D(﹣√33,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=21−12,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=12A1B2=1,即A2的横坐标为12+1=32=22−12,过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C=12A 2B 3=2,即A 3的横坐标为12+1+2=72=23−12,同理可得,A 4的横坐标为12+1+2+4=152=24−12,由此可得,A n 的横坐标为2x −12,∴点A 2017的横坐标是22017−12,故答案为:22017−12.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n 的横坐标为2x −12.三、解答题(本大题共7小题,共62分)19.(8分)(2017东营)(1)计算:6cos45°+(13)﹣1+(√3﹣)0+|5﹣3√2|+42017×(﹣)2017(2)先化简,再求值:(3x +1﹣a+1)÷x 2−4x +4x +1+4x −2﹣a ,并从﹣1,0,2中选一个合适的数作为a 的值代入求值.【考点】6D:分式的化简求值;2C:实数的运算;47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+(13)﹣1+(√3﹣)0+|5﹣3√2|+42017×(﹣)2017=6×√22+3+1+5﹣3√2+42017×(﹣14)2017=3√2+3+1+5−3√2−1 =8;(2)(3x+1﹣a+1)÷x2−4x+4x+1+4x−2﹣a=3−(x−1)(x+1)x+1x+1(x−2)2+4x−2−x=−(x+2)(x−2)(x−2)2+4x−2−x=−x−2x−2+4x−2−x=−(x−2)x−2−x=﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VD:折线统计图.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)648×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P=416=14.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【考点】MC:切线的性质;KH:等腰三角形的性质;KQ:勾股定理;LD:矩形的判定与性质.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=12 AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017东营)如图,一次函数y=kx+b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y=x x的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=3,OD=6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x >0时,kx+b ﹣x x<0的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据三角形面积求出OA ,得出A 、B 的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D 的坐标,把D 的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.【解答】解:(1)∵S △AOB =3,OB=3,∴OA=2,∴B (3,0),A (0,﹣2),代入y=kx+b 得:{0=3x +x −2=x, 解得:k=23,b=﹣2, ∴一次函数y=23x ﹣2, ∵OD=6,∴D (6,0),CD ⊥x 轴,当x=6时,y=23×6﹣2=2 ∴C (6,2),∴n=6×2=12,∴反比例函数的解析式是y=12x;(2)当x >0时,kx+b ﹣x x<0的解集是0<x <6. 【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 、B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【分析】(1)可根据“改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元由题意得{2x +3x =78003x +x =5400, 解得{x =1200x =1800, 答:改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A 类学校a 所,则改扩建B 类学校(10﹣a )所,由题意得:{(1200−300)x +(1800−500)(10−x )≤11800300x +500(10−x )≥400, 解得 {x ≥3x ≤5, ∴3≤a ≤5,∵x 取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A 类学校3所,B 类学校7所;方案二:改扩建A 类学校4所,B 类学校6所;方案三:改扩建A 类学校5所,B 类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017东营)如图,在等腰三角形ABC 中,∠BAC=120°,AB=AC=2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=30°.(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 的函数关系式并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.【考点】SO :相似形综合题.【分析】(1)根据两角相等证明:△ABD ∽△DCE ;(2)如图1,作高AF ,根据直角三角形30°的性质求AF 的长,根据勾股定理求BF 的长,则可得BC 的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE 时,如图2,由(1)可知:此时△ABD ∽△DCE ,则AB=CD ,即2=2√3﹣x ;②当AE=ED 时,如图3,则ED=12EC ,即y=12(2﹣y ); ③当AD=AE 时,∠AED=∠EDA=30°,∠EAD=120°,此时点D 与点B 重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC 是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB ,∴∠EDC=∠DAB ,∴△ABD ∽△DCE ;(2)如图1,∵AB=AC=2,∠BAC=120°,过A 作AF ⊥BC 于F ,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=12AB=1, ∴BF=√3,∴BC=2BF=2√3,则DC=2√3﹣x ,EC=2﹣y ,∵△ABD ∽△DCE ,∴xx xx =xx xx, ∴2x =2√3−x 2−x, 化简得:y=12x 2−√3x+2(0<x <2√3); (3)当AD=DE 时,如图2,由(1)可知:此时△ABD ∽△DCE ,则AB=CD ,即2=2√3﹣x ,x=2√3﹣2,代入y=12x2−√3x+2,解得:y=4﹣2√3,即AE=4﹣2√3,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=12EC,即y=12(2﹣y),解得:y=23,即AE=23,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2√3或2 3.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017东营)如图,直线y=﹣√33x+√3分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+√3经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y 轴交BC于点D,求△DMH周长的最大值.【考点】HF:二次函数综合题.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.【解答】解:(1)∵直线y=﹣√33x+√3分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,√3),∴OB=3,OC=√3,∴tan∠BCO=3√3=√3,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴xx xx =tan30°=√33,即xx √3=√33,解得AO=1, ∴A (﹣1,0);(2)∵抛物线y=ax 2+bx+√3经过A ,B 两点,∴{x −x +√3=09x +3x +√3=0,解得{x =−√33x =2√33, ∴抛物线解析式为y=﹣√33x 2+2√33x+√3; (3)∵MD ∥y 轴,MH ⊥BC ,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=12DM ,MH=√32DM , ∴△DMH 的周长=DM+DH+MH=DM+12DM+√32DM=3+√32DM , ∴当DM 有最大值时,其周长有最大值,∵点M 是直线BC 上方抛物线上的一点,∴可设M (t ,﹣√33t 2+2√33t+√3),则D (t ,﹣√33t+√3), ∴DM=﹣√33t 2+2√33t+√3),则D (t ,﹣√33t+√3), ∴DM=﹣√33t 2+2√33t+√3﹣(﹣√33t+√3)=﹣√33t 2+√3t=﹣√33(t ﹣32)2+3√34, ∴当t=32时,DM 有最大值,最大值为3√34, 此时3+√32DM=3+√32×3√34=9√3+98, 即△DMH 周长的最大值为9√3+98. 【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH 、MH 与DM 的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2023年山东省东营市中考数学真题(解析版)

24
2.
故④不正确.
由①可知, ADG ≌ AMG ASA ,
DG GM , M 关于线段 AG 的对称点为 D ,过点 D 作 DN AC ,交 AC 于 N ,交 AE 于 P , PM PN 最小即为 DN ,如图所示,
∴ AD AC DE BD
∵ BD 4DC ,
∴ BD 4 BC , 5
∴
AD DE
AC BD
BC 4 BC 5
5 4
∵ DE 2.4
∴ AD 5 DE 3 , 4
故选:C. 【点睛】本题考查了相似三角形的性质与判定,等边三角形的性质,熟练掌握相似三角形的性质与判定是 解题的关键.
8. 如图,在平面直角坐标系中,菱形 OABC 的边长为 2 6 ,点 B 在 x 轴的正半轴上,且 AOC 60 ,
A.
5
3
B.
5
2
C.
5
1
D.
5
【答案】C 【解析】
【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能
够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如
果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进
)
A. 3
B. 4
C. 5
D. 6
【答案】A
【解析】
【分析】根据圆锥侧面积公式,进行计算即可求解.
【详解】解:设这个圆锥的底面半径是 r ,依题意, S πrl 15π
∴ r 15 3 5
故选:A.
【点睛】本题考查了求圆锥底面半径,熟练掌握圆锥侧面积公式 S πrl 是解题的关键.
山东省东营市中考数学真题试卷有答案

秘密★启用前 试卷类型:A二0一四年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.81的平方根是( ) A . 3± B . 3C . 9±D . 92.下列计算错误..的是( )A .=B .236x x x ⋅=C .-2+|-2|=0D .91)3(2=--3.直线1+-=x y 经过的象限是( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 4.下列命题中是真命题的是( ) A .如果22a b =,那么a b =B .对角线互相垂直的四边形是菱形C .旋转前后的两个图形,对应点所连线段相等D .线段垂直平分线上的点到这条线段两个端点的距离相等5.如图,已知扇形的圆心角为60︒,则图中弓形的面积为(ABCD6.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A .B .C .D .7.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么, 这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是()A .②③B .①②C .③④D .②③④8.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖 落在阴影区域的概率是( )A .12B .31C .14D .619.若函数21(2)12y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-210.如图,四边形ABCD 为菱形,AB=BD ,点B 、C 、D 、G 四个点在同一个O 圆上,连接BG 并延长交AD于点F ,连接DG 并延长交AB 于点E ,BD 与CG 交于点H ,连接FH .下列结论: ①AE =DF ;②FH ∥AB ; ③△DGH ∽△BGE ;④当CG 为O 的直径时,DF =AF .其中正确结论的个数是( )A .1B .2C .3D .4(第8题图) 2 2 1 3 1 1(第10题图)A第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.2013年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP 达到3250亿元.3250亿元用科学记数法表示为 元. 12.2327x y y -= .13.市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如右表.请你根据表中数据选一人参加比赛,最合适的人选是 .14.如图,有两棵树,一棵高12米,另一棵高6米, 两树相距8米.一只鸟从一棵树的树梢飞到另一棵树 的树梢,问小鸟至少飞行 米.15.如果实数x 、y 是方程组30,233x y x y +=⎧⎨+=⎩的解,那么代数式12xy x y x y ⎛⎫+÷⎪++⎝⎭的值 为 .16.在⊙O 中,AB 是⊙O 的直径,AB =8cm ,AC CD BD ==,M 是AB 上一动点,CM+DM北京初中数学周老师的博客:/beijingstudy 17.如图,函数1y x =和3y x=-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足(第16题图)xyAP B D C O1l 2l(第17题图)(第14题图)为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形P AB 的面积为 . 18.将自然数按以下规律排列:第一列 第二列 第三列 第四列 第五列第一行 1 4 5 16 17 … 第二行 2 3 6 15 … 第三行 9 8 7 14 … 第四行 10 11 12 13 … 第五行 … ……表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2014对应的有序数对为 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:20141331sin 3038(0.125)-++-+⨯-(-)()(2)解不等式组:21,32(1) 5.x x +⎧⎪⎨⎪-⎩<≤把解集在数轴上表示出来,并将解集中的整数解写出来.20.(本题满分8分)东营市某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)求出被调查的学生人数; (2)把折线统计图补充完整;(3)求出扇形统计图中,公务员部分对应的圆心角的度数;(4)若从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是“教师”的概_务员 (第20题图)师 生 人 他其他 20%教师 公务员 医生15%军人10%(第21题图)F率. 21.(本题满分8分)如图,AB 是⊙O 的直径.OD 垂直于弦AC 于点E ,且交⊙O 于点D .F是BA 延长线上一点,若CDB BFD ∠=∠. (1)求证:FD 是⊙O 的一条切线; (2)若AB =10,AC =8,求DF 的长.22.(本题满分8分) 热气球的探测器显示,从热气球底部A 处看一栋高楼顶部的仰角为30︒,看这栋楼底部的俯角为60︒,热气球A 处与高楼的水平距离为120m,这栋高楼有多1.732≈,结果保留小数点后一位)?23. (本题满分8分)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,须在40天内完成工程.现有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能按时完工,又能使工程费用最少.24.(本题满分11分)(第24题图1)(第22题图) BAC(第25题图)【探究发现】如图1,ABC ∆是等边三角形,60AEF ︒∠=,EF 交等边三角形外角平分线CF 所在的直线于点F .当点E 是BC 的中点时,有AE =EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E 是直线BC 上(B ,C 除外)任意一点时(其它条件不变),结论AE =EF 仍然成立.假如你是该兴趣小组中的一员,请你从“点E 是线段BC 上的任意一点”;“点E是线段BC 延长线上的任意一点”;“ 点E是线段BC 反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并进行证明.【拓展应用】当点E 在线段BC 的延长线上时,若CE = BC ,在备用图2中画出图形,并运用上述结论求出:ABC AEF S S ∆∆的值.25.(本题满分12分) 如图,直线y=2x+2与x 轴交于点A ,与y 轴交于点B .把△AOB沿y 轴翻折,点A 落到点C ,过点B 的抛物线2y x bx c =-++与直线BC 交于点D (3,4-). (1)求直线BD 和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M 、O 、N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由;(3)在直线BD 上方的抛物线上有一动点P ,过点P 作PH 垂直于x 轴,交直线BD 于点H .当四边形BOHP 是平行四边形时,试求动点P 的坐标.秘密★启用前 试卷类型:A(第24题备用图2)(第24题备用图1)数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分,只要求填写最后结果.11.113.2510⨯;12.3(3)(3)y x x+-;13.丙;14.10;15.1;16.8;17.8 ;18.(45,12).三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分)(1)解:201410331sin3038(0.125)-++-+⨯-(-)()=1+2+131+-………………………………………………2分=6-分(2)解:2132(1)xx+⎧⎪⎨⎪-⎩<①≤5②解不等式①,得:x<1,解不等式②,得:x≥32-…………………………………1分所以不等式组的解集为:32-≤x<1. ………………………………………………………2分解集中的整数解有1,0-.…………………………………………………3分……………………………………………………………………………………4分 20. (本题满分8分)解:(1)由公务员所占比例及相应人数可求出被调查的学生数是:40÷20%=200(人);……………………………………………………1分(2)喜欢医生职业的人数为:200×15=30(人);………………………………2分喜欢教师职业的人数为:200-70-20-40-30=40(人);……………………3分 折线统计图如图所示;…………………………………………………………4分(3)扇形统计图中,公务员部分对应圆心角的度数是360°×20%=72°;………………6分(4)抽取的这名学生最喜欢的职业是教师的概率是:4012005=.…………………………………………………………………8分21.(本题满分8分) (1)证明:CDB BFD ∠=∠(已知), CAB CDB ∠=∠(圆周角相等)∴EAO DFO ∠=∠……………………………………1分_务员 (第20题图) 师 生 人 他 其他 20% 教师公务员医生15% 军人10% 20%35%DA在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠(公共角)∴ 90=∠=∠AEO FDOD 是半径OD 外端点,∴ FD 是⊙O 的一条切线.…………………………………………………4分 (2)在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠∴DFO ∆∽EAO ∆ ∴OEODEA DF =,…………………………………………………………………………6分 AB =10,AC =8,OD ⊥AC∴.3,4,5====OE EA OD OA ∴4520.33EA OD DF OE ⨯⨯=== …………………………………………………………………………………8分 22. (本题满分8分)解:如图,作AD ⊥BC 于点D ,从热气球看这栋高楼顶部的仰角记为α底部的俯角记为β,则30,60αβ=︒=︒,AD =120.tan BD ADα=,tan ,CD ADβ=………………………2分∴BD =tan 120tan30AD α︒⋅=⨯=120=,…………………………………………………………4分 ∴CD =tan 120tan 60AD β︒⋅=⨯=120=…………………………………………………………6分∴BC=BD+CD=277.1≈………………………………7分答:这栋楼高约为277.1m .………………………………………………………8分 23. (本题满分8分)解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.E根据题意得:121010=+xx ………………………………………………………………2分 方程两边同乘以x 2,得302=x 解得:15=x经检验,15=x 是原方程的解.…………………………………………………………3分 ∴当x =15时,x 2=30.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天. ………4分 (2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案: 方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);…………………5分 方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);…………………6分 方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).…………7分 ∵75>70>67.5 ∴应该选择甲工程队承包该项工程. …………………………………8分24.(本题满分11分)(1) 正确画出图形……………………………………………………………………………1分 ①第一种情况:当点E 在线段BC 上时. 证明:在AB 上取A G=CE ,连接EG .则BEG ∆是等边三角形∴∠AGE =120︒,而∠ECF =120︒∴∠AGE=∠ECF …………………………………2分∵∠AEC =∠AEF +∠CEF =∠GAE +∠B ,60AEF B ︒∠=∠=∴∠GAE =∠CEF ……………………………………………………………………………4分 ∴AGE ∆≌ECF ∆(ASA )∴AE =EF ……………………………………………………………………………………6分 ②第二种情况:当点E 在BC 延长线上时. 在CF 取C G=CE ,连接EG . ∵CF 是等边三角形外角平分线∴∠ECF =60︒∵CG=CE∴CEG ∆是等边三角形∴∠FGE=∠ACE=120︒………………………………2分∵∠AEF=∠AEG+∠GEF=∠AEG+∠AEC=60︒∴∠GEF=∠CEA∴ACE∆≌FGE∆(ASA)∴AE=EF③第三种情况:当点E在BC的反向延长线上时.在AB的延长线上取A G=CE,连接EG.则有BG= BE;∴BEG∆是等边三角形∴∠G=∠ECF=60︒………………………………2分∵∠CEF=∠AEF-∠AEC=60︒-∠AEC∠EAB=∠ABC-∠AEC=60︒-∠AEC∴∠CEF=∠EAB……………………………………………4分∴AGE∆≌ECF∆(ASA)∴AE=EF……………………………………………………6分(2)正确画出图形…………………………………………7分∵CE = BC=AC∴∠CAE=∠C EA=30︒,∠BAE=90︒∴tan303ABAE︒==……………………………………………………………………9分∵AE=EF,∠AEF=60︒∴AEF∆是等边三角形∴AEF∆∽ABC∆………………………………………………………………………10分∴2213ABCAEFS ABS AE∆∆⎛⎫===⎪⎝⎭⎝⎭.……………………………………………………11分25. (本题满分12分)解:(1)在直线22+=xy中,令0=x得2=y,所以得点B)2,0(设直线BD的解析式为:mkxy+=,代入B 、D 两点坐标得2,43m k m =⎧⎨-=+⎩解得:2,2-==k m .所以直线BD 的解析式为:22+-=x y .……………………………………………1分将B 、D 两点坐标代入抛物线2y x bx c =-++中得:2,493c b c =⎧⎨-=-++⎩解得:2,1==c b .所以,抛物线的解析式为:22++-=x x y .……………………………………3分 (2)存在.假设存在点M (x,y )符合题意,则有如下两种情形:①若MNO ∆∽BOC ∆,则OCNO BO MN =,所以有12xy =, 即x y 2=又因为M 点在抛物线上所以22++-=x x y , 所以:222x x x =-++ 即:022=-+x x解得1=x 或2-=x ,又因为M 点在第一象限,2-=x 不符合题意, 所以1=x ,2=y 故M )2,1(.………………………6分 ②若ONM ∆∽BOC ∆,则MN OC ON BO =即x y 21=, 所以2122x x x =-++即:0422=--x x解得4331+=x 或4331-=x , 又因为M 点在第一象限,4331-=x 不符合题意, 所以4331+=x ,8331+=y 故M (4331+,8331+)………………………8分 所以,符合条件的点M 的坐标为)2,1( ,(4331+,8331+)………………………9分 (3)设点P 坐标为),(b a 则22++-=a a b 又因为点P 在直线BD 上方, 所以0<a <3,又PH 垂直于x 轴,交直线BD 于点H , 所以H )22,(+-a a ,所以)22(22+--++-=a a a PH a a 32+-=,……………………………………10分因为四边形BOHP 是平行四边形, 所以PH=OB =2, 即0232=+-a a ,解得1=a 或2=a 均满足0<a <3………………………………………………………11分 当1=a 时,222=++-a a , 当2=a 时,022=++-a a ,所以点P 的坐标为)2,1(, )0,2(……………………………………………………12分。
东营市中考数学试题及答案()
秘密★启用前 试卷类型:A二0一三年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 签字笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.16的算术平方根是( ) A . 4±B . 4C . 2±D . 22.下列运算正确的是( ) A .a a a=-23B .632a a a =⋅C .326()a aD . ()3393a a =3.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.0000001m ,则病毒直径 0.0000001m 用科学记数法表示为( )(保留两位有效数字). A. 60.1010-⨯m B. 7110-⨯m C. 71.010-⨯mD. 60.110-⨯m4.如图,已知AB ∥CD ,AD 和BC 相交于点O ,∠A =50︒,∠AOB =105︒,则∠C 等于( ) A. 20︒B. 25︒C. 35︒D. 45︒(第4题图)ABCDOxA 'OyAB (第5题图)B 'F(第12题A OE (第8题图)ACD5.将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90︒至A OB ''∆的位置,点B 的横坐标为2,则点A '的坐标为( )A .(1,1)B .2,2C .(-1,1)D .(2,2-6.若定义:(,)(,)f a b a b =-,(,)(,)g m n m n =-,例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( ) A .(2,3)-B .(2,3)-C .(2,3)D .(2,3)--7.已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程321x x =-的根,1O ⊙与2O ⊙的圆心距为1,那么两圆的位置关系为( ) A .内含B .内切C .相交D .外切8.如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形 的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树 叶形图案的周长为( ) A. a π B. 2a πC.12a πD. 3a9.2013年“五·一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是( ) A. 13B. 16C. 19D.1410.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( ) A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个11.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( ) A. 5个B. 6个C. 7个D. 8个 12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点(4)AOB DEOF S S ∆=四边形中O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;正确的有( ) A. 4个B. 3个C. 2个D. 1个第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13.分解因式2228ab =14.一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 .15.某校研究性学习小组测量学校旗杆AB 的高度,如图在教学楼一楼C 处测得旗杆顶部的仰角为60︒,在教学楼三楼D 处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为 米.16.如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,离容器上沿0.3m 与蚊子相对..的点A 处,则壁虎捕捉蚊子的最短距离为 m (容器厚度忽略不计).17.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为 .三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()102 3.142sin 6012133.3π-︒⎛⎫+---+- ⎪⎝⎭(2)先化简再计算:22112111a a aa a a a ,再选取一个你喜欢的数代入求值.(第17题图)OAA 1A 2B 1Bxl(第15题60︒30︒ACBD(第16题AB19.(本题满分8分)东营市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创城”活动的宣传,校学生会就本校学生对东营“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A :59分及以下;B :60—69分;C :70—79分;D :80—89分;E :90—100分).请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生; (2)将条形统计图补充完整;(3)在扇形统计图中,计算出“60—69分”部分所对应的圆心角的度数; (4)从该校中任选一名学生,其测试成绩为“90—100分”的概率是多少? 20.(本题满分8分)如图,AB 为O ⊙的直径,点C 为O ⊙上一点,若BAC CAM ,过点C 作直线l 垂直于射线AM ,垂足为点D .(1)试判断CD 与O ⊙的位置关系,并说明理由;(2)若直线l 与AB 的延长线相交于点E ,O ⊙的半径为3,并且30CAB °∠=. 求CE 的长.21.(本题满分9分)如图,在平面直角坐标系中,一次函数2(0)ynx n 的图象与反比例函数(0)m ym x在(第20题AOBD ClM E (第19题图)人数50100 150 200 250 D300 350 400 A 10% B30%D CE 35%第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半轴上一点,且s i n ∠AOC =45.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.22. (本题满分10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元. (1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.23.(本题满分10分) (1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m , CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2) 如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =,其中为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.24.(本题满分12分) 已知抛物线y =ax 2+bx +c 的顶点A (2,0),与y 轴的交点为 B (0,-1).(1)求抛物线的解析式; x(第21题图)BA OyC (第23题AB CE Dm (图(图(图m ABCDE ADEBFC(2)在对称轴右侧的抛物线上找出一点C ,使以BC 为直径的圆经过抛物线的顶点A .并求出点C 的坐标以及此时圆的圆心P 点的坐标.(3)在(2)的基础上,设直线x =t (0<t <10)与抛物线交于点N ,当t 为何值时,△BCN 的面积最大,并求出最大值. 秘密★启用前 试卷类型:A2013年东营市初中学生学业考试数学试题参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3题号123456789101112答案 D C C B C B B A A B C B 二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13. ()()222a b a b +-; 14. 2; 15. 9; 16. 1.3; 17. ()()201340260,40,2或(注:以上两答案任选一个都对)三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分7分,第⑴题3分,第⑵题4分) (1)解: 原式=(33+122313322-⨯-- =3+13231332+ AO (第24题图)xyB=32…………………………3分 (2)解:原式=22112111a a a a a a a --⋅--++-()()()2111111a a a aa a a +--=⋅-+-- 11aa =--11a=-…………………………6分 选取任意一个不等于1±的a 的值,代入求值.如:当0a =时, 原式111a==-…………………………………7分 19. (本题满分8分)解:(1)该学校的学生人数是:30030%1000(人).………………………2分(2)条形统计图如图所示.………………………………………………………4分 (3)在扇形统计图中,“60—69分”部分所对应的圆心角的度数是:200360(100%)721000︒⨯⨯=︒………………………………………………………6分(4)从该校中任选一名学生,其测试成绩为“90—100分”的概率是:501100020………………………………………………………………8分20. (本题满分8分)(1)解:直线CD 与⊙O 相切. ………………1分 理由如下:连接OC. ∵OA=OC人数100 150 200 250 300 350 400 (第19题答案图)∴∠BAC=∠OCA ∵∠BAC=∠CAM ∴∠OCA=∠CAM∴OC ∥AM …………………………3分 ∵CD ⊥AM ∴OC ⊥CD∴直线CD 与O ⊙相切. …………………………5分 (2)解: ∵30CAB °∠= ∴∠COE =2∠CAB =60︒∴在Rt △COE 中,OC =3,CE=OC ·tan 60︒=33…………………………8分 21. (本题满分9分)解:(1)过A 点作AD ⊥x 轴于点D , ∵sin ∠AOC =AD AO =45,OA =5∴AD =4.由勾股定理得:DO =3, ∵点A 在第一象限∴点A 的坐标为(3,4)………………2分 将A 的坐标为(3,4)代入y = mx,得43m,∴m =12 ∴该反比例函数的解析式为12yx………………4分 将A 的坐标为(3,4)代入2y nx 得:23n∴一次函数的解析式是223yx …………………………6分 (2)在223yx 中,令y =0,即23x +2=0,∴x =3 ∴点B 的坐标是(3,0)∴OB =3,又DA =4x(第21题图)BA O yC D∴1134622AOBSOB AD ,所以△AOB 的面积为6.………9分 22. (本题满分10分)解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:2 3.5,2 2.5x y x y +=⎧⎨+=⎩…………………………3分 解得:0.5,1.5x y =⎧⎨=⎩…………………………4分答:每台电脑0.5万元,每台电子白板1.5万元. …………………………5分 (2)设需购进电脑a 台,则购进电子白板(30-a )台, 则0.5 1.5(30)28,0.5 1.5(30)a a a a ≥≤30+-⎧⎨+-⎩…………………………6分解得:1517a ,即a =15,16,17.…………………………7分故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为0.515 1.51530⨯+⨯=万元; 方案二:购进电脑16台,电子白板14台.总费用为0.516 1.51429⨯+⨯=万元; 方案三:购进电脑17台,电子白板13台.总费用为0.517 1.51328⨯+⨯=万元; 所以,方案三费用最低. …………………………10分23. (本题满分10分)证明:(1)∵BD ⊥直线m ,CE ⊥直线m ∴∠BDA =∠CEA=90° ∵∠BAC =90° ∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ………………1分 又AB =AC∴△ADB ≌△CEA ………………2分 ∴AE =BD ,AD =CE∴DE =AE +AD = BD +CE ………………3分(2)∵∠BDA =∠BAC =α,ABCE D m(图BC∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α ∴∠DBA=∠CAE ………………4分 ∵∠BDA =∠AEC=α,AB =AC ∴△ADB ≌△CEA ………………5分 ∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE ………………6分 (3)由(2)知,△ADB ≌△CEA ,BD =AE ,∠DBA =∠CAE ∵△ABF 和△ACF 均为等边三角形 ∴∠ABF =∠CAF=60°∴∠DBA+∠ABF =∠CAE+∠CAF ∴∠DBF =∠F AE ………………8分 ∵BF =AF∴△DBF ≌△EAF ………………9分 ∴DF =EF ,∠BFD =∠AFE∴∠DFE =∠DF A +∠AFE =∠DF A +∠BFD =60° ∴△DEF 为等边三角形.………………10分24. (本题满分12分)解:(1) ∵抛物线的顶点是A (2,0),设抛物线的解析式为2(2)y a x .由抛物线过B (0,-1) 得41a ,∴14a.……………………2分 ∴抛物线的解析式为21(2)4y x . 即2114yx x .………………………………3分 (2)设C 的坐标为(x ,y ).∵A 在以BC 为直径的圆上.∴∠BAC =90°. 作CD ⊥x 轴于D ,连接AB 、AC .则有 △AOB ∽△CDA .………………………4分ADEB FCO (图A xO yBHDOB OA AD CD∴OB ·CD =OA ·AD . 即1·y =2(x -2).∴y =2x -4.∵点C 在第四象限.∴24y x ………………………………5分由224,114y x y x x 解得1212102,100x x y y .∵点C 在对称轴右侧的抛物线上.∴点C 的坐标为 (10,-16).……………………6分∵P 为圆心,∴P 为BC 中点.取OD 中点H ,连PH ,则PH 为梯形OBCD 的中位线.∴PH =21(OB +CD )=217.……………………7分 ∵D (10,0)∴H (5,0)∴P (5, 172). 故点P 坐标为(5,172).…………………………8分 (3)设点N 的坐标为2114t t t ,,直线x=t (0<t<10)与直线BC 交于点M. 12BMN S MN t ,1(10)2CMN S MN t 所以1102BCN BMN CMN S S S MN ………………………9分 设直线BC 的解析式为ykx b ,直线BC 经过B (0,-1)、C (10,-16) 所以1,1016b k b 成立,解得:3,21k b …………………………10分 所以直线BC 的解析式为312y x ,则点M 的坐标为312t t , A x OyC B M N x=t (第24(3)答案图)MN=2114t t 312t =21542t t ………………………11分 2115()10242BCN S t t =252542t t =25125(5)44t 所以,当t=5时,BCN S 有最大值,最大值是1254.…………………………12分。
2024年山东省枣庄市、聊城市、临沂市、菏泽市、东营市中考数学试卷正式版含答案解析
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列实数中,平方最大的数是( )C. −1D. −2A. 3B. 122.用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 0.619×103B. 61.9×104C. 6.19×105D. 6.19×1064.下列几何体中,主视图是如图的是( )A. B. C. D.5.下列运算正确的是( )A. a4+a3=a7B. (a−1)2=a2−1C. (a3b)2=a3b2D. a(2a+1)=2a2+a6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A. 200B. 300C. 400D. 5007.如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN.若∠ABN =120°,则n 的值为( )A. 12B. 10C. 8D. 68.某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A. 19B. 29C. 13D. 239.如图,点E 为▱ABCD 的对角线AC 上一点,AC =5,CE =1,连接DE 并延长至点F ,使得EF =DE ,连接BF ,则BF 为( )A. 52B. 3C. 72D. 410.根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( ) A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分。
2023年山东省东营市中考数学试卷(含答案)102604
2023年山东省东营市中考数学试卷试卷考试总分:107 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1. 下列运算一定正确的是( )A.B. C.D.2. 将含角的一个直角三角板和一把直尺如图放置,若,则等于( )A.B.C. D.3. 在四张完全相同的卡片上,分別画有等腰三角形、平行四边形、矩形、圆,现从中随机抽取一张,卡片上的图形既是轴对称图形又是中心对称图形的概率是( ) A.B.C.D.4. 东胜到呼市相距千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的倍.从东胜到呼市的时间缩短了小时.设列车提速后所需时间为小时,根据题意,可列方程 A.B.C.D.a +a =a 2⋅=a 2a 3a 6(a +b)(a −b)=−a 2b 2=6(2)a 23a 630∘∠1=50∘∠280∘100∘110∘120∘1234 2.21.2x ()−=1.2234x 2342.2x =×2.2234x+1.2234x −=1.22342.2x 234x ×2.2=234x+1.2234x12πc 25. 若圆锥的侧面积为,它的底面半径为,则此圆锥的母线长( ).A.B.C.D.6. 如图,在中,点是边上任意一点,点,,分别是,,的中点,连接,若的面积为,则的面积为 A.B.C.D.7. 如图,中,,,,将沿射线的方向平移,得到,再将绕点逆时针旋转一定角度后,点恰好与点重合,则平移的距离和旋转角的度数分别为( )A.,B.,C.,D.,8. 如图,二次函数的图象与轴交于,两点,与轴正半轴交于点,它的对称轴为直线.则下列选项中正确的是( )A.B.C.12πcm 23cm cm .2346△ABC D BC F G E AD BF CF GE △FGE 8△ABC ()32486472△ABC AB =4BC =6∠B =60∘△ABC BC △A'B'C'△A'B'C'A'B'C 430∘260∘130∘330∘y =a +bx+c(a >0)x 2x A B y C x =−1abc <04ac −>0b 2c −a >0x =−−22D.当(为实数)时,9. 如图所示,在正方形中,为边中点,连接,对角线交于点.已知,则线段的长度为( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10. (精确到千分位)________.近似数精确到________位.11. 因式分解:________.12. 若点在第一象限,则的取值范围是________.13. 甲、乙两人进行飞镖比赛,每人各投次,所得平均环数相等,其中甲所得环数的方差为,乙所得环数如下:,,,,,那么成绩较稳定的是_________.(填“甲”或“乙”)14. 将折叠书架画出侧面示意图,为面板架,为支撑架,为锁住定杆,可在动或固定.已知.如图甲,将面板竖直固定时(),点恰为的中点,如图乙,当时, ,则支撑架的长度为________.15. 在半径为 的圆内有两条平行弦,一条弦长为,另一条弦长为,则两条平行弦之间的距离为________.16. 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.17. 方程组的解是________;直线与直线的交点是________.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )x =−−2n 2n y ≥cABCD E CD AE BD AE F EF =1AE 23450.0617 3.7×1053−27=x 2P(2m−1,m−3)m 515015910AB CD EF F CD BC =CE =8cm AB AB ⊥BD F CD CF =17cm EF ⊥AB CD cm 5cm 6cm 8cm △ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC {y =3x−1,y =x+3y =3x−1y =x+318. 计算:. 19. 今年是建党周年,回望“雄关漫道真如铁”的过去,瞭望“乘风破浪会有时”的未来,党史学习教育是牢记初心使命、坚定理想信念、推进党的自我革命的必然要求.教育局党委对教育系统的教师党员个人学习形式开展了问卷调查(问卷调查表如图),并将调查结果绘制成如图的条形统计图和扇形统计图(均不完整).请根据统计图中提供的信息,解答下列问题:本次参与调查的总人数是________人;扇形统计图中,扇形统计图部分的圆心角是________度;若该市教育系统有名党员,如果对全市进行调查,请你估计选择学习形式的人数为多少?教育局党委规定,选择学习形式是的党员要就规定书目中的两本内容进行讲座,并用随机抽取两本书的方式确定具体内容.工作人员将四本书分别编号为,,,,如下图所示,将写有编号的卡片放在不透明的盒子中,王老师选择的学习形式是,他从盒子中随机一次性抽出两张卡片,请用列表或画树状图的方法求他抽到两张卡片编号恰好是和的概率.20. 如图,是的直径,弦于点,过点的切线交的延长线于点,连接.(1)求证:是的切线;(2)连接,若=,=,求的长.21. 如图,一次函数的图象与反比例函数在第一象限的图象交于和两点,与轴交于点.求反比例函数的解析式;−4sin +(2020−π12−−√60∘)0100(1)D (2)6000C (3)A 1234A 12AB ⊙O CD ⊥AB E C AB F DF DF ⊙O BC ∠BCF 30∘BF 2CD y=−x+3y =k x (k ≠0)A(1,a)B x C (1)AB求的值. 22. 如图,利用一面墙(墙的长度不限),篱笆长.围成一个面积为的矩形场地,求矩形场地的长和宽;可以围成一个面积为的矩形场地吗?如果能,求出矩形场地的长和宽;如果不能,请说明理由. 23. 已知:在平面直角坐标系中,四边形是长方形,====,,==,==,点与原点重合,坐标为(1)直接写出点的坐标________.(2)动点从点出发以每秒个单位长度的速度向终点匀速运动,动点从点出发以每秒个单位长度的速度沿射线方向匀速运动,若两点同时出发,设运动时间为秒,当为何值时,轴?(3)在的运动过程中,当运动到什么位置时,使的面积为?求出此时点的坐标? 24. 已知抛物线与轴的一个交点为.求抛物线与轴的另一个交点的坐标;抛物线和抛物线形状一致,求此抛物线的解析式.(2)AB BC 20m (1)50m 2(2)60m 2ABC ∠A ∠B ∠C ∠D 90∘AB//CD AB CD 8AD BC 6D (0,0)B P A 3B 4CD PQ t t PQ//y Q Q △ADQ 9Q y =a +4ax+t x 2x A(−1,0)(1)x B (2)y =a +4ax+t x 2y =x 2参考答案与试题解析2023年山东省东营市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1.【答案】C【考点】平方差公式同底数幂的乘法幂的乘方与积的乘方合并同类项【解析】此题暂无解析【解答】解:,故错误;,故错误;,故正确;,故错误.故选.2.【答案】C【考点】平行线的性质三角形的外角性质【解析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】解:如图所示,∵,,∴,又∵是的外角,∴.a +a =2a A ⋅=a 2a 3a 5B (a +b)(a −b)=−a 2b 2C =8(2)a 23a 6D C AB//CD ∠1=50∘∠ABE=∠1=50∘∠2△ABE ∠2=∠ABE+∠E=+50∘60∘=110∘B【考点】中心对称图形概率公式轴对称图形【解析】由等腰三角形、平行四边形、矩形、圆中是轴对称图形和中心对称图形的有矩形、圆,直接利用概率公式求解即可求得答案.【解答】解:等腰三角形、平行四边形、矩形、圆中是中心对称图形的有平行四边形、矩形、圆,是轴对称图形的有等腰三角形、矩形、圆,…既是轴对称又是中心对称图形的有矩形、圆,.现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是故选:.4.【答案】D【考点】由实际问题抽象出分式方程【解析】此题暂无解析【解答】解:根据题意得,提速之前的时间为:,故可列方程组为:.故选.5.【答案】C【考点】圆锥的计算【解析】圆锥的侧面积底面周长母线长,把相应数值代入即可求解.【解答】解:设母线长为,底面半径是,则底面周长,侧面积,∴.12B x+1.2×2.2=234x+1.2234xD =×÷2R 3cm =6π=3πR =12πR =4cmC【考点】相似三角形的判定与性质三角形中位线定理【解析】此题暂无解析【解答】解:∵,分别是,的中点,∴是的中位线,∴,,∴,∵的面积为,∴的面积为,∵点是的中点,∴,∴的面积的面积.故选.7.【答案】B【考点】旋转的性质平移的性质等边三角形的性质与判定【解析】试题分析:根据平移和旋转的性质得到三角形全等,进而解答即可.【解答】解:由题意得,∴,∵,∴是等边三角形,∴,,,∴,旋转角的度数为.故选.8.【答案】D【考点】二次函数图象与系数的关系G E BF CF GE △BFC GE =BC 12GE//BC △FGE ∼△FBC △FGE 8△BFC 32F AD =,=S △ABF S △BDF S △FDC S △AFC △ABC =2△BFC =64C △ABC ≅△BC A ′AB ==C A ′B ′A ′∠B =60∘△C A ′B ′∠C =B ′A ′60∘C =AB =4B ′BC =6B =6−4=2B ′60∘B抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】由图象开口向上,可知,与轴的交点在轴的上方,可知,根据对称轴方程得到,于是得到,故错误;根据一次函数=的图象与轴的交点,得到,求得,故错误;根据对称轴方程得到=,当=时,=,于是得到,故错误;当=(为实数)时,代入解析式得到===,于是得到=,故正确.【解答】解:,由抛物线与轴交于正半轴,可知,∵对称轴为直线,,∴,∴,∴,故错误;,二次函数的图象与轴交于,两点,∴,∴,故错误;,∵,∴,∵当时,,∴,∴,故错误;,当(为实数)时,,,,,∴,故正确.故选.9.【答案】B【考点】正方形的性质相似三角形的性质与判定【解析】根据正方形的性质可得,,根据平行线的性质可得,,根据相似三角形的判定,可以得出,根据相似三角形的性质及为中点,可得,根据可计算出的长,从而得出的长.【解答】解: 四边形为正方形,,,,,,.为中点,,,∴,a >0y x c >0b >0abc >0A y a +bx+c(a >0)x 2x −4ac >0b 24ac −<0b 2B b 2a x −1y a −b +c <0c −a <0C x −−2n 2n y a +bx+c x 2a(−−2+b(−−2)n 2)2n 2a (+2)+c n 2n 2y a (+2)+c ≥c n 2n 2D A y c >0x =−1a >0−=−1<0b 2a b >0abc >0A B y =a +bx+c(a >0)x 2x A B Δ=−4ac >0b 24ac −<0b 2B C −=−1b 2a b =2a x =−1y =a −b +c <0a −2a +c <0c −a <0C D x =−−2n 2n y =a +bx+cx 2=a +b(−−2)+c(−−2)n 22n 2=a +2a(−−2)+c(−−2)n 22n 2=a (+2)+c n 2n 2∵a >0≥0n 2+2>0n 2y =a (+2)+c ≥c n 2n 2D D AB =CD AB//CD ∠ABF =∠GDF ∠BAF =∠DGF △ABF ∼△EOF E CD =AF EF AB ED EF =1AF AE ∵ABCD ∴AB =CD AB//CD ∴∠ABF =∠EDF ∠BAF =∠DEF ∴△ABF ∽△EDF ∴=AF EF AB ED ∵E CD EF =1∴=2AF EF AF =2.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10.【答案】,万【考点】科学记数法与有效数字【解析】根据近似数的精确度求解.【解答】精确到千分位为:;近似数精确到万位.11.【答案】【考点】提公因式法与公式法的综合运用【解析】先提取公因式,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式.故答案为:.12.【答案】【考点】点的坐标【解析】让点的横纵坐标均大于列式求值即可.【解答】解:∵点在第一象限,∴,,解得:.故答案为:.13.【答案】甲∴AE =AF +EF =3B 0.0620.06170.062 3.7×1053(x+3)(x−3)3=3(−9)=3(x+3)(x−3)x 23(x+3)(x−3)m>3P 0P(2m−1,m−3)2m−1>0m−3>0m>3m>3【考点】方差算术平均数【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】勾股定理的应用【解析】本题考查勾股定理的应用.根据勾股定理得出EF 的长,进而利用勾股定理得出CF ,进而得出CD 的长即可.【解答】解:∵,∴.过作,∵,∴.∵点恰为的中点,∴BC ,∴.∵,∴,∴,∴.故答案为:.15.【答案】或【考点】勾股定理的应用垂径定理的应用【解析】【解答】297−−√EF ⊥AB,CF =17cm,BC =CE =8cm EF =C −C F 2E 2−−−−−−−−−−√=15cm F FG ⊥AB AB ⊥BD FG//BD F CD CG =12=4cm EG =8+4=12cm EF =15cm CG =E −E F 2G 2−−−−−−−−−−√=9cm BD =2CG =18cm CD =C +B B 2D 2−−−−−−−−−−√=297−−√297−−√1cm 7 cm解:令=,=,过点作⊥于,交于.当、在圆心同旁时,∵,∴.∵过圆心,⊥,∴==.∵=,∴由勾股定理可知 =.同理 =,∴=-=.当、在圆心两旁时,同理可知=+=,故答案为:或.16.【答案】【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.故答案为:.17.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.AB 6 cm CD 8 cm O OE AB E CD F AB CD AB//CD OF ⊥CD OE OE AB EB 12AB 3cm OB 5cm EO 4cm OF 4cm EF OE OF 1 cm AB CD EF OE OF 7cm 1 cm 7 cm 65∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘65∘{x =2,y =5(2,5)2x−4=0x =2y =5所以方程组的解为所以直线与直线的交点为.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )18.【答案】解:原式.【考点】特殊角的三角函数值零指数幂、负整数指数幂二次根式的性质与化简【解析】(1)先计算二次根式、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:原式.19.【答案】,依题意可得:,∴选择学校形式的人数为:(人);答:选择学校形式的人数为人.列表如下:由列表可以看出,总共有种结果,每种结果出现的可能性相同,其中抽到两张卡片编号恰好是和的结果有种,所以(抽到两张卡片编号恰好是和).【考点】条形统计图扇形统计图用样本估计总体列表法与树状图法【解析】{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)=2−4×+13–√3–√2=2−2+13–√3–√=1=2−4×+13–√3–√2=2−2+13–√3–√=112054(2)×100%=25%30120C 6000×25%=1500C 1500(3)12122P 12=16根据图中数据即可求解;先求出的占比,即可求解;列表即可求解.【解答】解:依题意可知有人,占,∴(人),∴占总人数的,占的角度;故答案为:;. 依题意可得:,∴选择学校形式的人数为:(人);答:选择学校形式的人数为人.列表如下:由列表可以看出,总共有种结果,每种结果出现的可能性相同,其中抽到两张卡片编号恰好是和的结果有种,所以(抽到两张卡片编号恰好是和).20.【答案】证明:连接,如图,∵是的切线∴=,∴=∵直径弦,∴=,即为的垂直平分线∴=,∴=,∵=,∴=∴==,∴,∴是的切线;∵=,=,∴=,∵=,∴为等边三角形,∴=,∴=∴==,∴===,在中,∵=,∴=,∴,∴=.(1)(2)C (3)(1)A 2420%=1202420%D 18120D =×=18120360∘54∘12054(2)×100%=25%30120C 6000×25%=1500C 1500(3)12122P 12=16OD CF ⊙O ∠OCF 90∘∠OCD+∠DCF 90∘AB ⊥CD CE ED OF CD CF DF ∠CDF ∠DCF OC OD ∠CDO ∠OCD∠CDO +∠CDB ∠OCD+∠DCF 90∘OD ⊥DF DF ⊙O ∠OCF 90∘∠BCF 30∘∠OCB 60∘OC OB △OCB ∠COB 60∘∠CFO 30∘FO 2OC 2OB FB OB OC 2Rt △OCE ∠COE 60∘OE =OC 121CE =OE =3–√3–√CD 2CE =23–√【考点】垂径定理圆周角定理切线的判定与性质【解析】(1)连接,如图,利用切线的性质得=,再利用垂径定理得到为的垂直平分线,则=,所以=,加上=,则=,然后根据切线的判定定理得到结论;(2)利用=得到=,则可判断为等边三角形,再证明===,然后在中计算出,从而得到的长.【解答】证明:连接,如图,∵是的切线∴=,∴=∵直径弦,∴=,即为的垂直平分线∴=,∴=,∵=,∴=∴==,∴,∴是的切线;∵=,=,∴=,∵=,∴为等边三角形,∴=,∴=∴==,∴===,在中,∵=,∴=,∴,∴=.21.【答案】解:把点代入,得,,把代入反比例函数,,反比例函数的表达式为;连接,由一次函数可知的坐标为,解得,或,,,OD ∠OCD+∠DCF 90∘OF CD CF DF ∠CDF ∠DCF ∠CDO ∠OCD ∠CDO +∠CDB 90∘∠BCF 30∘∠OCB 60∘△OCB FB OB OC 2Rt △OCE CE CD OD CF ⊙O ∠OCF 90∘∠OCD+∠DCF 90∘AB ⊥CD CE ED OF CD CF DF ∠CDF ∠DCF OC OD ∠CDO ∠OCD∠CDO +∠CDB ∠OCD+∠DCF 90∘OD ⊥DF DF ⊙O ∠OCF 90∘∠BCF 30∘∠OCB 60∘OC OB △OCB ∠COB 60∘∠CFO 30∘FO 2OC 2OB FB OB OC 2Rt △OCE ∠COE 60∘OE =OC 121CE =OE =3–√3–√CD 2CE =23–√(1)A(1,a)y=−x+3a =2∴A(1,2)A(1,2)y=k x ∴k=1×2=2∴y =2x (2)OA,OB y=−x+3C (3,0) y =,2x y =−x+3,{x =1,y =2,{x =2,y =1,∴B(2,1)∴=×3×2=3S △AOC 12=×3×1=S △BOC 12323−=AOB 33,,.【考点】反比例函数与一次函数的综合【解析】把把点代入=,求出点坐标,再代入到反比例函数,得解;利用面积比易求出.【解答】解:把点代入,得,,把代入反比例函数,,反比例函数的表达式为;连接,由一次函数可知的坐标为,解得,或,,,,,.22.【答案】解:设矩形场地的宽度为,则长为,依题意列方程:,解得,故场地的宽为,长为.不能.因为设场地的宽为,则长为,依题意列方程:,即,,方程无实数解,故场地的面积不能达到.【考点】222∴=3−=S △AOB 3232∴=1S △AOB S △BOC ∴=1AB BC A(1,a)y −x+3A y=k x =1AB BC (1)A(1,a)y=−x+3a =2∴A(1,2)A(1,2)y=k x ∴k=1×2=2∴y =2x (2)OA,OB y=−x+3C (3,0) y =,2x y =−x+3,{x =1,y =2,{x =2,y =1,∴B(2,1)∴=×3×2=3S △AOC 12=×3×1=S △BOC 1232∴=3−=S △AOB 3232∴=1S △AOB S △BOC ∴=1AB BC(1)xm (20−2x)m x(20−2x)=50x =520−2x =20−10=10(m)5m 10m (2)xm (20−2x)m x(20−2x)=60−10x+30=0x 2Δ=−4×1×30=−20<010260m 2一元二次方程的应用【解析】靠墙的一面不需要篱笆,矩形养鸡场只需要一个长,两个宽用篱笆围成.设宽为,长就是,用矩形面积公式列方程.【解答】解:设矩形场地的宽度为,则长为,依题意列方程:,解得,故场地的宽为,长为.不能.因为设场地的宽为,则长为,依题意列方程:,即,,方程无实数解,故场地的面积不能达到.23.【答案】由运动知,=,=,∴==,∵,∴四边形是平行四边形∴=,∴=,∴,∴当为时,,∵的面积为,∴=,∴=,∴或即:当运动到距原点位置时,使的面积为,此时点的坐标或.【考点】四边形综合题【解析】(1)由==,==,点与原点重合,可求点坐标;(2)根据运动特点,和平行四边形的性质即可得出=,建立方程即可求出时间,(3)根据三角形的面积公式求出即可.【解答】∵四边形是长方形,==,==,点与原点重合,∴点故答案为:;由运动知,=,=,∴==,∵,∴四边形是平行四边形∴=,∴=,xm (20−2x)m (1)xm (20−2x)m x(20−2x)=50x =520−2x =20−10=10(m)5m 10m (2)xm (20−2x)m x(20−2x)=60−10x+30=0x 2Δ=−4×1×30=−20<010260m 2(8,6)AP 3t CQ 4t OQ AD−CQ 8−4t PQ//BC AB//CDAPQO AP OQ 3t 8−4t t =87t 87PQ//BC △ADQ 9=×OQ ×AD =×OQ ×6S △ADQ 12129OQ 3Q(3,0)(−3,0)Q 3cm △ADQ 9Q (3,0)(−3,0)AB CD 8AD BC 6D B AP OQ t OQ ABC AB CD 8AD BC 6D B(8,6)(8,6)AP 3t CQ 4t OQ AD−CQ 8−4t PQ//BC AB//CDAPQO AP OQ 3t 8−4t =8∴,∴当为时,,∵的面积为,∴=,∴=,∴或即:当运动到距原点位置时,使的面积为,此时点的坐标或.24.【答案】解:∵抛物线与轴的一个交点为,∴.∴.∴.令,即.解得,.∴抛物线与轴的另一个交点的坐标为.由知.∵抛物线和抛物线的形状一致,∴.∴抛物线的解析式为或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:∵抛物线与轴的一个交点为,∴.∴.∴.令,即.解得,.∴抛物线与轴的另一个交点的坐标为.由知.∵抛物线和抛物线的形状一致,∴.∴抛物线的解析式为或.t =87t 87PQ//BC △ADQ 9=×OQ ×AD =×OQ ×6S △ADQ 12129OQ 3Q(3,0)(−3,0)Q 3cm △ADQ 9Q (3,0)(−3,0)(1)y =a +4ax+t x 2x A(−1,0)a ×+4a ×(−1)+t =0(−1)2t =3a y =a +4ax+3a x 2y =0a +4ax+3a =0x 2=−1x 1=−3x 2x B (−3,0)(2)(1)y =a +4ax+3a x 2y =a +4ax+3a x 2y =x 2a =±1y =+4x+3x 2y =−−4x−3x 2(1)y =a +4ax+t x 2x A(−1,0)a ×+4a ×(−1)+t =0(−1)2t =3a y =a +4ax+3a x 2y =0a +4ax+3a =0x 2=−1x 1=−3x 2x B (−3,0)(2)(1)y =a +4ax+3a x 2y =a +4ax+3a x 2y =x 2a =±1y =+4x+3x 2y =−−4x−3x 2。
山东省东营中考数学试题(含答案)
绝密★启用前 试卷类型:A二0一二年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( ) A .31B . -31C . 3D . -32. 下列运算正确的是( )A .523x x x =⋅B .336()x x =C .5510x x x +=D .336x x x =-3. 下列图形中,是中心对称图形的是 ()A .B .C .D .4、下图能说明∠1>∠2的是( )1 2 ) A. 21)D.12 ))B.12 )) C.5、根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为( ) A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1)C .(4,1)D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是 6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmC . 8cmD . 2cm8.若43=x ,79=y ,则y x 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1 B . k ≤1 C . k >1D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线x y 6=上的概率为( ) A .118B .112OB A (第7题图)5cmC .19D .1611. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;④AC BD =.其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④(第11题图)(第12题图)绝密★启用前 试卷类型:A二0一二年东营市初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为 . 14.分解因式:x x 93 = . 15. 某校篮球班21名同学的身高如下表:则该校篮球班21名同学身高的中位数是______________cm .16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 cm .得 分评 卷 人BDCA(第16题图2)(第16题图1)17. 在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx=和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,… 都是等腰直角三角形,如果A 1(1,1),A 2(23,27),那么点n A 的纵坐标是_ _____.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫⎝⎛--;(2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.得 分 评 卷 人19. (本题满分9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.请结合以上信息解答下列问题.(1) a = ,本次调查样本的容量是 ; (2) 先求出C 组的人数,再补全“捐款人数分组统计图1”;(3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?捐款人数分组统计表 捐款人数分组统计图1捐款人数分组统计图2得 分 评 卷 人20. (本题满分9分)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.(第20题图)A DNEBC OM21.(本题满分9分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?22.(本题满分9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)(第22题图)APCB36.9°67.5°23.(本题满分10分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB 上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.(第23题图1)(第23题图3)B CA DE(第23题图2)24.(本题满分11分)已知抛物线36232++=bx x y 经过 A (2,0). 设顶点为点P ,与x 轴的另一交点为点B .(1)求b 的值,求出点P 、点B 的坐标; (2)如图,在直线 y=3x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.得 分 评 卷 人(第24题图)绝密★启用前 试卷类型:A2012年东营市初中学生学业考试数学试题参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.13.3.6×106; 14.x (x +3)(x -3); 15. 187; 16. 30; 17.123-⎪⎭⎫⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=-3-33+1+23…………………………2分 =-2-3…………………………3分 (2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分解不等式组⎩⎨⎧<+>-812,02x x 得722x <<,………………………2分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分19. 解:(1)20,500;…………………………2分 (2)500×40%=200,C 组的人数为200. … 4分补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(28%+8%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分 20.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径,∴∠ADO=∠EDO , ∠DAO=∠DEO =90°, ……………………2分∴∠AOD=∠EOD=12∠AOE , ∵∠ABE=12∠AOE ∴∠AOD=∠ABE ,∴OD ∥BE …………………5分(2)由(1)得:∠AOD=∠EOD=12∠AOE , 同理,有:∠BOC=∠EOC=12∠BOE∴∠AOD +∠EOD +∠BOC +∠EOC=180° ∴∠EOD +∠EOC =90°,∴△DOC 是直角三角形,…………………………7分∴ CD=cm )(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分 解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ………7分 (2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分 22.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里.在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………3分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………5分∵AC +BC =AB =21×5,∴54215123x x +=⨯,解得60x =. (第20题答案图)A DNEBC OM∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里).∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分23. 解答:(1)证明:在正方形ABCD 中, ∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF .∴CE =CF . …………………………2分(2)证明: 如图2,延长AD 至F ,使DF =BE .连接CF . 由(1)知△CBE ≌△CDF ,∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,又∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG .…………………………5分 ∴GE =GF∴GE =DF +GD =BE +GD . ……………6分(3)解:如图3,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中, ∵AD ∥BC ,∴∠A =∠B =90°,又∠CGA =90°,AB =BC ,∴四边形ABCD 为正方形.∴AG =BC .…………………………7分 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG .……8分所以10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6在Rt △AED 中, ∵222AE AD DE +=,即()()2224610-+-=x x .解这个方程,得:x =12,或x =-2(舍去).…………………………9分 ∴AB =12.所以梯形ABCD 的面积为S=.10812)126(21)(21=⨯+=+AB BC AD答:梯形ABCD 的面积为108. …………………………10分 24.解:(1)由于抛物线36232++=bx x y 经过A (2,0), 所以3624230++⨯=b , 解得34-=b .…………………………1分 所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y ,(第23题答案图1)(第23题答案图2)B C A D E G (第23题答案图3)所以顶点P 的坐标为(4,-23)…………………………2分 令y =0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线 y=3x 上存在点D ,使四边形OPBD 为平行四边形. ……4分理由如下:设直线PB 的解析式为kx y =+b ,把B (6,0),P (4,-23)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k 解得⎪⎩⎪⎨⎧-==.36,3b k 所以直线PB 的解析式为363-=x y .…………………………5分 又直线OD 的解析式为x y 3=所以直线P B ∥OD . …………………………6分设设直线OP 的解析式为mx y =,把P (4,-23)代入,得324-=m 解得23-=m .如果OP ∥BD ,那么四边形OPBD 为平行四边形.…………7分设直线BD 的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n 所以直线BD 的解析式为n x y +-=23, 解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x 所以D 点的坐标为(2,23)…………………8分(3)符合条件的点M 存在.验证如下:过点P 作x 轴的垂线,垂足为为C ,则PC =23,AC =2,由勾股定理,可得AP =4,PB =4,又AB =4,所以△APB 是等边三角形,只要作∠P AB 的平分线交抛物线于M 点,连接PM ,BM ,由于AM =AM , ∠P AM =∠BAM ,AB =AP ,可得△AMP ≌△AMB.因此即存在这样的点M ,使△AMP ≌△AMB.…………………………11分第24题答案图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s 2如下表所示:如果选拔一名学生去参赛,应派 乙 去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S <S ,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CE•CO ,其中正确结论的序号是 ①②③ .【分析】①由OC ⊥AB 就可以得出∠BOC=∠AOC=90°,再由OC=OA 就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x 轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C ⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B 两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C 两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可。