七年级(下册)数学导学案参考答案

合集下载

人教版七年级数学导学案3.4实际问题与一元一次方程——行程问题教案导学案含课后配套作业及答案

人教版七年级数学导学案3.4实际问题与一元一次方程——行程问题教案导学案含课后配套作业及答案

3.3一元一次方程的应用——行程问题【教学目标】1.能熟练地找出行程问题中的相等关系列方程解应用题;2.培养学生分析问题、解决问题的能力.【复习引入】1.A、B两地相距480千米,一列慢车从A地开出,每小时行驶60千米,一列快车从B地开出,每小时65千米.两车同时开出,⑴若相向而行,x小时后相遇,则可列方程为;⑵若相背而行,x小时后两车相距640千米,则可列方程为;⑶同向而行,快车在慢车后面,x小时后快车追上慢车,则可列方程为;⑷同向而行,慢车在快车后,x小时后两车相距640千米,则可列方程为.答案:解:(1)(60+65)x=480(2) (60+65)x+480=640(3)60x+480=65x(4)65x+480=60x+640【知识点梳理】行程问题中常用的关系式:路程=速度×时间.一般行程问题包括三种情况:⑴相遇问题常用的相等关系是:甲走的路程+乙走的路程=两地间的距离即速度和×时间=路程和;⑵追及问题①同地不同时出发时:前者走的路程=后者走的路程;②同地不同时出发时:前者走的路程-后者走的路程=两地间的距离即速度差×时间=路程差.⑶航行问题(以后另讲)【应用举例】例1甲、乙两人在10千米的环形公路上跑步,甲每分钟跑230米,乙每分钟跑170米.⑴若甲先跑10分,乙再从同地同向出发,还要多长时间相遇?⑵若甲先跑10分,乙再从同地反向出发,还要多长时间相遇?答案:解:1. (1) 设需要的时间为x秒(230-170)x=1000060x=10000 x=166.6分钟(2) 设需要的时间为x秒230×10+(230-170)x=1000060x=7700 x=128.3分钟答:⑴若甲先跑10分,乙再从同地同向出发,还要166.6分钟相遇?⑵若甲先跑10分,乙再从同地反向出发,还要128.3分钟相遇?例2一列火车行驶途中,经过一条长300m的隧道需要20s的时间.隧道的顶上有一盏固定的灯,垂直向下发光,灯光在火车上照了10s.求这列火车的长为多少?答案:解:经过一条长300m的隧道要20s:这里的20s是指隧道的长度加上火车的长度,即火车从进隧道,到完全的出隧道的长度。

新人教版七年级数学下册)第八章导学案及参考答案

新人教版七年级数学下册)第八章导学案及参考答案

新人教版七年级数学(下册)第八章导学案及参考答案第八章二元一次方程组课题:8.1二元一次方程组【学习目标】:弄懂二元一次方程、二元一次方程组和它的解的含义,并会检验一对数是不是某个二元一次方程组的解;【学习重点】:二元一次方程、二元一次方程组及其解的意义.【学习难点】:弄懂二元一次方程组解的含义.【导学指导】一、温故知新1.含有()个未知数,且未知数的次数为()的方程叫一元一次方程。

方程中“元”是指()“次”是指()2.使一元一次方程()的未知数的值叫一元一次方程的解。

3.写出一个—元一次方程(),并指出它的解是()。

二、自主学习:阅读课本93-94页回答下列问题1.含有()个未知数,且未知数的次数为()的方程叫二元一次方程。

方程中“元”是指()“次”是指()2.使二元一次方程()的未知数的值叫二元一次方程的解。

3.写出一个二元一次方程(),并指出它的解是()。

4.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个()5. ( )叫二一次方程组的解。

【课堂练习】1.课本95页1 ;22、x +y =2的正整数解是__________3.若13x y =-⎧⎨=-⎩是方程3x-ay=3的一个解,那么a 的值是__________。

4.下列各式中是二元一次方程是( )(A) 6x-y=7; (B) x 2 =3x+y ; (C)y=5;(D) x 1y=35. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩D .35251025x y x y +=⎧⎨+=⎩6.方程组327413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩【要点归纳】本节课你有哪些收获?【拓展训练】1. 349x y +=中,如果2y = 6,那么x = 。

人教版七年级数学下册导学案 第六章 实数 6.3 实数(第一课时)

人教版七年级数学下册导学案 第六章 实数 6.3 实数(第一课时)

人教版七年级数学下册导学案 第六章 实数 6.3 实数(第一课时)【学习目标】1、了解实数的意义,能对实数按要求进行分类。

2、了解实数范围内,相反数、倒数、绝对值的意义。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

【课前预习】12的整数部分是a ,小数部分是b b -的值是( ) A .5 B .5- C .3 D .3-2.在实数 1.414-,π,3.14,2+ 3.212212221…中,无理数的个数是( )个.A .1B .2C .3D .43.在数227,02112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( )A .3个B .4个C .5个D .6个4.估算6 )A .2B .3C .4D .55.如图,A 、B 、C 、D 的点是( )A .点AB .点BC .点CD .点D6.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .673+的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间8.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4079.如图,在数轴上表示A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A1 B.1-C.2 D210.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1 【学习探究】自主学习阅读课本,完成下列问题1.填空:(有理数的两种分类):2.使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 25 , 35- ,427 ,911 ,119 , 互学探究一、实数的概念1.请把下列有理数写成小数的形式,你有什么发现? 3=_____ 35-=_____ ,478=_____ ,911=_____ ,119 =_____ ,59=_____ 小结:任何一个有理数都可以写成_______小数或________小数的形式。

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)本资料为woRD文档,请点击下载地址下载全文下载地址:统计调查(二)【学习目标】了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析.【学习重点】对概念的理解及对数据收集整理【学习难点】总体概念的理解和随机抽样的合理性一、【自主学习】、学前准备:自学课本153—155页,写出你的困惑:二、【合作探究】如果要对某校XX名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?.抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查抽样调查:抽取一部分对象进行调查的方法,叫抽样调查.2.总体、个体、样本、样本容量的意义总体:所要考察对象的全体.个体:总体的每一个考察对象叫个体.样本:抽取的部分个体叫做一个样本.样本容量:样本中个体的数目.3.抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查XX名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映XX名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在XX名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.4.抽样调查100名学生最喜爱节目情况如下:节目类型划记人数百分比A新闻8B体育20c动画30D娱乐36E戏曲6合计00请你填充上表,并指出最好选择什么统计图来描述较好.三【达标测试】(A)、1、调查夏季市场销售的凉鞋质量情况适合采用_______________调查.2、了解一个班级学生的数学成绩是否有提高适合采用___________调查.3、数据处理的一般过程是_______________________________________.4、抽查我校一月份5天的用电量,结果如下:(单位:度)120,160,150,140,150,根据以上数据估计我校1月份用电总量为__________度.5、庆元宵校园歌手大奖赛,8位评委给6号选手的评分如下:9.8,9.9,9.5,9.7,9.4,9.7,9.6,9.6在去掉一个最高分和一个最低分后,6号选手最后平均分是__________________________.(B)、1、下列调查方式中,合适的是()A.要了解约90万顶救灾帐蓬的质量,采用普查的方式B.要了解外地游客对旅游景点“x疆民街”的满意程度,采用抽样调查的方式c.要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D.要了解全疆初中学生的业余爱好,采用普查的方式2、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A总体的一个样本B个体c总体D样本容量(即样本中个体的数量)4、下列适合抽样调查而不适合全面调查的是()A了解一批灯泡的使用寿命B了解截止XX年底中国的总人口C了解全市中学生电脑打字速度D了解全市七年级数学期末考试成绩5、甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元.若将甲种糖果8千克,乙种糖果10千克,丙种糖果3千克混合,则售价应定为每千克()元,才能与三种糖果分开卖时卖一样多的钱(保留一位小数)A6.7B6.8c7.5D8.66、下列调查中,样本最具有代表性的是()A在重点中学调查全市高一学生的数学水平。

《三元一次方程组的解法》人教版七年级数学下册导学案

《三元一次方程组的解法》人教版七年级数学下册导学案

8.4 三元一次方程组的解法【总结解题方法提升解题能力】【知识点梳理】一、三元一次方程及三元一次方程组的概念1、三元一次方程的定义含有三个未知数, 并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+4c=5等都是三元一次方程.2、三元一次方程组的定义一般地, 由几个一次方程组成, 并且含有三个未知数的方程组, 叫做三元一次方程组.二、三元一次方程组的解法1、解三元一次方程组的一般步骤〔1〕利用代入法或加减法, 把方程组中一个方程与另两个方程分别组成两组, 消去两组中的同一个未知数, 得到关于另外两个未知数的二元一次方程组;〔2〕解这个二元一次方程组, 求出两个未知数的值;〔3〕将求得的两个未知数的值代入原方程组中的一个系数比拟简单的方程, 得到一个一元一次方程;〔4〕解这个一元一次方程, 求出最后一个未知数的值;〔5〕将求得的三个未知数的值用“{〞合写在一起.要点诠释:〔1〕解三元一次方程组的根本思路是:通过“代入〞或“加减〞消元, 把“三元〞化为“二元〞.使解三元一次方程组转化为解二元一次方程组, 进而转化为解一元一次方程.其思想方法是:〔2〕有些特殊的方程组可用特殊的消元法, 解题时要根据各方程特点寻求其较简单的解法.三、三元一次方程组的应用1、列三元一次方程组解应用题的一般步骤〔1〕弄清题意和题目中的数量关系, 用字母(如x, y, z)表示题目中的两个(或三个)未知数;〔2〕找出能够表达应用题全部含义的相等关系;〔3〕根据这些相等关系列出需要的代数式, 从而列出方程并组成方程组;〔4〕解这个方程组, 求出未知数的值;〔5〕写出答案(包括单位名称).一、三元一次方程及三元一次方程组的概念 1、以下方程组不是三元一次方程组的是〔 〕. A 、12236x y y z y +=⎧⎪+=-⎨⎪=⎩ B 、24013x y x xy z ⎧-=⎪+=⎨⎪-=-⎩C 、2231x y x z =⎧⎪=-⎨⎪-=⎩D 、1321y x x z y z -=-⎧⎪+=⎨⎪-=⎩2、以下方程组中是三元一次方程组的是( ).A 、B 、111216y x z y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C 、123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D 、18120m n n t t m +=⎧⎪+=⎨⎪+=⎩3、以下方程组中是三元一次方程组的是〔 〕.A 、111xy yz xz =⎧⎪=⎨⎪=⎩B 、222x y y z x z +=⎧⎪+=⎨⎪+=⎩C 、111111x y z x⎧+=⎪⎪⎨⎪+=⎪⎩D 、23121x y x z x y z ⎧+=⎪+=⎨⎪--=⎩ 二、三元一次方程组的解法1、在等式y=ax 2+bx+c 中, 当x=﹣1时, y=0;当x=2时, y=3;当x=5时, y=60.求a, b, c 的值.2、解方程组:3、解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②4、方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式x-2y+3z 的值等于-10, 求a 的值.三、三元一次方程组的应用1、购置铅笔7支, 作业本3本, 圆珠笔1支共需3元;购置铅笔10支, 作业本4本, 圆珠笔1支共需4元, 那么购置铅笔11支、作业本5本圆珠笔2支共需元.2、现有面值为2元、1元和5角的人民币共24张, 币值共计29元, 其中面值为2元的比1元的少6张, 求三种人民币各多少张?【稳固练习】一、填空题.1、以下方程组中是三元一次方程组的是〔 〕.A 、2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B 、2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C 、1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D 、::3:4:524x y z x y z =⎧⎨++=⎩ 2、以下四组数值中, 为方程组的解是〔 〕.A 、B 、C 、D 、3、方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩, 那么a+b+c 的值为〔 〕.A 、6B 、-6C 、5D 、-54、532y x y z x a b c ++-与254x y a b c -是同类项, 那么x-y+z 的值为 ( ) .A 、1B 、2C 、3D 、45、代数式2ax bx c ++, 当x =-1时, 其值为4;当x =1时, 其值为8;当x =2时, 其值为25;那么当x =3时, 其值为 〔 〕.A 、4B 、8C 、62D 、526、方程组35204522x y x y z ax by z -=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by z x y z c x y -+=⎧⎪++=⎨⎪+=-⎩有相同的解, 那么a 、b 、c 的值为〔 〕.A 、231a b c =-⎧⎪=-⎨⎪=⎩B 、231a b c =-⎧⎪=⎨⎪=⎩C 、231a b c =⎧⎪=-⎨⎪=-⎩D 、231a b c =⎧⎪=⎨⎪=-⎩7、xyz ≠0, 且4520430x y z x y z -+=⎧⎨+-=⎩, 那么x ∶y ∶z 等于〔 〕. A 、3∶2∶1B 、1∶2∶3C 、4∶5∶3D 、3∶4∶5 8、关于x, y 的方程组的解是方程3x+2y=10的解, 那么a 的值为〔 〕.A 、﹣2B 、2C 、﹣1D 、1149、甲、乙、丙三个人各有一些钱, 其中甲的钱是乙的2倍, 乙比丙多1元, 丙比甲少11元, 那么三人共有〔 〕.A 、30元B 、33元C 、36元D 、39元 10、为了奖励进步较大的学生, 某班决定购置甲、乙、丙三种钢笔作为奖品, 其单价分别为4元、5元、6元, 购置这些钢笔需要花60元;经过协商, 每种钢笔单价下降1元, 结果只花了48元, 那么甲种钢笔可能购置( ) .A 、11支B 、9支C 、7支D 、5支二、填空题.11、方程组的解为.12、, 那么=.13、方程组2345216x y z x y z ⎧==⎪⎨⎪-+=⎩, 假设设=234x y z k ==, 那么k =__________. 14、某车间共有86名工人, 每人平均每天可以加工甲种部件15个, 乙种部件12个或丙种部件9个, 要使加工后的部件按3个甲种部件, 2个乙种部件和1个丙种部件配套, 那么应安排__________人加工甲种部件, __________人加工乙种部件, __________人加工丙种部件.15、甲、乙、丙三数的和是26, 甲数比乙数大1, 甲数的两倍与丙数的和比乙数大18, 那么甲、乙、丙三个数分别是__________.三、解以下方程组.16、〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩ 〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩ 〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩四、应用题.1、新定义对有理数x, y 定义新运算x △y=ax+by+c, 其中a, b, c 是常数, 等式右边是通常的加法与乘法运算.1△2=9, 〔-3〕△3=6, 0△1=2, 求〔-2〕△5的值.2、在等式y =ax 2+bx +c 中, 当x =-1时, y =4;当x =2时, y =4;当x =1时, y =2.〔1〕求a , b , c 的值;〔2〕当x =-2时, 求y 的值.3、某单位职工在植树节当天去植树, 甲、乙、丙三个小组共植树50棵, 乙组植树的棵数是甲、丙两组和的 , 甲组植树的棵数恰好是乙组和丙组的和, 那么每组各植树多少棵?4、2003年全国足球甲A 联赛的前12轮(场)比赛后, 前三名比赛成绩如下表.胜〔场〕 平〔场〕 负〔场〕 积分问每队胜一场、平一场、负一场各得多少分?5、某工程由甲、乙两队合作需6天完成, 厂家需付甲、乙两队共8700元, 乙、丙两队合作需10天完成, 厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23, 此时厂家需付甲、丙两队共5500元. (1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)假设要不超过15天完成全部工程, 问由哪队单独完成此项工程花钱最少?请说明理由. 参考答案一、三元一次方程及三元一次方程组的概念1、以下方程组不是三元一次方程组的是〔 〕.A 、12236x y y z y +=⎧⎪+=-⎨⎪=⎩B 、24013x y x xy z ⎧-=⎪+=⎨⎪-=-⎩C 、2231x y x z =⎧⎪=-⎨⎪-=⎩D 、1321y x x z y z -=-⎧⎪+=⎨⎪-=⎩【答案】B 【解析】解:由题意知, 含有三个相同的未知数, 每个方程中含未知数的项的次数都是1次, 并且一共有三个方程, 叫做三元一次方程组.A 、满足三元一次方程组的定义, 故A 选项错误;B 、x 2-4=0, 未知量x 的次数为2次, ∴不是三元一次方程, 故B 选项正确;C 、满足三元一次方程组的定义, 故C 选项错误;D 、满足三元一次方程组的定义, 故D 选项错误; 应选B .2、以下方程组中是三元一次方程组的是( ).A 、2102x y y z xz ⎧-=⎪+=⎨⎪=⎩B 、111216y xz y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C 、123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D 、18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次, 故A 选项不是;B 选项中1x , 1y , 1z 不是整式, 故B 选项不是;C 选项中有四个未知数, 故C 选项不是;D 项符合三元一次方程组的定义.3、以下方程组中是三元一次方程组的是〔 〕.A 、111xy yz xz =⎧⎪=⎨⎪=⎩B 、222x y y z x z +=⎧⎪+=⎨⎪+=⎩C 、111111x y z x⎧+=⎪⎪⎨⎪+=⎪⎩D 、23121x y x z x y z ⎧+=⎪+=⎨⎪--=⎩【答案】B【解析】A 、含有三个未知数, 但不是一次方程, 故该选项错误;B 、是三元一次方程组, 故该选项正确;C 、不是整式方程, 故该选项错误;D 、不是一次方程组, 故该选项错误, 应选B .二、三元一次方程组的解法1、在等式y=ax 2+bx+c 中, 当x=﹣1时, y=0;当x=2时, y=3;当x=5时, y=60.求a, b, c 的值. 【解析】解:根据题意, 得,②﹣①, 得a+b=1④;③﹣①, 得4a+b=10 ⑤.④与⑤组成二元一次方程组, 解这个方程组, 得,把代入①, 得c=﹣5. 因此, 即a, b, c 的值分别为3, ﹣2, ﹣5.2、解方程组: 【答案】解:①+②得:5311x y +=④ ①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =, 2y =;将2y =代入⑤知:1x =将1x =, 2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③3、解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②【解析】解法一:原方程可化为:253520x z y z x y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③ 由①③得:25x z =, 35y z =④ 将④代入②得:232055z z z ++=, 得:10z =⑤ 将⑤代入④中两式, 得:2210455x z ==⨯=, 3310655y z ==⨯= 所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y z t ===, 那么2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=, 2t =将2t =代入③得:2224x t ==⨯=, 3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩4、方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式x-2y+3z 的值等于-10, 求a 的值.【解析】解法一:②-①, 得z-x =2a ④③+④, 得2z =6a, z =3a把z =3a 分别代入②和③, 得y =2a, x =a .∴23x a y a z a =⎧⎪=⎨⎪=⎩.把x =a, y =2a, z =3a 代入x-2y+3z =10得:a-2×2a+3×3a =-10. 解得53a =-. 解法二:①+②+③, 得2(x+y+z)=12a ;即x+y+z=6a ④④-①, 得z =3a, ④-②, 得x =a, ④-③, 得y =2a .∴23x a y a z a =⎧⎪=⎨⎪=⎩,把x =a, y =2a, z =3a 代入x-2y+3z =10得:a-2×2a+3×3a =-10. 解得53a =-. 三、三元一次方程组的应用1、购置铅笔7支, 作业本3本, 圆珠笔1支共需3元;购置铅笔10支, 作业本4本, 圆珠笔1支共需4元, 那么购置铅笔11支、作业本5本圆珠笔2支共需元.【答案】5.【解析】解:设铅笔的单价是x 元, 作业本的单价是y 元, 圆珠笔的单价是z 元.购置铅笔11支, 作业本5本, 圆珠笔2支共需a 元.那么由题意得:,由②﹣①得3x+y=1, ④由②+①得17x+7y+2z=7, ⑤由⑤﹣④×2﹣③得0=5﹣a, 解得:a=5.2、现有面值为2元、1元和5角的人民币共24张, 币值共计29元, 其中面值为2元的比1元的少6张, 求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x 张、y 张和z 张.依题意, 得24122926x y z x y z x y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③ 把③分别代入①和②, 得21813232x z x z +=⎧⎪⎨+=⎪⎩④⑤ ⑤×2, 得6x+z =46 ⑥⑥-④, 得4x =28, x =7;把x =7代入③, 得y =13;把x =7, y =13代入①, 得z =4.∴方程组的解是7134x y z =⎧⎪=⎨⎪=⎩.答:面值为2元、l 元和5角的人民币分别为7张、13张和4张.【稳固练习】一、填空题.1、以下方程组中是三元一次方程组的是〔 〕.A 、2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B 、2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C 、1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D 、::3:4:524x y z x y z =⎧⎨++=⎩ 【答案】D ;2、以下四组数值中, 为方程组的解是〔 〕.A 、B 、C 、D 、【答案】D .【解析】,①+②得:3x+y=1④,①+③得:4x+y=2⑤,⑤﹣④得:x=1, 将x=1代入④得:y=﹣2, 将x=1, y=﹣2代入①得:z=3,那么方程组的解为.3、方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩, 那么a+b+c 的值为〔 〕.A 、6B 、-6C 、5D 、-5【答案】C ;【解析】将方程组中的三个方程左右分别相加, 得2()10a b c ++=, 两边同除以2便得答案.4、532y x y z x a b c ++-与254x y a b c -是同类项, 那么x-y+z 的值为 ( ) .A 、1B 、2C 、3D 、4【答案】D ;【解析】由同类项的定义得:5235y x x y z x y +=⎧⎪+=⎨⎪-=⎩, 解得:211x y z =⎧⎪=-⎨⎪=⎩, 所以4x y z -+=.5、代数式2ax bx c ++, 当x =-1时, 其值为4;当x =1时, 其值为8;当x =2时, 其值为25;那么当x =3时, 其值为 〔 〕.A 、4B 、8C 、62D 、52【答案】D ;【解析】由条件知484225a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩, 解得521a b c =⎧⎪=⎨⎪=⎩.当x =3时, 2252152ax bx c x x ++=++=.6、方程组35204522x y x y z ax by z -=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by z x y z c x y -+=⎧⎪++=⎨⎪+=-⎩有相同的解, 那么a 、b 、c 的值为〔 〕.A 、231a b c =-⎧⎪=-⎨⎪=⎩B 、231a b c =-⎧⎪=⎨⎪=⎩C 、231a b c =⎧⎪=-⎨⎪=-⎩D 、231a b c =⎧⎪=⎨⎪=-⎩【答案】D【解析】解方程组35202934x y x y z x y -=⎧⎪+-=⎨⎪+=-⎩, 解得120x y z =⎧⎪=-⎨⎪=⎩,代入可得方程组41022281a b a b c -⎧⎪+=⎨⎪-=⎩=-, 解得231a b c =⎧⎪=⎨⎪=-⎩, 应选D .7、xyz ≠0, 且4520430x y z x y z -+=⎧⎨+-=⎩, 那么x ∶y ∶z 等于〔 〕.A 、3∶2∶1B 、1∶2∶3C 、4∶5∶3D 、3∶4∶5【答案】B 【解析】∵4520430x y z x y z -+=⎧⎨+-=⎩①②,∴①×3+②×2, 得2x =y , ①×4+②×5, 得3x =z , ∴x ∶y ∶z =x ∶2x ∶3x =1∶2∶3, 应选B . 8、关于x, y 的方程组的解是方程3x+2y=10的解, 那么a 的值为〔 〕.A 、﹣2B 、2C 、﹣1D 、1【答案】B ;【解析】解:此题的实质是解三元一次方程组, 用加减法或代入法来解答.〔1〕﹣〔2〕得:6y=﹣3a, ∴y=﹣,代入〔1〕得:x=2a, 把y=﹣, x=2a 代入方程3x+2y=10,得:6a ﹣a=10, 即a=2.应选B .9、甲、乙、丙三个人各有一些钱, 其中甲的钱是乙的2倍, 乙比丙多1元, 丙比甲少11元, 那么三人共有〔 〕.A 、30元B 、33元C 、36元D 、39元 【答案】D ;【解析】解:设甲乙丙分别有,,x y z 元元元, 那么有:2111x y y z x z =⎧⎪-=⎨⎪-=⎩, 解得:20109x y z =⎧⎪=⎨⎪=⎩, 所以三人共有:39x y z ++=〔元〕.10、为了奖励进步较大的学生, 某班决定购置甲、乙、丙三种钢笔作为奖品, 其单价分别为4元、5元、6元, 购置这些钢笔需要花60元;经过协商, 每种钢笔单价下降1元, 结果只花了48元, 那么甲种钢笔可能购置( ) .A 、11支B 、9支C 、7支D 、5支 【答案】D ;【解析】解:设购置甲、乙、丙三种钢笔分别为x 、y 、z 支, 由题意, 得4566034548x y z x y z ++=⎧⎨++=⎩①②①×4-②×5得x-z =0, 所以x =z, 将z =x 代入①, 得4x+5y+6x =60.即y+2x =12. ∵ y >0, ∴ x <6, ∴ x 为小于6的正整数, ∴ 选D.二、填空题.11、方程组的解为.【答案】.12、, 那么=.【答案】;【解析】解:,①×7﹣②×6得:2x ﹣3y=0, 解得:x=y,①×2+②×3得:11x ﹣33z=0解得:x=3z,∵x=y, x=3z, ∴y=2z, ∴===.故答案为:.13、方程组2345216x y zx y z ⎧==⎪⎨⎪-+=⎩, 假设设=234x y z k ==, 那么k =__________.【答案】2 【解析】设=,234x y zk ==那么x =2k , y =3k , z =4k , 代入5x −2y +z =16得:10k −6k +4k =16, 解得:k =2, 故答案为:2. 14、某车间共有86名工人, 每人平均每天可以加工甲种部件15个, 乙种部件12个或丙种部件9个, 要使加工后的部件按3个甲种部件, 2个乙种部件和1个丙种部件配套, 那么应安排__________人加工甲种部件, __________人加工乙种部件, __________人加工丙种部件. 【答案】36;30;20【解析】设应安排x 人加工甲种部件, y 人加工乙种部件, z 人加工丙种部件.那么由题意得8615391229x y z xz yz⎧++=⎪⎪=⎪⎨⎪⎪=⎪⎩①②③,由②得x =95z ④, 由③得y =32z ⑤,将④⑤代入①, 解得z =20, ∴x =36, y =30.故答案为:36, 30, 20.15、甲、乙、丙三数的和是26, 甲数比乙数大1, 甲数的两倍与丙数的和比乙数大18, 那么甲、乙、丙三个数分别是__________. 【答案】10, 9, 7【解析】设甲数为x , 乙数为y , 丙数为z , 根据题意得:261218x y z x y x z y ++=⎧⎪-=⎨⎪+-=⎩, 解得:1097x y z =⎧⎪=⎨⎪=⎩, 那么甲数是10, 乙数是9, 丙数是7, 故答案为:10, 9, 7.三、解以下方程组.16、〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩ 〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩ 〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩【解析】〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩①②③,①+③, 得3x -4z =8④, ②-③, 得2x +3z =-6⑤,联立④⑤, 得348236x z x z -=⎧⎨+=-⎩, 解得02x z =⎧⎨=-⎩,把x =0, z =-2代入③, 得y =-3,所以原方程组的解是032x y z =⎧⎪=-⎨⎪=-⎩.〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩①②③,1097x y z =⎧⎪=⎨⎪=⎩14③+①, 得3x +5y =11④, ③×2+②, 得3x +3y =9⑤, ④-⑤, 得2y =2, 解得y =1,将y =1代入⑤, 得3x =6, 解得x =2, 将x =2, y =1代入①, 得z =-1, 所以原方程组的解为211x y z =⎧⎪=⎨⎪=-⎩.〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩①②③,将方程①+②得:2x +z =27④, 将方程②+③得:3x +2z =44⑤,将④×3﹣⑤×2得:z =7, 将z 值代入⑤得:x =10, 把x =10代入①得:y =9,∴三元一次方程组的解为 . 四、应用题.1、新定义对有理数x, y 定义新运算x △y=ax+by+c, 其中a, b, c 是常数, 等式右边是通常的加法与乘法运算.1△2=9, 〔-3〕△3=6, 0△1=2, 求〔-2〕△5的值.解:由题意得293362a b c a b c b c ++=⎧⎪-++=⎨⎪+=⎩, 解得253a b c =⎧⎪=⎨⎪=-⎩,所以此新运算为x △y =2x +5y -3, 故〔-2〕△5=2×〔-2〕+5×5-3=18.2、在等式y =ax 2+bx +c 中, 当x =-1时, y =4;当x =2时, y =4;当x =1时, y =2.〔1〕求a , b , c 的值; 〔2〕当x =-2时, 求y 的值.3、某单位职工在植树节当天去植树, 甲、乙、丙三个小组共植树50棵, 乙组植树的棵数是甲、丙两组和的 , 甲组植树的棵数恰好是乙组和丙组的和, 那么每组各植树多少棵?解:设甲、乙、丙三个小组分别植树x 棵、y 棵和z 棵.根据题意,得501()4x y z y x z x y z++=⎧⎪⎪=+⎨⎪=+⎪⎩, 解得251015x y z =⎧⎪=⎨⎪=⎩.答:甲、乙、丙三个小组分别植树25棵、10棵和15棵.4、2003年全国足球甲A 联赛的前12轮(场)比赛后, 前三名比赛成绩如下表.胜〔场〕平〔场〕负〔场〕积分大连实德队8 2 2 26 上海申花队 6 5 1 23 北京现代队 5 7 0 22 问每队胜一场、平一场、负一场各得多少分?解:设每队胜一场、平—场、负—场分别得x分, y分, z分根据题意, 得8222665235722x y zx y zx y++=⎧⎪++=⎨⎪+=⎩①②③;由①得4x+y+z=13 ④②一④, 得x+2y=5 ⑤⑤×5-③, 得y=1.把y=1代入⑤, 得x=5-2×1=3, 即x=3.把x=3, y=1代入④, 得z=0.∴310 xyz=⎧⎪=⎨⎪=⎩答:每队胜一场得3分, 平一场得1分, 负一场得0分.5、某工程由甲、乙两队合作需6天完成, 厂家需付甲、乙两队共8700元, 乙、丙两队合作需10天完成, 厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23, 此时厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)假设要不超过15天完成全部工程, 问由哪队单独完成此项工程花钱最少?请说明理由.解:〔1〕设甲队单独做x天完成, 乙队单独做y天完成, 丙队单独做z天完成, 那么111611110112135x yy zx z⎧+=⎪⎪⎪+=⎨⎪⎪+=⨯⎪⎩, 解得111011151130xyz⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,∴101530xyz=⎧⎪=⎨⎪=⎩.答:甲、乙、丙各队单独完成全部工程分别需10天, 15天, 30天.〔2〕设甲队做一天应付给a元, 乙队做一天应付给b元, 丙队做一天应付给c元, 那么6()870010()80005()5500a bb ca c+=⎧⎪+=⎨⎪+=⎩,解得875575225abc=⎧⎪=⎨⎪=⎩.∵ 10a=8750〔元〕, 15b=8625〔元〕.答:由乙队单独完成此工程花钱最少.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(1)y 是x 的函数吗?为什么?(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置A 种树苗x 棵, 造这片树林的总费用为y 元, 解答以下问题: (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章 反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x 吨, 这批原材料能用y 天, 那么y 与x 之间的函数表达式为〔 〕 A .y =100x B .y =C .y =+100D .y =100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m 3的圆柱形煤气储存室, 那么储存室的底面积S 〔单位:m 2〕与其深度d 〔单位:m 〕的函数图象大致是〔 〕A .B .C .D .3.甲、乙两地相距s 〔单位:km 〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y 〔单位:h 〕关于行驶速度x 〔单位:km /h 〕的函数图象是〔 〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降,此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕100 80 60 40 20压强y〔kPa〕60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200 240 250 400销售量y〔双〕30 25 24 1513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变,密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100 125 200 250 …镜片与光斑的距离y/m… 1 …m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕400 625 800 1000 (1250)镜片焦距x〔cm〕25 16 10 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降,此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件,在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:设购置A (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。

新人教版数学七年级下册导学案(表格式全册,156页)

新人教版数学七年级下册导学案(表格式全册,156页)

集体备课导学案
集体备课导学案
的大小。

集体备课导学案
集体备课导学案
与∠4,线被哪一条直线所截形成的什么角?
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
3、思考:在所画的相邻的两个图案中,找出三组对应点,连接它
集体备课导学案
2.如图,直线a∥b,点B在直线
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
=,
0.81, 1.2
9
0.5
O O’
.圆周率及一些含有
集体备课导学案
集体备课导学案
集体备课导学案
各小组对上面讨论的情况在班上进行展示、交流。

集体备课导学案。

新人教版七年级数学(下册)导学案及参考答案

新人教版七年级数学(下册)导学案及参考答案

新人教版七‎年级数学(下册)第九章导学‎案第九章不等式与不‎等式组课题 9.1.1不等式及‎其解集【学习目标】了解不等式‎的解、解集的概念‎,会在数轴上‎表示出不等‎式的解集.【学习重点】不等式的解‎集的概念及‎在数轴上表‎示不等式的‎解集的方法‎。

【学习难点】不等式的解‎集的概念。

【导学指导】一、知识链接1、什么叫等式‎?2、什么叫方程‎?什么叫方程‎的解?3.问题1:一辆匀速行‎驶的汽车在‎11:20时距离‎A地50千‎米。

(1)要在12:00时刚好‎驶过A地,车速应为多‎少?(2)要在12:00以前驶‎过A地,车速应该具‎备什么条件‎?若设车速为‎每小时x千‎米,能用一个式‎子表示吗?二、自主探究阅读课本1‎14-115页,回答下面的‎问题1.不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__2.不等式的解‎:_____‎_____‎_____‎_____‎_____‎_____‎_____‎_____‎___3.思考:判断下列数‎中哪些是不‎等式5032x的解:76,73,79,80,74.9,75.1,90,60你能找出这‎个不等式其‎他的解吗?它到底有多‎少个解?你从中发现‎了什么规律‎?4.不等式的解‎集:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__5.解不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__6、不等式的解‎集在数轴上‎的表示:(1)x>1 (2) x<3;【课堂练习】:1.课本115‎页练习1、2、32.下列式子中‎哪些是不等‎式?(1)a +b=b +a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x -33.下列式子中‎:①-5<0 ②2x=3 ③3x-1>2 ④ 4x-2y ≤0 ⑤ x 2-3x+2>0 ⑥x-2y 其中属于不‎等式的是_‎_____‎_____‎_,属于一元一‎次不等式的‎是____‎_____‎_(填序号) 【要点归纳】:【拓展训练】:1、绝对值小于‎3的非负整‎数有( )A .1、2B .0、1C .0、1、2D .0、1、32、下列选项中‎,正确的是( ) A . 不是负数,则 B . 是大于0的‎数,则C .不小于-1,则D .是负数,则3、用数轴表示‎不等式x<34的解集正确‎的是( )ABCD4.在数轴上表‎示下列不等‎式的解集:(1)x>2; (2) x<4; (3)-2<x<3【课堂小结】:课题 9.1.2 不等式的性‎质 (1)【学习目标】掌握不等式‎的性质;会根据“不等式性质‎”解简单的一‎元一次不等‎式,并能在数轴‎上表示其解‎集;【学习重点】 理解并掌握‎不等式的性‎质并运用它‎正确地解一‎元一次不等‎式。

新人教版七年级数学下册导学案及参考答案

新人教版七年级数学下册导学案及参考答案

新人教版七年级数学下册导学案及参考答案【新人教版七年级数学下册导学案】导学目标:1. 了解七年级数学下册的内容和学习重点。

2. 理解导学案的作用和使用方式。

3. 掌握正确的学习方法和解题技巧。

第一单元:图形的认识【导学案】1. 导学目标本单元主要介绍图形的基本概念和性质,包括平面图形和立体图形的分类、判定和比较,以及相关的性质和应用。

通过本单元的学习,我们将能够准确识别各种图形,了解它们之间的关系和特点,掌握一些相关的计算方法和思维技巧。

2. 导入引导请观察下面的图片,回答问题:(插入示意图片)2.1 这个图形是属于平面图形还是立体图形?2.2 它有几个面?2.3 它有几个顶点?2.4 它有几条边?(提示:平面图形没有体积,立体图形有)3. 拓展探究3.1 平面图形和立体图形的定义和特点是什么?3.2 平面图形如何分类?举例说明。

3.3 立体图形如何分类?举例说明。

3.4 如果给你一些几何图形,请你根据它们的特点进行分类。

4. 学以致用请你观察下面的实际应用题,尝试解答:(插入应用题图片)4.1 请你计算图形A的面积和周长。

4.2 请你计算图形B的体积。

4.3 请你找出图形C的对称轴。

5. 导学小结通过本节课的学习,我们了解了平面图形和立体图形的基本概念和特点,并学会了一些计算方法和解题技巧。

在接下来的学习中,请大家积极参与,多思考多实践,加深对图形的认识与理解。

【参考答案】2.1 这是一个平面图形。

2.2 它有6个面。

2.3 它有8个顶点。

2.4 它有12条边。

3.1 平面图形是指只有长和宽,没有厚度的图形;立体图形是指有长、宽和高,有一定厚度的图形。

3.2 平面图形可以分为三角形、正方形、长方形、圆形等。

3.3 立体图形可以分为立方体、球体、圆柱体、圆锥体等。

4.1 图形A的面积为12平方厘米,周长为14厘米。

4.2 图形B的体积为32立方米。

4.3 图形C有两条对称轴,分别为水平方向和垂直方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下学期)数学导学案参考答案第五章相交线与平行线P2.拓展训练1.∠COF,∠AOC和∠BO D,160°;2. 150°;3. 90°;P4拓展训练1.145°; 2、60°; 3. 垂直;4. 垂直P6拓展训练1. (1)错;(2)错;(3)错;2. (略)P8拓展训练1.C2.∠4;∠5;∠4、∠5;3. (1)BC;EF;DE;同位角(2)AB;DE;BC;内错角P10拓展训练1. (略)2.D; 3 .C; 4.(略) 5. 0、1、2、3;P12拓展训练1.(1)AB∥CD ;(2)∠DCB;(3)∠3=∠2;(4)∠5=∠2;2.AD∥BE; AE∥CD ;AD∥BC;P14拓展训练1. BC(内错角相等,两直线平行) ;BC(两直线平行,同旁内角互补)2. B;3. ∠BED=∠B+∠DP18拓展训练1. B ;2. B; 3 . 9米;P20基础训练1.A2.D3.C4.B5.D6.不相交的两条直线;7. CD∥EF;8. 1; 0; 9. 0、1、2、3;10.共线;11. (略) 12. (略)P22拓展训练P241.A2.3.4. (略)第五章相交线与平行线检测试题一、 1. C 2 .A 3.B 4.D 5.C 6. D 7. C 8. B二、9. a ∥c; 10. 0、1、2、3;11. 120° 12. 115;65;13.145° 14. 102°三、(略)第六章平面直角坐标系P28拓展训练1.6 2. c 3.(-5,3);向西走2米,再向南走6 米; 4. 140P30拓展训练1、4 ;3;2. x轴 3. (4,3) (4,-3) (-4,3) (-4,-3);4. (2,-2)、(1,1)5. (-1,6) (-1,-2);6. (-3,2) (-3,-2);7. 6P32拓展训练1. B;2、B; 3. 4或-4 ; 4. B; 5. c 6. B; 7. cP34拓展训练(略)P36拓展训练1. 5 ;2. (2,-1) ;3. (1,2)P38拓展训练1.(略); 2. (略);P39基础训练1.B;2. D3. B;4.四5.一、三;二;6. 5、3;7.(1,2)、(1,-2)、(-1,2) 、(-1,-2);8. (3,-2) 9. (0,-3) 10. x轴上或y轴上11. (-1,3); (1,3)拓展训练1. (-4,0) ;2. -1;3. 4;4. 9或5\3;5. (1,3) (-5,1) (-1,-1) (-2,1); (-2,5) (1,1) (4,3) (1,5) 画图(略);第六章《平面直角坐标系》检测试卷P41、42一、1. B 2 .B 3.A 4.D 5.D 6. C 7. B 8. B 9.B 10.D二、11. (8,6); 3排4号; 12. 6或-2; 13. (1,2) ; (-1,-2) ; (1,-2); 14. 四15. 平行;3;16. 3 17. (-1,4) 或(-1,0) 18. 4或-4三、(略)第七章三角形P44拓展训练1. B2. DP46拓展训练1.5 ;2. 110°3、 2.4P48拓展训练1;1;1;2. 80°;50°;3.直角;4. 1\2∠BAC; 95°P50拓展训练1. 116°2. 70°3. 180 °P52拓展训练(略)P54拓展训练1.180 °2. 12;3. 104. 36°、72°、108°、144°;5. 150°6. A【课堂练习】1. 2;2. 19或23;3. 直角;4.12;1800°5. 9 ;6.稳定性;7. =8.钝角9. 10 ; 10. 30°;11. 100°; 12、 12;1800°;13、77°P60拓展训练1. 120° ;2. 36 °3. 18 °第七章 三角形 测试卷P61、62一、1. C 2 .D 3.C 4.C 5.C 6. C 7. B 8. C二、9. 19 10. 直角 11. 70°或55° 12. 4、6、8、12;13. 12;1800°;14. 70°三、15. 6; 16. 100°; 17. 30° ;18. 30 ;60\13; 19. 90°第八章 二元一次方程组P64拓展训练1. -1;2.a ≠-2;b ≠1;3. a=-2;4. m=1、n=1;P66拓展训练1. 3;-2 ;2. 3;-2 ;3. -4;4;4. 6\7;6\7; -6;6P68拓展训练1. (1) ⎩⎨⎧==23y x (2) ⎩⎨⎧==12y x 2. (略)3. -4\3,-2\3;4.a=19\8,b=17\8拓展训练1.⎩⎨⎧-==12y x2. ⎩⎨⎧==01b aP72拓展训练1. ⎩⎨⎧==23y x2. ⎩⎨⎧==17\6017\6y x3. 9;4. a=1\7,b=4\21P74拓展训练1.设: A 、B 两种型号的服装每件需要x, y 元,列方程组得,⎩⎨⎧=+=+18808121810109y x y x 解(略) 2. 设:这所学校现在的初中在校生为x 人和高中在校生人数y 人,列方程组得,⎩⎨⎧⨯=+=+%104200%11%84200y x y x 解(略) P82拓展训练1. a =2, b=32. ⎩⎨⎧==32y x ⎩⎨⎧-==2\52\13y x3. 设:这批货物x 有吨,原计划每天运输y 吨,列方程组得,⎩⎨⎧+⨯-=+=)5()220(1020y x y x 解得⎩⎨⎧==40800y x ,答(略) 4. 他以每小时60千米的速度行驶可准时到达。

第八章 二元一次方程组 测试题P83、84一、1. 5-2x; 2 . ⎩⎨⎧==23y x , ⎩⎨⎧==16y x ;3. 6;4. -3;5. -3 ;6. 0二、7. C 8.A 9.B 10.C 11.C 12.C三、13. ⎩⎨⎧==21y x , ⎩⎨⎧-==5\115\13y x ; 14. 设一本笔记本为x 元一支钢笔y 元,列方程组得⎩⎨⎧=+=+1846y x y x 解得⎩⎨⎧==42y x ,答(略)15. 设这艘轮船在静水中的航速与水速分别是x 千米\时,,y 千米\时, 列方程组得 ⎩⎨⎧=-=+100)(5100)(4y x y x 解得⎩⎨⎧==5.25.22y x ,答(略)16. 设8立方米以内x 元/立方米,超过部分y 元/立方米,列方程组得⎩⎨⎧=-+=-+2.16)810(822)812(8y x y x 解得⎩⎨⎧==9.23.1y x ,答(略)17. 设用x 立方米的木料做桌面,y 立方米的木料做桌腿,做出的桌面和桌腿恰好能配成设方桌,列方程组得⎩⎨⎧⨯==+x y y x 50430010 解得⎩⎨⎧==46y x , 答(略)第九章 不等式与不等式组P86拓展训练1.C2.D3.C4. (略)P88拓展训练1. >,<, <, >2. a <-1,3.B4.D5. (略)P92拓展训练1. B;2. -1,1 ;3. 4;4. y≤ -6;5. (略)P98拓展训练1.A2.D3. 1\2≤x≤5\34. m<4;5.不存在P102拓展训练1. x≥7\5;2. x≥-17\3;3. x<1;4. 7;5. 10第九章不等式与不等式组检测试卷P103、104一、1. 1\2 x -2≤ -1; 2. >,>, <;3. x≤-5\2; 4. 1< a<7; 5. 1,26. 27. 320≤x≤340;8. a≤3 ;9. 13二、 10.A 11.C 12.C 13.B 14.C三、15. x≥10\11; 16. -2≤x≤-1\2 ; 17. -2<x≤1;18. 该校的获奖人数6人, 所买的课外读物26本。

第十章数据的收集、整理与描述P108拓展训练1. D2.B3.C4.DP110拓展训练1. D2. C第十章数据的收集、整理与描述测试题P117一、1. D 2.A 3.D 4.C 5.B 6.D二、7.抽样调查; 8. 折线统计图;9.频数10. 8;11.8;12. 不合理13. 14;三、14. 5;40%;28800; 15. (1) 15;0.3;(2)60%;16.(1)图②;图①(2)(略)17. (1)(略)(2)50 (3)300。

相关文档
最新文档