自动控制原理第8章_非线性控制系统分析
《自动控制原理》考点精讲(第8讲 非线性控制系统分析)

自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。
自动控制原理第八章习题答案

第八章 非线性控制系统分析练习题及答案8-2 设一阶非线性系统的微分方程为3x x x+-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。
解 令 x=0 得 -+=-=-+=x x x x x x x 321110()()()系统平衡状态x e =-+011,,其中:0=e x :稳定的平衡状态;1,1+-=e x :不稳定平衡状态。
计算列表,画出相轨迹如图解8-1所示。
可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-<x 时,x t ()→-∞; 1)0(>x 时,x t ()→∞。
注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~xx 平面上任意分布。
8-3 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。
(1) x xx ++=0 (5) ⎩⎨⎧+=+=2122112x x xx x x解 (1) 系统方程为x -2 -1 -13 0 131 2x-6 0 0.385 0 -0.385 0 6 x 11 2 01 0211图解8-1 系统相轨迹⎩⎨⎧<=-+I I >=++I )0(0:)0(0:x x x x x x x x令0x x ==,得平衡点:0e x =。
系统特征方程及特征根:21,221,21:10,()2:10, 1.618,0.618()s s s s s s I II ⎧++==-±⎪⎨⎪+-==-+⎩稳定的焦点鞍点(, ) , , x f x x x x dxdxxx x dx dx x x x x x==--=--==--=-+=ααβ111⎪⎪⎩⎪⎪⎨⎧<-=>--=)0(11:II )0(11:I x x βαβα计算列表用等倾斜线法绘制系统相平面图如图解8-2(a )所示。
图解8-2(a )系统相平面图(5) xx x 112=+ ① 2122x x x+= ② 由式①: x xx 211=- ③ 式③代入②: ( )( )x xx x x 111112-=+- 即 x x x 11120--= ④ 令 x x110== 得平衡点: x e =0 由式④得特征方程及特征根为 ⎩⎨⎧-==--414.0414.20122,12λs s (鞍点) 画相轨迹,由④式x xdxdx x x x 1111112===+α xx 112=-α 计算列表用等倾斜线法绘制系统相平面图如图解8-2(b )所示。
精品文档-自动控制原理(王春侠)-第八章

8.2 描 述 函 数 法 8.2.1 描述函数的基本概念
设非线性环节的输入为 x(t)=A sinωt
一般情况下,非线性环节的稳态输出y(t)是非正弦周期信号。 将y(t)用傅氏级数表示为
y t A0 An cos nt+Bn sin nt =A0 Yn sin nt+n
n =1
n =1
kx,
x ≤a
y Msignx, x >a
2
图8-1 饱和非线性特性
3
2. 死区特性
死区又称不灵敏区,如图8-2所示。其输入与输出之间关
系的表达式为
0,
x ≤Δ
y k x Δsignx, x >Δ
式中,Δ为死区范围; k为线性段的斜率。
当输入信号小于Δ时,对系统来说,虽然有输入但无输
出,只有当|x|>Δ时才有输出,这时,输出与输入之间为
第八章 非线性控制系统分析
8.1 非线性系统的基本概念 8.2 描述函数法 8.3 相平面法 8.4 Matlab应用实例
1
8.1 非线性系统的基本概念 8.1.1 典型非线性特性
控制系统中含有本质非线性环节,如果这些本质非线性特 性能用简单的折线来描述,则称为典型非线性特性。
1. 饱和特性 饱和特性是一种常见的非线性特性,如图8-1所示。其数 学表达式为
最后指出,这种方法只适用于单个的非线性元件,如果有 两个以上的非线性元件,则必须把它们合并为一个模块,否则 第二个元件的输入就不会是正弦波。
22
8.2.2 典型非线性特性的描述函数 1. 死区特性 在具有死区的元件中,当输入在死区的幅值范围内时
就没有输出。图8-6所示为死区非线性特性及其输入、输出波 形。
自动控制原理 胡寿松 第八章 非线性控制系统分析

k ( x b) y c k ( x b)
当x y / k b 当 b x y / k b 当x y / k b
式中, b 为常数,它等于主动轮改变方向时的值。
间隙特性类似于线性系统的滞后环节,但不完全等价,它对控制系统的动 态、稳态特性都不利。
虚线可用动态非线性微分方程来描述 死区特性可能给控制系统带来不利影响,它会使控制的灵敏度下降,稳态 误差加大;
死区特性也可能给控制系统带来有利的影响,有些系统人为引入死区以提 高抗干扰能力。
2. 饱和特性
可以说,任何实际装置都存在饱和特性,因为它们的输出不可能无限增大。 实际的饱和特性一般如图中的点划线所示,为了分析的方便,我们将它用图中 的三段直线来近似,并称之为理想饱和特性。 理想饱和特性的数学描述为:
3. 非线性系统的分析与设计方法
系统分析和设计的目的是通过求取系统的运动形式,以解决稳定性问题为中 心,对系统实施有效的控制。 由于非线性系统形式多样,受数学工具限制,一般情况下难以求得非线性微 分方程的解析解,只能采用工程上适用的近似方法。 本章重点介绍两种方法:(考研) 1)相平面法
2)描述函数法
2) 非线性系统的分类
非本质非线性 :能用小偏差线性化方法进行线性化处理的非线性。 本质非线性 : 不能用小偏差线性化方法解决的非线性。
3)研究非线性控制理论的意义 随着生产和科学技术的发展,对控制系统的性能和精度要求越来越高,建 立在线性化基础上的分析和设计方法已经难以解决高质量的控制问题。 为此,必须针对非线性系统的数学模型,采用非线性控制理论进行研究。 此外,为了改善系统的性能,实现高质量的控制,还必须考虑非线性控制器 的设计。
8-3 相平面法
自动控制原理第八章非线性控制系统

如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03
自动控制原理第八章

2.非线性系统的一般数学模型
f (t , d y dt
n n
,
dy dt
, y ) g (t ,
d r dt
m
m
,
dr dt
, r)
其中,f (· )和g (· )为非线性函数。
2012-6-21 《自动控制原理》 第八章 非线性系统 23
2012-6-21 《自动控制原理》 第八章 非线性系统 5
(1)当初始条件x0<1时,1-x0>0,上式具有负的特
征根,其暂态过程按指数规律衰减,该系统稳定。 (2)当x0=1时,1-x0=0,上式的特征根为零,其暂 态过程为一常量。 (3)当x0>1时,1-x0<0,上式的特征根为正值,系 统暂态过程按指数规律发散,系统不稳定。 系统的暂态过程如图所示。 由于非线性系统的这种性质, 在分析它的运动时不能应用 线性叠加原理。
非线性弹簧输出的幅频特性
2012-6-21 《自动控制原理》 第八章 非线性系统 11
实际中常见的非线性例子
实际的非线性例子:晶体管放大器有一个线性工作范围,
超出这个范围,放大器就会出现饱和现象;有时,工程上
还人为引入饱和特性用以限制过载;
电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输
2012-6-21
《自动控制原理》 第八章 非线性系统
16
系统进入饱和后,等效K↓
% ( 原来系统稳定,此时系 统一定稳定) (原来不稳,非线性系 统最多是等幅振荡) 振荡性 限制跟踪速度,跟踪误 差 ,快速性
自动控制原理第8章

f(x, x) f(x, x) 或 f(x, x) f(x, x)
即 f(x, x)是关于 xx
x
自动控制原理
9
(2)相平面图上的奇点和普通点
相平面上任一点(x, x),只要不同时满足 x 0和 f(x, x) 0 , 则该点的斜率是唯一的,通过该点的相轨迹有且仅有一条, 这样的点称为普通点。
中心点
jω
vortex or center
σ
x
x
中心点
鞍点
jω
x
saddle point
σ
鞍点
x
自动控制原理
21
j λ2 λ1 0
节点 node
j 0
j
0 λ1 λ2
不稳定节点 unstable node
j
0
稳定焦点 stable focus
j
不稳定焦点 unstable focus
j
0
λ1 0 λ2
此系统将具有振荡发散状态。
终将趋于环内平衡点,不会产生自振荡。
自动控制原理
25
例8-3 x 0.5x 2x x2 0
解: x dx 0.5x 2x x2 0 dx
试分析稳定性。
则:
dx dx
0.5x 2x x
x2
0 0
有:
0.5x 2x x2 0
x 0
-2
x
0x
奇点位置:
如果把相变量x视为位移,于是 x 和 x 可以理解为速度和
加速度。在奇点处,由于系统的速度和加速度均为零,因
此奇点就是系统的平衡点equilibrium point 。
自动控制原理
20
系统奇点的分类
《自动控制原理》第八章非线性控制系统分析

K G jw = ( ) S 0.1S+1)( 0.2S+1) ( K −0.3w− j(1−0.02w2 )] [ = 4 2 w 0.0004w + 0.05w +1) (
S= jw
令 ImG(jw) = 0 即 1 – 0.02w2 = 0 ,可得 G(jw) 曲线与负实轴交点的频率为:
1 wx = = 50 = 7.07rad / s 0.02
C(t)
∆2 ∆3 ∆ = ∆1 + + k k k2 1 1
K1 ,k2 ,k3 为传递函数各自的增益
处于系统前向通路最前边的元件,其死区所 造成的影响最大,而放大元件和执行元件的影响 可以通过提高这些元件前几项的传递函数来减小。 死区对系统的直接影响是造成稳态误差,降 低了定位精度。
≤ 时,输出量 y 与 x 是线 饱和:当输入量 x≤ a x> a > 时,输出量不再 性关系 y = kx ,当 随着输入量线性增长,而保持为某一常值。
两条曲线在交点处的幅值相等,即: −π
1 1 1 2 [arcsin + 4 1−( ) ] A A A = −1
得:A = 0.5 应用奈氏判据可以判断交点对应的周期运动 2.5sin7.07t 是稳定的,故当 k = 15 时,非线性系统 工作在自振状态,自振振幅 A = 2.5 ,频率 w = 7.07rad/s (2)欲使系统稳定地工作,不出现自振荡,由于 G(s) 的极点均在右半平面,故根据奈氏判据
相对负倒描述函数为:
A A2 ( ) 1 π π h h − =− =− NA ( ) 4 4 A2 h2 1−( ) ( ) −1 h A
采用相对描述函数后,系统的特征方程改写为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B1 1 3 2 N ( A) A A 2 16
8.2.3 典型非线性特性得描述函数
1.饱和特性的描述函数
X(t) X(t)
kA sin t 0 ω t 1 x(t ) ka b ω t 1 2
X(t)是单值奇函数,所以A1=0
非线性环节的描述函数总是输入信号幅值A的函数, 一般也是频率的函数,因此,描述函数一般记为
N ( A, j )
非线性元件的描述函数或等效幅相频率特性与输入 的正弦振荡的振幅A有关,这是非线性特性本质的反 映。它与线性环节的情况正好相反,线性环节的幅 相特性(频率特性)与正弦输入的幅值无关。
8.2.2描述函数
4 B1 [ kA sint sinω td (ω t ) ka sinω td (ω t )] π
1
e(t)
0
4kA 4ka sin2 d π π
1
2
1
0
4kA 1 1 4ka ( sin 2 1 ) cos 1 2 4
2k a a a A[arcsin( ) 1 ( )2 ] A A A
8.1.4
继电器特性
8.1.4
继电器特性
(t ) 0 m a e(t ) a, e 0 , 0 , (t ) 0 a e ( t ) m a , e x(t ) bsign[e(t )], e(t ) a b , e(t ) m a, e (t ) 0 (t ) 0 b , e(t ) m a, e
(6)气动或液压滑阀的搭接段。 放大器的输出饱和或输出限幅
8.1.3
间隙特性
具有间隙特性的实际系统: (1)齿轮转动系;
(2)磁化特性;
(3)液压传动中的油隙特 性。
(t ) 0 k (e(t ) ), x (t ) 0 x(t ) k (e(t ) ), x bsign(e(t )), x (t ) 0
如何判别自激振荡的稳定性?
当负倒特性轨迹从不稳定区进 入稳定区时,交点处的自激振 荡是稳定的自激振荡。 当负倒特性轨迹从稳定区进入 不稳定区时,交点处的自激振 荡是不稳定的自激振荡。
自激振荡
8.2.4 用描述函数法分析非线性系统的自激振荡 自激振荡振幅和频率的确定
2 k ( A sinω t
1
a) sinω td (ω t )
2kA a a a [ sin1 ( ) 1 ( ) 2 ] 2 A A A
N ( A)
2k a a a [ arcsin( ) 1 ( )2 ] π 2 A A A
3.间隙特性的描述函数
8.2.1 描述函数法的基本思想与条件
2. 基本条件 a) 非线性特性是斜对称的,这样输出中的常值分量为零; b) 线性部分具有较好的低通滤波特性,以衰减高次谐波;
c) 非线性特性不是时间函数。因为描述函数法本质上
是频率法的推广,而频率法对时变系统不适用; a) 系统中的非线性特性能简化为一个非线性环节。
国 家 精 品 课 程
自动控制原理
Principles of Automatic Control主讲人:来自王 万 良wwl@
第8章 非线性控制系统分析
导 读
为什么要介绍本章?
被控对象的种类越来越多,线性模型已不能满足要求。 例如控制系统中常出现稳定的自激振荡, 这是线性模型中不 存在的。又如控制系统中大量采用继电控制,但线性系统理论 不能分析这类系统。要建立一个能解决非线性系统全部问题的 方法是不可能的。目前许多方法是以线性化方法为基础,加以 修补使之适应解决非线性问题的需要,例如描述函数法。
2
[
2 0
k ( A sinω t a) cosω td (ω t )
1
k ( A a) cosω td (ω t )
2
k ( A sinω t a) cosω td(ω t )]
1
B1
2 kA 2a 2a 2a k ( A sinω t a) sinω td(ω t )] [ sin 1 (1 ) (1 ) 1 (1 ) 2 ] 1 2 A A A B1 A1
A1
B1
1 π
1 π
2
0 2
x(t) cosω td(ω t)
X 1 A12 B12
x(t ) sinω td(ω t )
0
8.2.2描述函数
1 X 1e j1 x X 1 j1 B1 A1 N ( A, j ) e j j 0 e A A A Ae
x(t ) sinω td(ω t ) 2 [ k ( A sinω t a) sinω td(ω t )
0 2 0
2
4ka a ( 1) A
1
k ( A a) sinω td(ω t )
N ( A)
A
j
A
k 2a 2a 2a 4k a a [ sin1 (1 ) (1 ) 1 (1 ) 2 ] j ( 1) 2 A A A A A
非线性系统与线性系统的区别(4)
线性系统中,当输入量是正弦信号时,输出稳态分量也 是同频率的正弦函数,可以引入频率特性的概念并用它 来表示系统固有的动态特性。 非线性系统在正弦作用下的输出比较复杂。
非线性系统与线性系统的区别(5)
在线性系统中,一般可采用传递函数、频率特性、脉冲响 应函数等概念。 工程实际中对于存在线性工作区域的非线性系统,或者非 线性不严重(光滑、连续)的准线性系统,常常采用线性化 的方法进行处理,然后在线性分析的基础上加以修正。 对于包括像继电特性那样根本不存在线性区的本质非线性 特性,工程上常用相平面方法和描述函数方法进行研究。
2.描述函数的求取 1)绘制输入—输出波形图,写出输入为 e(t ) A sin ω t 时非线性输出表达式
2)由波形图分析 x(t ) 的对称性,并计算
A1 B1 X 1
1
3)描述函数为 N ( A)
B1 A X j 1 1 e j1 A A A
8.2.2描述函数
例 非线性元件的静特性方程为
X(t) X(t)
k ( A sin ω t a ) 0 ω t 2 x(t ) k ( A a) ω t 1 2 k ( A sinω t a) 1 ω t
e(t)
k ( A sin ω t a ) 0 ω t 2 x(t ) k ( A a) ω t 1 2 k ( A sinω t a) 1 ω t 2 A1 x(t ) cosω td (ω t ) 0
8.1.2
死区特性
具有死区特性的装置: (1)测速发电机转速很低时, 输出电压几乎为0; (2)伺服电机的死区电压 (启动电压); (3)各种电路中的门槛值 (阈值); (4)电气触头间隙; (5)弹簧的预张力;
e(t ) a 0 , x(t ) k[e(t ) asign(e(t ))] , e(t ) a
4.继电器特性的描述函数
X(t) X(t)
e(t)
8.2.4 用描述函数法分析非线性系统的自激振荡
1 N ( A)G ( j ) 0
G ( j )
1 N ( A)
8.2.4 用描述函数法分析非线性系统的自激振荡 奈氏图上的稳定性分析
当系统处于某一状态时,
对应的负倒特性曲线上的
8.2.2描述函数
1.描述函数的定义
A0 x(t ) 2
( A cosiω t B siniω t )
i i i 1
2
1 Ai π
x(t) cosiω td(ω t)
0
1 Bi π
2
x(t) siniω td(ω t)
0
x1 (t ) A1 cost B1 sint X 1 sin( t 1 )
2.死区特性的描述函数
X(t) X(t)
单值奇函数,具有半周期的对称性
0, 0 ωt α 1 x(t ) k ( A sin ω t a ), α ω t 1 2
e(t)
42 B1 x (t ) sin ω td (ω t ) π 0
B1 4
8.2 描述函数法
8.2.1 描述函数法的基本思想与条件 8.2.2 描述函数
8.2.3 典型非线性特性的描述函数
8.2.4 用描述函数分析非线性系统的自激振荡
8.2.1 描述函数法的基本思想与条件
1. 基本思想 描述函数法的基本思想是用非线性元件的输出信号中的基 波分量,代替非线性元件在正弦输入作用下的实际输出。 所以这种方法又称为一次谐波法。
8.1 典型非线性特性 8.1.1 饱和特性
具有饱和特性的装置:
•放大器的输出饱和或输出 限幅
•具有行程限制及功率限制 的液压调节阀 •伺服电机在大控制电压下 运行的转速特性
•流通孔径限制
ka , e(t ) a x(t ) ke(t ) , e(t ) a ka , e(t ) a
本章主要讲什么内容?
首先介绍非线性系统的特性,然后介绍描述函数法,着重 分析自激振荡。最后介绍适合于二阶非线性系统的相平面法。
第8章 非线性控制系统分析
8.1 典型非线性特性 8.2 描述函数法 8.3 相平面法