工程光学习题
工程光学基础 习题参考答案

1.β = 0, l' = 0, l = −50 2.β = −0.1, l' = −550, l = −55 3.β = −0.2, l' = −60, l = −300 4.β = −1, l'= −100, l = −100 5.β = 1, l' = 0, l = 0 6.β = 5, l' = −200, l = −40 7.β = 10, l' = −450, l = 45 8.β = ∞, l' = +∞, l = −50
n
1.5 10 15
Q L = −∞,∴U = 0
∴U'= I − I'
L'
=
r
1
+
sin I' sin U '
=
100
1
+
1 / 15 sin(1.9166)
=
299.332
则 实 际 光 线 的 像 方 截 距 为 299.332 , 与 高 斯 像 面 的 距 离 为 :
根据公式 n' − n = n'−n (1-20)有: n' − 1 = n'−1 ,可以看出此种情况不存在。
l' l r
r −∞ r
计算第②种情况:易知入射光线经第一面折射后过光轴与反射面的交点。
其余参考题 14。
21、一物体位于半径为 r 的凹面镜前什么位置时,可分别得到:放大 4 倍的实 像,放大 4 倍的虚像、缩小 4 倍的实像和缩小 4 倍的虚像? 解: (1)放大 4 倍的实像
(2)放大四倍虚像 (3)缩小四倍实像 (4)缩小四倍虚像
物理学:工程光学考试答案(题库版)

物理学:工程光学考试答案(题库版)1、名词解释复消色差物镜正确答案:三条谱线之间的轴向色差经过校正的物镜。
2、问答题棱镜和光栅产生的光谱特征有何不同?正确答案:它们光谱主要区别是:(1)光栅光谱是一个均匀排列光谱,(江南博哥)棱镜光谱是一个非均匀排列的光谱。
(2)光栅光谱中个谱线排列是由紫到红(光)棱镜光谱中各谱线排列三由红到紫(光)(3)光栅光谱有级,级与级之间有重叠现象棱镜光谱没有这种现象。
光栅适用的波长范围较棱镜宽。
3、名词解释虚像点正确答案:发撒的出射同心光束的会聚点。
4、单选原子吸收线的劳伦茨变宽是基于()。
A.原子的热运动B.原子与其它种类气体粒子的碰撞C.原子与同类气体粒子的碰撞D.外部电场对原子的影响正确答案:B5、名词解释视场正确答案:物空间中,在某一距离光学系统所能接受的最大物体尺寸,此量值以角度为单位。
6、问答题同一物体经针孔或平面镜所成的像有何不同?正确答案:由反射定律可知,平面镜的物和像是关于镜面对称的。
坐标由右旋坐标系变为像的左旋坐标系,因此像和物左右互易上下并不颠倒。
即物体经平面镜生成等大、正立的虚像。
物体经针孔成像时,物点和像点之间相对与针孔对称。
右旋坐标系惊针孔所成的像仍为右旋坐标系,因此像和物上下左右都是互易的,而且像的大小与针孔到接受屏的距离有关,即物体经针孔生成倒立的实像。
7、填空题发射光谱定性分析,常以()光源激发。
正确答案:直流电弧8、填空题在进行光谱定性全分析时,狭缝宽度宜(),目的是保证有一定的(),而进行定量分析时,狭缝宽度宜(),目的是保证有一定的()。
正确答案:窄;分辨率;宽;照度9、名词解释临界角角正确答案:光密介质到光疏介质出现全反射现象,产生全反射现象时的最小入射角称为临界角。
10、名词解释波像差正确答案:当实际波面与理想波面在出瞳处相切时,两波面间的光程差就是波像差.11、问答题PLC与FBT光分路器相比有哪些优点?正确答案:与传统的采用光纤熔融拉锥工艺制作的器件相比,PLC光分路器具有工作波长宽,通道损耗均匀性体积小,工作温度范围宽,可靠性高等特点,目前是PON接入网中连接OLT和O NU并实现光信号功率分配的首选.12、填空题等离子体光源(ICP)具体有(),()等优点。
工程光学习题答案

工程光学习题答案第一章习题及答案1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中, n=1.333 时,v=2.25*108m/s,当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s,当光在火石玻璃中,n=1.65 时,v=1.82*108m/s,当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s,当光在金刚石中,n=2.417 时,v=1.24*108m/s。
2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm 即屏到针孔的初始距离为300mm。
3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
北航工程光学考试题及答案

北航工程光学考试题及答案一、选择题(每题2分,共20分)1. 光的干涉现象产生的条件是:A. 光的频率相同B. 光的相位相同C. 光的振幅相同D. 光的传播方向相同答案:AB2. 以下哪种光学元件可以改变光的传播方向?A. 透镜B. 反射镜C. 滤光片D. 光栅答案:B3. 光学系统中的像差主要包括:A. 球差B. 色差C. 像散D. 以上都是答案:D4. 光的偏振现象说明光是:A. 横波B. 纵波C. 椭圆波D. 圆波答案:A5. 以下哪种材料不是光学材料?A. 石英B. 玻璃C. 塑料D. 橡胶答案:D6. 光纤通信中使用的光纤是:A. 单模光纤B. 多模光纤C. 单模和多模光纤D. 以上都不是答案:C7. 激光的相干性比普通光源好,主要是因为:A. 激光的频率单一B. 激光的相位一致C. 激光的振幅一致D. 激光的强度高答案:B8. 光学系统中的景深是指:A. 物体到镜头的距离B. 镜头到成像平面的距离C. 物体到成像平面的距离D. 允许物体在一定范围内移动而成像仍然清晰的范围答案:D9. 光学成像中,物体与像之间的距离称为:A. 焦距B. 物距C. 像距D. 焦距和物距之和答案:C10. 以下哪个参数不是描述透镜光学性能的?A. 焦距B. 光圈C. 景深D. 分辨率答案:C二、填空题(每题2分,共20分)1. 光的折射定律,也称为斯涅尔定律,其表达式为:n1 * sin(θ1) = n2 * sin(θ2),其中n1和n2分别是光从介质1到介质2的________和________。
答案:折射率2. 光学系统中,透镜的焦距越短,其视场角越________。
答案:大3. 光学成像中,当物体距离透镜的距离大于透镜的焦距时,成像为________。
答案:实像4. 激光的产生原理是基于________效应。
答案:受激辐射5. 光纤通信中,信号的传输是通过________来实现的。
答案:光波6. 光学系统中,为了减少像差,通常采用________透镜。
工程光学试题

工程光学试题—■判断(分,每题分)1.在介质中,光沿直线传播。
(X)2•同种光在不同介质中传播速度不同,频率不同。
(x)3.全反射发生的条件是光线从光疏介质射向光密介质。
(x)4.孔径角以光线起算转向光轴,顺时针旋转角度为正,逆时针旋转角度为负。
(X)5.在共轴球面光学系统中,横向放大率卩=3,表明该物所成的像为正立像且物像虚实相反。
(v6.垂直于光轴的物平面,其共轭像平面也必然垂直于光轴。
(v)7.在眼睛的光学成像系统中,明视距离就是近点距离。
(x)8.物方焦点和像方焦点,物方主店和像方主点是两队共轭点。
(x)9.对近视眼,显微镜所成的像应位于近视眼的远点上,应将目镜向前调。
(v)10.望远镜能使入射的平行光束仍保持平行地射出光学系统O(V)二.填空(分,每空分)1.一条入射线经转e角的平面镜反射,其反射光线转过兰角,2夹角为a的平面镜,光线从射入到射出总共反射了n次,则其出射线与入射线夹角为2n a。
2.用垂轴放大率判断物、像正倒关系方法:当0>0时正像,0<0时倒像。
3.光楔的顶角为a,则其最小偏向角为(n-1)a。
4.反射棱镜的作用转折光轴、转像、分像(分光、分色)合像。
5.正常眼的远点距为无穷远,近点距为眼前2£0_mm,视度调节范围为10屈光度,明视距离为250mm。
6•设计一个T=5x的放大镜,其焦距f=50mm。
7•已知某望远镜物镜焦距f1D=250mm,f2D=25mm,则该望远镜焦距fD=8,光学筒长L=275mm,放大倍数T=-10,此望远镜为开普勒(开普勒/伽利略)望远镜。
8.某人眼睛在放松状态下只能将位于眼睛前方0・5m处的物体成像在视网膜上,则此人眼睛的度数为一200度,应该戴一副焦距fD=—500mm的眼镜。
三■作图(分,每题分)1.完成光路图,标出A的像AQ,保留作图痕迹。
(1)答案:(2)用图解法求组合光组的基点(基面)的位置。
答案:、设输入为右手坐标系,画出经图中棱镜后的输出坐标系。
工程光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学答案第三版习题答案

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。
4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
物理学:工程光学试题(题库版)

物理学:工程光学试题(题库版)1、单选原子发射光谱定性工作中,对粉末样品经常采用()作为支持电极。
A、石墨电极B、铜电极C、锌电极D、银电极正确答案:A2、名词解释光程正确答案:光经过的实际路径长度与所在介质(江南博哥)折射率的乘积3、问答题什么叫“畸变”?它与什么因素有关?正确答案:轴外点的宽光束和细光束都有像差存在,即使只有主光线通过光学系统,由于球差影响,它不能和第二近轴光一致,主光线和高斯像面焦点的高度不等于理想像高,其差别就是系统的畸变。
4、名词解释电光效应正确答案:在电场作用下,可以使某些各向同性的透明介质变为各向异性,从而使光产生双折射,这种现象称为电光效应。
5、名词解释弧矢平面正确答案:包含主光线,且与子午平面正交的平面。
6、填空题我们通常把分界面两边折射率高的介质称为光密介质,折射率低的介质称为()。
正确答案:光疏介质7、单选采用调制的空心阴极灯主要是为了()。
A.延长灯寿命B.克服火焰中的干扰谱线C.防止光源谱线变宽D.扣除背景吸收正确答案:B8、问答题正弦光栅在自身所在平面内分别平移和转动时,对夫琅禾费衍射场的衍射斑有什么影响。
正确答案:正弦光栅在自身所在平面内移动时衍射斑光强分布不变,相位分布发生变化。
在自身平面内转动时,衍射光强和相位分布都发生变化。
9、名词解释物方远心光路正确答案:光学系统的物方光线平行于光轴,主光线的汇聚中心位于物方无限远处.10、填空题发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称()正确答案:波面11、填空题棱镜摄谱仪的结构主要由(),(),(),()四部分(系统)组成。
正确答案:照明系统;准光系统;色散系统;投影系统12、名词解释物方空间正确答案:所有实物点和虚物点的集合构成的空间。
13、填空题交流电弧的激发能力强,分析的重现性好,适用于(),不足的是蒸发能力也稍弱,灵敏度稍低。
正确答案:定量分析14、问答题什么是景深,照相物镜的景深与什么有关?正确答案:能在像面上获得清晰像的物空间的深度是系统的景深。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.简述成像系统分辨极限的瑞利判据的内容;据此判据,可采用什么方法来提高望远镜的分辨率?答:瑞利判据:当一个物点经过成像系统的夫朗和费圆孔衍射图样的中央极大与近旁一个物点的夫朗和费圆孔衍射图样的第一极小重合时,作为判定成像系统分辨率极限的判断方法。
(3分)。
据此,望远系统的分辨率为1.22λ/D,可以通过增大物镜的直径D、减小λ来提高分辨率。
.(3分)2.为何在设计望远镜系统时要将孔径光阑置于物镜上?答:望远镜是目视系统,需要与人眼联用。
根据光瞳衔接的原则,望远镜的出瞳应与人眼的瞳孔衔接,故它因该位于望远目镜之后,一般要求6mm以上的距离。
(3分)计算表明,将孔径光阑置于物镜上可以满足对出瞳的位置要求,而且望远镜的物镜、棱镜的尺寸最小。
(3分)3.光的全反射现象及其产生的条件是什么?试举出一个全反射的工程应用实例。
答:光入射到两种介质分界面时,入射光被全部反射,没有折射光,这就是全反射现象。
(2分)产生的条件:1光线从光密介质射向光疏介质;2入射角大于临界角;(3分)如光纤就是利用全反射实现光传输的。
(1分)1.已知一台显微镜的物镜和目镜相距200mm,物镜焦距为7.0mm,目镜焦距为5.0mm,若物镜和目镜都可看成是薄透镜,试计算:(1)如果物镜把被观察物体成像于目镜前焦点附近,那么被观察物体到物镜的距离是多少?物镜的垂轴放大率β是多少?(2)显微镜的视觉放大率是多少?解:(1)根据高斯公式:(1分)依题意:(1分),代入高斯公式即可计算出物距:,(2分)垂轴放大率为:(2分)(2)视觉放大率为物镜的垂轴放大率于目镜的视觉放大率之积,即:(4分)3、角放大率、轴向放大率和垂轴放大率三者之间的关系为、拉赫不变J=nuy 、牛顿公式以焦点为坐标原点。
6.获得相干光的方法有分波前法、分振幅法。
4、求轴上物点A 所成的像(图4)。
2、节点:光学系统中放大率为+1的一对共轭点称为节点。
5、出瞳:孔径光阑经它前面的透镜或透镜组在光学系统像空间所成的像称为出射光 1.摄影物镜的三个重要参数是什么?它们分别决定系统的什么性质?答:摄影物镜的三个重要参数是:焦距'f 、相对孔径'/f D 和视场角 2。
焦距影响成像的大小,相对孔径影响像面的照度和分辨率,视场角影响成像的范围。
3.显微物镜、望远物镜、照相物镜各应校正什么像差?为什么?答:显微物镜和望远物镜应校正与孔径有关的像差,如:球差、正弦差等。
照相物镜则应校正与孔径和视场有关的所有像差。
因为显微和望远系统是大孔径、小视场系统,而照相系统则是一个大孔径、大视场系统。
5.激光束聚焦要求用焦距较__短____的透镜,准直要用焦距较__长______的透镜。
3.一学生带500度近视镜,则该近视镜的焦距为_____-0.2 米________, 该学生裸眼所能看清的最远距离为___眼前0.2米__________。
3.已知物镜焦距为mm 500,相对孔径101,对无穷远物体成像时,由物镜第一面到像平面的距离为mm 400,物镜最后一面到像平面的距离为mm 300。
(1)按薄透镜处理,求物镜的结构参数;(8分)(2)若用该物镜构成开普勒望远镜,出瞳大小为mm 2,求望远镜的视觉放大率;(4分)(3)求目镜的焦距、放大率;(4分)(4)如果物镜的第一面为孔径光阑,求出瞳距;(6分) (5)望远镜的分辨率;(2分)(6)如果视度调节为折光度,目镜应能移动的距离。
(2分)(7)画出光路图。
(4分)解:根据题意,画出物镜的结构图如下:(1)将mm f 500'=和mm d 100=代入公式 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-===300''''''2111211121h tgu dtgu h h tgu h f tgu h f ,得: )(250'1mm f =将''21f f d --=∆代入牛顿公式∆'''21f f f -=,得:)(300'2mm f -=(2)因101'=f D ,则:)(50101500mm D =⨯=x D D 25250'-=-=-=Γ(3)x e o f f 25''-=-=Γ ,)(2025500'mm f e ==x e e f 5.1220250'250===Γ(4)望远镜系统的结构如下图所示:将mm l 1001-=和mm f 200'2-=代入公式'11'1f l l =-,得:mm l 67.66'1-= 将mm l 67.386)32067.66(2-=+-=和mm f e 20'=代入公式'11'1f l l =-, 得出瞳距:)(09.21'mm l z = (5)"8.250"140"140===D φ(6))(210002051000'522mm f x e ±=⨯±=±=∆(7)望远系统光路图如下:2mm3011mm30工程光学 第十二章习题解答1. 波长nm 500=λ的单色光垂直入射到边长为3cm 的方孔,在光轴(它通过孔中心并垂直方孔平面)附近离孔z 处观察衍射,试求出夫琅和费衍射区的大致范围。
解: 夫琅和费衍射应满足条件 π<<+1max21212)(Z y x k2222-2211max 11max 1-7()()3/2102()900()2510k x y x y Z cm m πλ++⨯⨯>===⨯()2. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单逢上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹相对于中央亮纹的强度。
解: 20sin ⎪⎭⎫⎝⎛=ααI I θλπαsin 22a f y ka kal ⋅=⋅== (1))(02.010025.05006rad a=⨯==∆λθ )(10rad d = (2)亮纹方程为αα=tg 。
满足此方程的第一次极大α43.11= 第二次极大α.22=x a kla θλπαsin 2⋅⋅==ax πλαθ=sin 一级次极大)(0286.010025.043.1500sin 6rad x x =⨯⨯⨯=≈ππθθ ()mm x 3.141= 二级次极大)(04918.010025.0459.2500sin 6rad x x =⨯⨯⨯=≈ππθθ ()mm x 59.241= (3)0472.043.143.1sin sin 2201=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=ππααI I01648.0459.2459.2sin sin 2202=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=ππααI I10.若望远镜能分辨角距离为rad 7103-⨯的两颗星,它的物镜的最小直径是多少?同时为了充分利用望远镜的分辨率,望远镜应有多大的放大率?解:Dλθ22.10= )(24.21031055022.179m D =⨯⨯⨯=-- ⨯-=⨯⨯⨯⨯⨯=''=Γ969310180606060067πϕ11. 若要使照相机感光胶片能分辨m μ2线距,(1)感光胶片的分辨率至少是没毫米多少线;(2)照相机镜头的相对孔径fD 至少是多大?(设光波波长550nm )解:)(50010213mm N 线=⨯=- 3355.01490=≈'Nf D12. 一台显微镜的数值孔径为0。
85,问(1)它用于波长nm 400=λ时的最小分辨距离是多少?(2)若利用油浸物镜使数值孔径增大到1.45,分辨率提高了多少倍?(3)显微镜的放大率应该设计成多大?(设人眼的最小分辨率是1')解:(1))(287.085.040061.061.0m NA μλε=⨯==(2))(168.045.140061.061.0m NA μλε=⨯=='706.185.045.1=='εε(3)设人眼在250mm 明视距离初观察)(72.72250180601m y μπ=⨯⨯='430168.072.72≈='=y y β 430==Γβ13. 在双逢夫琅和费实验中,所用的光波波长nm 8.632=λ,透镜焦距cm f 50=,观察到两相临亮条纹间的距离mm e 5.1=,并且第4级亮纹缺级。
试求:(1)双逢的逢距和逢宽;(2)第1,2,3级亮纹的相对强度。
解:(1) (1)双逢的逢距和逢宽;λθm d =⋅sin )2,1,0(⋅⋅⋅±±=m又f x =θsin f dm x λ=∴ f d e λ= )(21.05005.1108.6326mm e fd =⨯⨯==∴-λ()d am n =⋅ 将41m n =⎧⎨=⎩代入得 41)(053.04=⇒==d a mm d a (2)(2)第1,2,3级亮纹的相对强度。
当m=1时 dλθ=1sin当m=2时 d λθ2sin 2=当m=3时 dλθ3sin 3=代入单缝衍射公式 202)sin (ββI N I = θλπβsin a ⋅=∴ 当m=1时 81.0)4(21)()(sin sin 2222201===⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅=πππλλπλλπd a d a d a d a I I 当m=2时 405.0)42(122sin 22202==⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=πππd a d a I I当m=3时 09.04343sin 2203=⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛=ππI I15. 一块光栅的宽度为10cm ,每毫米内有500条逢,光栅后面放置的透镜焦距为500nm 。
问:(1)它产生的波长nm 8.632=λ的单色光的1级和2级谱线的半宽度是多少?(2)若入射光线是波长为632.8nm 和波长与之相差0.5nm 的两种单色光,它们的1级和2级谱线之间的距离是多少?解:)(10250013mm d -⨯==4105500100⨯=⨯=N 由光栅方程 λθm d =sin 知3164.0101028.632sin 631=⨯⨯==-d λθ ,9486.0cos 1=θ6328.02sin 2==dλθ ,774.0cos 2=θ这里的1θ,2θ确定了谱线的位置(1)(1)它产生的波长nm 8.632=λ的单色光的1级和2级谱线的半宽度是多少?θλθcos Nd =∆(此公式即为半角公式))(1067.69486.010*******.632cos 663411rad Nd --⨯=⨯⨯⨯⨯⨯==∆θλθ )(1017.8774.01021058.632cos 63422rad Nd -⨯=⨯⨯⨯⨯==∆θλθ )(1034.3311mm f dl -⨯=∆=θ )(1008.4322mm f dl -⨯=∆=θ(2)若入射光线是波长为632.8nm 和波长与之相差0.5nm 的两种单色光,它们的1级和2级谱线之间的距离是多少?由公式θλcos d mf d dl ⋅=(此公式为线色散公式) 可得)(131.09486.01021500105.0cos 13611mm d f d dl =⨯⨯⨯⨯⨯=⋅⋅=--θλ)(32.0774.01022500105.0cos 23622mm d f d dl =⨯⨯⨯⨯⨯=⋅⋅=--θλ16. 设计一块光栅,要求:(1)使波长nm 600=λ的第二级谱线的衍射角30≤θ,(2)色散尽可能大,(3)第三级谱线缺级,(4)在波长nm 600=λ的第二级谱线处能分辨0.02nm 的波长差。