二次函数顶点坐标公式

合集下载

二次函数顶点公式 二次函数顶点公式的求法

二次函数顶点公式 二次函数顶点公式的求法

二次函数顶点公式二次函数顶点公式的求法1500字二次函数顶点公式是用于求解二次函数的顶点坐标的公式。

在解析几何中,二次函数又称为抛物线,它的一般形式为:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。

顶点是抛物线的最低或最高点,也是抛物线的对称轴上的点。

要求解二次函数的顶点,可以通过顶点公式来进行计算。

顶点公式有两种形式:一种是x的顶点公式,另一种是y的顶点公式。

下面将分别介绍这两种形式的顶点公式以及求解的步骤。

1. x的顶点公式:二次函数的顶点公式也称为平方完成公式。

它的一般形式为:x=-b/2a,其中a、b、c 为常数,且a≠0。

以下是求解二次函数顶点的步骤:步骤一:确定二次函数的三个已知值,即a、b和c的值。

步骤二:将已知值代入x的顶点公式x=-b/2a进行计算,得到x的值。

步骤三:将x的值代入二次函数中,计算出y的值。

步骤四:找到顶点的坐标,即x和y的值。

2. y的顶点公式:二次函数的顶点公式也可写为y=c-(b^2-4ac)/4a,其中a、b、c为常数,且a≠0。

以下是求解二次函数顶点的步骤:步骤一:确定二次函数的三个已知值,即a、b和c的值。

步骤二:将已知值代入y的顶点公式y=c-(b^2-4ac)/4a进行计算,得到y的值。

步骤三:将y的值代入二次函数中,计算出x的值。

步骤四:找到顶点的坐标,即x和y的值。

上述是二次函数顶点公式求解的基本步骤。

下面将通过一个具体的例子来演示求解过程。

例题:求解二次函数y=2x^2+4x-3的顶点坐标。

解题过程:步骤一:确定已知值,即a=2,b=4,c=-3。

步骤二:代入x的顶点公式x=-b/2a进行计算。

x=-4/(2*2)=-4/4=-1步骤三:将x的值代入二次函数中,计算出y的值。

y=2*(-1)^2+4*(-1)-3=2-4-3=-5步骤四:找到顶点的坐标,即(-1,-5)。

因此,二次函数y=2x^2+4x-3的顶点坐标为(-1,-5)。

二次函数坐标公式

二次函数坐标公式

二次函数坐标公式
二次函数顶点坐标公式推导过程
二次函数的一般形式:y=ax^2+bx+c(a,b,c为常数,a≠0);
二次函数的顶点式:y=a(x-h)^2+kk(a≠0,a、h、k为常数),顶点坐标为(h,k)。

推导过程:
y=ax^2+bx+c
y=a(x^2+bx/a+c/a)
y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)
y=a(x+b/2a)^2+c-b^2/4a
y=a(x+b/2a)^2+(4ac-b^2)/4a
对称轴x=-b/2a
顶点坐标(-b/2a,(4ac-b^2)/4a)
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数。

①所谓二次函数就是说自变量最高次数是2;
②二次函数y=ax2+bx+c(a≠0)中x、y是变量,a,b,c是常数,自变量x的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,y=ax2+bx+c变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。

二次函数的一般式公式
次函数一般式的形式通常为y=ax²+bx+c,又称作二次函数的解析式。

如果3个交点中有2个交点是二次函数与x轴的交点。

那么,可设这个二次函数解析式为:y=a(x-x1)(x-x2)(x1,x2是二
次函数与x轴的2个交点坐标),根据另一个点就可以求出二次函数解析式。

如果知道顶点坐标为(h,k),则可设:y=a(x-h)²+k,根据另一点可
求出二次函数解析式。

初中数学二次函数顶点坐标公式大全

初中数学二次函数顶点坐标公式大全

初中数学二次函数顶点坐标公式大全二次函数顶点坐标公式推导:一般式:y=ax^2+bx+c(a,b,c 为常数,a≠0);顶点式:y=a(x-h)^2+k,[抛物线的顶点P(h,k)];对于二次函数y=ax^2+bx+c其顶点坐标为 (-b/2a,(4ac-b^2)/4a)。

初中数学二次函数顶点坐标公式对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线],其中x1,2=-b±√b^2-4ac,顶点式:y=a(x-h)^2+k,[抛物线的顶点P(h,k)],一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),注:在3种形式的互相转化中,有如下关系:h=-b/2a=(x₁+x₂)/2k=(4ac-b^2)/4a与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a。

所以二次函数的顶点坐标公式是顶点坐标是(-b/2a,4ac-b2/4a)。

二次函数图像与X轴交点的情况当△=b2-4ac>0时,函数图像与x轴有两个交点。

当△=b2-4ac=0时,函数图像与x轴只有一个交点。

当△=b2-4ac<0时,函数图像与x轴没有交点。

二次函数重点知识点一次项系数b和二次项系数a共同决定对称轴的位置。

当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号当a>0,与b异号时(即ab<0),对称轴在y轴右。

因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

顶点坐标的计算公式

顶点坐标的计算公式

顶点坐标的计算公式
顶点坐标公式:h=b/2a,k=(4ac-b²)/4a)。

公式描述:公式中(h,k)为顶点坐标,二次函数的顶点式为y=a(x-h)²+k(a≠0)。

顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标。

顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大最小值=k。

顶点坐标公式的特点:
当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到。

当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到。

当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。

当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

二次函数交点式顶点坐标公式

二次函数交点式顶点坐标公式

二次函数交点式顶点坐标公式
二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

二次函数的顶点坐标可以通过求导和配方法来求解。

一、求导法求顶点坐标:
二次函数的导函数为:
y' = 2ax + b
令导函数为0,求得x的值,即为顶点的x坐标。

2ax + b = 0
x=-b/(2a)
将x的值带入原函数,求得y的值,即为顶点的y坐标。

y=a(-b/(2a))^2+b(-b/(2a))+c
y=a(b^2/(4a^2))-b^2/(2a)+c
y=b^2/(4a)-b^2/(2a)+c
y=-b^2/(4a)+c
所以,顶点的坐标为(-b/(2a),-b^2/(4a)+c)。

二、配方法求顶点坐标:
将二次函数的标准形式转化为顶点式:
y=a(x-h)^2+k,其中(h,k)为顶点坐标。

将二次函数的标准形式展开:
y = ax^2 + bx + c
=a(x^2+(b/a)x)+c
=a(x^2+(b/a)x+(b^2/(4a^2))-(b^2/(4a^2)))+c =a(x+b/2a)^2+c-b^2/(4a)
与顶点式对比,可得:
h=-b/(2a)
k=c-b^2/(4a)
所以,顶点的坐标为(-b/(2a),c-b^2/(4a))。

综上所述,二次函数的交点式顶点坐标公式为:顶点坐标为(-b/(2a),c-b^2/(4a))。

希望能够帮到您!。

二次函数顶点坐标公式及其应用

二次函数顶点坐标公式及其应用

二次函数顶点坐标公式及其应用二次函数是指形如y=ax^2+bx+c的函数,其中a、b和c都是实数,且a≠0。

它的图像是抛物线。

顶点坐标公式:二次函数的顶点坐标可以用以下公式求得:x=-b/2ay=f(x)=a(x-h)^2+k其中,(h,k)表示顶点的坐标。

通过这个公式,我们可以很方便地求得二次函数的顶点坐标。

应用一:求解最优问题二次函数的顶点坐标在数学上具有重要的意义,它可以用来求解很多最优问题。

例如,我们想要在一个矩形内部,离一条边的距离最远,那么这个问题可以转化为求解顶点坐标的问题。

我们可以通过求解二次函数的极值来找到这个最优解。

应用二:描述物体运动的轨迹二次函数也可以用来描述物体的运动轨迹。

例如,一个物体从离地面一定高度开始自由下落,那么它的运动轨迹可以用二次函数来描述。

我们可以通过求解二次函数的顶点坐标,来确定物体的最高点、落地点和运动轨迹等信息。

应用三:经济学中的边际分析在经济学中,边际分析是一种重要的工具,而二次函数的顶点坐标可以用来分析边际效应。

边际效应是指增加或减少一个单位的其中一种输入所产生的效益变化。

通过求解二次函数的顶点坐标,我们可以找到产生边际效应最大或最小的输入水平,从而指导经济决策。

应用四:求解几何问题在几何学中,二次函数的顶点坐标也有广泛的应用。

例如,在平面几何中,已知一个抛物线和一条直线,我们想要找到抛物线上离直线最近和最远的点,就可以通过求解二次函数的顶点坐标来解决这个问题。

应用五:拟合实验数据二次函数的顶点坐标还可以用来拟合实验数据。

当我们通过实验或观察得到一些数据点时,可以通过求解二次函数的顶点坐标,来得到一个最佳的二次函数模型,以便与观察数据相拟合。

总结:二次函数的顶点坐标公式是一个简单且实用的工具,它在数学和应用领域都有着广泛的应用。

它可以用来解决最优问题、描述物体运动的轨迹、经济学中的边际分析、求解几何问题以及拟合实验数据等。

通过掌握二次函数的顶点坐标公式,我们可以更好地理解和应用这个函数模型。

九年级数学 二次函数顶点公式

九年级数学 二次函数顶点公式

二次函数顶点公式对于二次函数y=ax^2+bx+c其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]其中x1,2= -b±√b^2-4ac顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)注:在3种形式的互相转化中,有如下关系:h=-b/2a= (x₁+x₂)/2 k=(4ac-b^2)/4a 与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a抛物线y=ax²+bx+c 的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b²-4ac>0,图象与x轴交于两点A( ,0)和B( ,0),其中的 , 是一元二次方程y=ax²+bx+c(a≠0)的两根.这两点间的距离AB=| - |.当△=0,图象与x轴只有一个交点;当△<0,图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).二次函数顶点坐标公式及推导过程二次函数顶点式及推导过程二次函数的一般形式:y=ax^2+bx+c(a,b,c为常数,a≠0) 二次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k)推导过程:y=ax^2+bx+cy=a(x^2+bx/a+c/a)y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)y=a(x+b/2a)^2+c-b^2/4ay=a(x+b/2a)^2+(4ac-b^2)/4a对称轴x=-b/2a顶点坐标(-b/2a,(4ac-b^2)/4a)2二次函数的其他表达式交点式[仅限于与x轴即y=0有交点时抛物线,即b2-4ac≥0] a,b,c为常数,a≠0,且a决定函数的开口方向。

二次函数零点坐标公式

二次函数零点坐标公式

二次函数零点坐标公式
答:二次函数零点坐标公式是y=a(x-x1)(x-x2),二次函数的基本表示形式为y=ax²+bx+c(a≠0)。

二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。

“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。

在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。

从函数的定义也可看出二者的差别。

函数的原点坐标都是(0,0),因此,二次函数的原点坐标也是(0,0),本题应该是二次函数的顶点坐标(一b/2a,4ac-b^2/4a)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数在数学中占有很大的比例,但是函数的学习却很复杂。

其考察的内容有很多方面,开口方向、对称轴及坐标公式都是考察的重点。

下面为大家整理了二次函数顶点坐标的相关公式,希望能帮到大家。

一、基本简介
一般地,我们把形如y=ax&sup2;+bx+c(其中a,b,c是常数,a0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。

x为自变量,y为因变量。

等号右边自变量的最高次数是2。

主要特点
变量不同于未知数,不能说二次函数是指未知数的最高次数为二次的多项式函数。

未知数只是一个数(具体值未知,但是只取一个值),变量可在一定范围内任意取值。

在方程中适用未知数的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。

从函数的定义也可看出二者的差别.如同函数不等于函数关系。

二次函数图像与X轴交点的情况
当△=b&sup2;-4ac;0时,函数图像与x轴有两个交点。

当△=b&sup2;-4ac=0时,函数图像与x轴只有一个交点。

当△=b&sup2;-4ac0时,函数图像与x轴没有交点。

二、二次函数图像
在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次函数的图像是一条永无止境的抛物线。

如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。

轴对称
二次函数图像是轴对称图形。

对称轴为直线x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。

特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。

a,b同号,对称轴在y轴左侧.
a,b异号,对称轴在y轴右侧.
顶点
二次函数图像有一个顶点P,坐标为P ( h,k )即(-b/2a, (4ac-b&sup2;/4a).当
h=0时,P在y轴上;当k=0时,P在x轴上。

即可表示为顶点式y=a(x-
h)&sup2;+k。

h=-b/2a,k=(4ac-b&sup2;)/4a。

开口方向和大小
二次项系数a决定二次函数图像的开口方向和大小。

当a;0时,抛物线向上开口;当a0时,抛物线向下开口。

|a|越大,则二次函数图像的开口越小。

决定对称轴位置的因素折叠
一次项系数b和二次项系数a共同决定对称轴的位置。

当a;0,与b同号时(即ab;0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要大于0,所以a、b要同号
当a;0,与b异号时(即ab0),对称轴在y轴右。

因为对称轴在右边则对称轴要大于0,也就是- b/2a;0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab;0),对称轴在y轴左;当a 与b异号时(即ab0 ),对称轴在y轴右。

事实上,b有其自身的几何意义:
二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。

可通过对二次函数求导得到。

决定与y轴交点的因素
常数项c决定二次函数图像与y轴交点。

二次函数图像与y轴交于(0,C)
注意:
顶点坐标为(h,k),与y轴交于(0,C)。

与x轴交点个数
a0;k;0或a;0;k0时,二次函数图像与x轴有2个交点。

k=0时,二次函数图像与x轴只有1个交点。

a0;k0或a;0,k;0时,二次函数图像与X轴无交点。

当a;0时,函数在x=h处取得最小值ymin=k,在x
当a0时,函数在x=h处取得最大值ymax=k,在x
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数
三、二次函数公式汇总:
交点式、两根式
一般地,自变量x和因变量y之间存在如下关系:
(1)一般式:
y=ax2+bx+c(a,b,c为常数,a0),则称y为x的二次函数。

顶点坐标(-
b/2a,(4ac-b^2)/4a)
(2)顶点式:
y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a0)。

(3)交点式(与x轴):
y=a(x-x1)(x-x2)
(4)两根式:
y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a
0.
说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线
a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点。

(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2)。

相关文档
最新文档