过程控制仪表课程设计论文报告-液位控制系统

合集下载

液位系统的控制器设计__毕业设计论文 精品

液位系统的控制器设计__毕业设计论文 精品

毕业论文(设计)题目:液位系统的控制器设计系部名称:专业班级:学生姓名:学号:指导教师:教师职称:201 年月日摘要液位是工业过程生产中经常遇到的控制对象之一,对所需的液位控制对象进行精确的控制,关系到产品的质量,是保障生产效果和安全的重要问题。

因而,液位的控制具有重要的现实意义和广泛的应用前景。

近年来,随着控制理论的深入研究,出现了许多新的控制算法。

但是,以PID 为原理的各种控制器仍是过程控制中不可或缺的基本控制单元。

根据液位系统的特点,设计合适的PID控制器对其进行液位控制,不仅成本低,而且控制效果很好,具有较高的实用价值。

本文通过实验的方法,确立的被控对象的数学模型。

并采用多种方法确定被控对象的传递函数。

主要完成了以下工作:首先,通过实验测试法对水箱进行数学建模,并用MATLAB进行仿真,验证其数学模型的正确性。

接着,分析对比作图法和计算法分别得出的数学模型,通过仿真比较,确立最接近的数学模型。

然后对PID控制器的参数进行整定。

采用基于Ziegler-Nichols法,C-C工程法,稳定边界法对液位系统进行PID控制器参数的整定,并用MATLAB进行仿真。

分析对比了几种方法的性能。

关键字:液位系统,PID控制器,参数整定,MATLAB仿真Parameters Design of Liquid Level ControllerAbstractT he liquid level is one of the control objects which is often encountered in industrial production process. Giving the precise level control to the control objects, is related to the quality of the product, and is a guarantee of production and the important problem of safety. Thus, the liquid level control has important practical significance and broad application prospect.In recent years, with the in-depth research of the control theory , appeared a lot of new control algorithm. However, with PID as the principle of various controller is an indispensable basic process control control unit. According to the liquid level system characteristic, to design the appropriate PID controller for the liquid level control, not only the cost is low, but also has the good control effect and high practical value.In this paper, through the experimental method, established the mathematics model of the controlled object, and use a variety of methods to determine the transfer function of the controlled object. Mainly completed the following work: firstly, the mechanism of model analysis method. Through the experimental test on the tank for mathematical modeling, and using MATLAB simulation, verified the correctness of the mathematical model. Then, analysis and comparison of drawing and calculating method were derived by mathematical model, by simulation and comparison, the closest mathematical model establishment. Then the parameters of PID controller tuning. Ziegler based on the Nichols method, C-C engineering method, the stability boundary method for liquid level system PID controller parameter tuning, and using MATLAB simulation. Analysis and comparison of several methods for the performance.Keywords:Level system PID controller Parameter setting MATLAB simulation目录1 绪论 (1)1.1 引言 (1)1.2 研究的意义和目的 (1)1.3 PID控制算法的研究现状 (2)1.4 MATLAB简介 (3)2 液位控制系统的原理 (4)2.1 人工控制与自动控制 (4)2.2 水箱液位控制系统的原理框图 (5)3 被控对象的数学模型 (6)3.1 基本知识 (6)3.1.1 被控过程传递函数的一般形式 (6)3.1.2 建立过程数学模型的方法 (7)3.2 基于MATLAB的数字仿真 (12)3.2.1 利用MATLAB根据作图法建立一阶系统数学模型 (12)3.2.2 利用MATLAB根据计算法建立一阶系统数学模型 (15)4 控制系统参数的整定及MATLAB的数字仿真 (17)4.1 基本知识 (17)4.1.1 简单控制系统的设计 (17)4.1.2 简单控制系统的参数整定 (19)4.2 基于MATLAB的数字仿真 (26)4.2.1 C-C工程整定法对PID参数整定 (26)4.2.2 Z-N工程整定法对PID参数整定 (31)4.2.3 根据稳定边界法对PID参数整定 (33)5 系统调试、性能分析 (38)5.1 系统数学模型的确立 (38)5.2 几种参数整定方法性能分析 (39)结论 (41)致谢 (42)参考文献 (43)1 绪论1.1 引言液位控制系统是以液位为被控参数的控制系统,他在工业中的各个领域都有广泛的应用。

液位控制系统——过程控制课程设计

液位控制系统——过程控制课程设计
通过对控制器程序的设计,使我掌握了运用SIMATIC S7-200型PLC实现PID算法控制以及单闭环液位控制系统的设计方法,使我对小型液位控制系统的硬件及软件设计具备了综合分析和独立思考的能力。
参考文献
[1]林锦国.过程控制.第3版.南京.东南大学出版社.2011
[2]范永久.化工测量及仪表.北京.化工工业出版社.2002
2个中间结果参数:PVn-1为上一次的归一化测量值;Mx是计算中的中间参量,是积分之和。可见,9个参数中有:1个输出变量,1个输入变量,5个常数,2个中间变量。设定值SPn、采样时间Ts和3个PID参数共5个常数应事先确定,并在程序初始化时、或在每次执行PID模块指令前,存放到数值存储区,以供调用。
[7]潘新民.微型计算机控制技术.第2版.北京.电子工业出版社.2011
[8]廖常初.PLC编程及应用.北京.机械工业出版社.2002
MOVR0.0,VD124//关闭微分作用
MOVB 100, SMB34 //100ms放入特殊内存字节SMB34,用于控制中断0的时间间隔
ATCH INT_0, 10//调用中断程序
ENI//全局性启用中断
INT0
LD SM0.0//RUN模式下,SM0.0=1
ITDAIW0, AC0//模拟量输入映像寄存器AIW0的数转双精度数存入AC0寄存器
可得到:Mn = Kc*(SPn-PVn)+Kc*(Ts/Ti)* (SPk-PVk)
+Kc*(Td/Ts)*[(SPn—PVn)-(SPn-PVn-1)]
=Kc*(SPn-PVn)+Kc*(Ts/Ti)*(SPn-PVn)
+Kc*(Td/Ts)*[PVn-1—PVn]+Mx

基于PLC的液位控制系统毕业设计论文

基于PLC的液位控制系统毕业设计论文

基于PLC的液位控制系统毕业设计论文摘要:本文基于PLC(可编程逻辑控制器)技术,设计了一种液位控制系统,该系统能够实时监测液位,并根据设定值进行液位控制。

本文详细介绍了该系统的硬件设计、软件设计以及系统测试,并对系统的性能进行了评估和分析。

实验结果表明,该液位控制系统能够稳定可靠地实现对液位的控制。

关键词:PLC;液位控制;硬件设计;软件设计;系统测试1.引言液位控制是工业中常见的一种控制过程。

在各种工业领域,如化工、能源、水利等,在液位控制方面都有较高的需求。

随着自动化技术的不断发展,PLC技术成为液位控制的一个重要工具。

2.系统硬件设计在本系统硬件设计中,我们采用了PLC、液位传感器、电磁阀等关键元件。

PLC作为控制中心,接收传感器的信号,根据设定值来控制电磁阀的开启和关闭。

液位传感器负责实时监测液位的变化,并将信号传输给PLC。

电磁阀根据PLC的指令来控制液位的增减。

3.系统软件设计在本系统软件设计中,我们使用了PLC编程语言来实现液位控制的逻辑。

首先,我们定义了PLC的输入和输出信号,然后根据设定的逻辑进行编程。

具体来说,当液位高于设定值时,PLC会关闭电磁阀,减少液位的上升;当液位低于设定值时,PLC会打开电磁阀,增加液位的下降。

通过循环执行这些逻辑,系统可以实现对液位的控制。

4.系统测试为了验证系统的可行性和性能,我们进行了一系列的测试。

首先,我们针对液位控制器的输入输出进行了测试,确保其正常工作。

然后,我们使用液位泵和液位计进行了实际测试,记录了系统在不同液位变化条件下的性能。

实验结果表明,该液位控制系统具有良好的稳定性和可靠性。

5.结果和分析通过对实验数据的分析,我们得出了以下结论:该液位控制系统能够满足不同液位变化条件下的控制需求;系统响应速度较快,能够在短时间内完成液位的调整;系统具有良好的稳定性,能够稳定地维持设定的液位。

6.结论本文基于PLC技术设计了一种液位控制系统,并进行了详细的硬件设计、软件设计和系统测试。

基于组态王的液位控制系统论文

基于组态王的液位控制系统论文

摘要:介绍了基于组态王的仪表液位控制系统组成。

叙述了组态王监控界面设计和组态王与实际现场的模拟。

双容水箱液位的控制作为过程控制的一种,其基本思想是采用多层递阶结构,直觉推理和多动态控制策略等行为和功能。

该系统可实现数据输入、动态数据显示和现场设备的实时监控、调试和运行。

应用表明,该系统工艺流程显示直观,人机界面友好,易于操作。

系统运行稳定,维护成本低,对于相关的工程应用具有一定的价值。

问题描述:附图(a,b)是本液位控制系统的界面图示和运行示意图。

根据设计要求和结合实际情况,适当的加以修改,使设计更优化,更便于人为控制。

用组态王软件合理地设计出属于自己思路的液位控制系统。

1.要求实现的基本功能:(1)完成图示界面设计(或取其中一部分或自行设计界面);(2)运行系统时出现水流效果和仪表动态显示;(3)液位的升降、阀门的开关和水泵的启停要配合一致;(4)右面的仪表和显示要与实际水箱水位变化一致;(5)菜单实现可操作;(6)生成相应的实时曲线(即曲线与液位实时数据相关联)和界面。

2.发挥部分:(1)打印输出:系统能定时或实时打印信息、水箱液位、流量等信息;(2)保存数据:系统具有自动保存数据功能;(3)在线帮助:系统提供在线帮助信息,操作员遇到问题能及时得到帮助和指导;(3)其他发挥部分。

设计过程:系统的监控软件采用了北京亚控公司的Kingview6.5组态王软件,利用它来设计液位控制系统主要步骤有:设备配置,构造数据库变量,图形界面的设计,建立动态连接,运行调试等。

组态王是运行于Microsoft Windows98/2000/NT中文平台的中文界面的人机界面软件,采用了多线程、COM组件等新技术,实现了实时多任务,软件运行可靠。

Touch View是“组态王6.5”软件的实时运行环境,它从设备中采集数据,并存于实时数据库中,还负责把数据的变化以动画的形式形象地表示出来,同时可以完成变量报警、操作记录、趋势曲线等监视功能,并按实际需求记录在历史数据库中。

毕业设计论文液位控制系统

毕业设计论文液位控制系统

毕业设计论文液位控制系统Newly compiled on November 23, 2020毕业设计基于S7-300的单容水箱液位控制系统设计Design of Liquid-Level Control System Based on S7-300 专业班级:自动化0x0x班学生姓名: x x x指导教师: x x x 副教授学院:自动化与电气工程学院2016年 6月摘要可编程逻辑控制器(PLC)作为现代工业自动化的三大支柱之一,以其可靠性、灵活性在工业控制领域得到了迅猛的发展。

PLC是微电子技术和自动控制技术相结合的产物,并受到计算机技术、通信技术的影响。

我国近年来工业自动化水平逐渐提高,PLC在许多行业得到了越来越广泛的应用。

西门子公司的S7-300系列PLC以结构紧凑,扩展能力强,高性价比的特点在许多行业受到青睐。

在本次设计中,就以S7-300作为控制器,设计一个运行稳定、安全可靠又经济的液位控制系统。

控制核心以S7-300系列的CPU313C-2DP为主,以电磁阀、压力变送器、水泵、上位机、分隔式水槽等为辅构成了单容水箱液位控制系统,对整个液位控制系统进行了硬件设计和软件设计。

在设计过程中,首先,进行硬件的选择、设计。

其次,针对S7-300PLC的进行模块化编程,实现数据的归一化等功能。

最后,利用组态王软件设计人机对话界面,通过上位机控制实现液位的自动控制,上下限参数的在线设置,及液位测量值的在线监控;达到液位控制系统的技术要求。

关键词:S7-300;组态王;液位控制ABSTRACTProgrammable Logic Controller (PLC), one of the three pillars of modern industry automation, has gained rapidly development at the industry control field for its high reliability and flexibility. PLC is the product of the combination of microelectronic technology and automatic control technology, and it can be influenced by computer technology and communication technology. Recent years, as the level of the industry automation increased in our country, PLC has been widely used in more and more fields. Siemens PLC of the s7-300 series has been the favor of many industries, with the characters of compacted structure, strong extensible ability, and high function/price ratio.This design is going to fulfill a liquid level control system, which is stable, safe, and affordable, using s7-300 as the controller. The core is CPU313C-2DP of S7-300 series and the auxiliary parts contain a solenoid valve, a pressure transmitter, a motor, PC, a separated-type tank and so on. In the design, software system and hardware system can be designed completely.During the designing process, first of all, hardwires are chosen and designed. Second, module programming can be done to get normalized data and Position Control. Third, HMI can be finished using King software, which is used to control the liquid level, adjust the top and bottom limitation parameters on-line, monitor measured value of the liquid level, and meet the technical needs of controlling liquid level.Key Word: S7-300;Kingview;Liquid level目录1 引言课题的提出过程控制通常是指连续生产过程的自动控制,是自动化技术最重要的组成部分之一。

液位自动控制系统的研究_毕业设计论文1 推荐

液位自动控制系统的研究_毕业设计论文1 推荐

液位自动控制系统的研究摘要水位控制系统设计是模拟工业生产过程中对水位、流量参数进行测量、控制、观察其变化特性,研究过程控制规律的课题,它主要研究过程控制中动态过程的一般特点——大惯性、大时延、非线性,难以对其进行精确控制,从而使其成为控制理论与控制工程、过程控制教学、试验和研究的理想对象。

本课题首先对水位控制系统做了整体的分析并简单介绍了水位控制系统的控制平台;然后详细介绍了PLC可编程控制器并详细分析了基于PLC的PID控制和串级PID控制,对串级控制系统的特点和主副回路设计进行了详述,设计了双容水箱串级水位控制系统,并根据4:1衰减曲线法对PID参数进行整定;最后根据理论分析进行水位控制系统实验,实验结果表明系统具有优良的控制精度和稳定性。

关键词:水位自动控制系统,PLC技术,PID控制,串级控制The Research of The Water Level Automatic Control SystemAbstractThe water level control system design is a topic, which allows study of the principles of process control as the process variables, for example the level and flux, to be measured, controlled and observed for its variability during the simulation process of modem industrial manufacture. It has the common characteristic of dynamic process in process control such as great inertia, larger delay, nonlinear and difficult to be controlled precisely, so that it becomes a perfect object in the field of control theory and control engineering, process control teaching, testing and study.This topic first has made the whole analysis to the water level control system and simply introduces the water level system control platform, then introduces the PLC programmable controller in detail and amply analyses the PID control and the cascade PID control which based on PLC.It introduces the cascade control system characteristic and the host vice-return route design in detail. The two-tank water level cascade control system has been designed. Then it carries on the PID parameter by 4:1 decay curve law; finally the water control system experiment has been done by the theoretical analysis.The experimental result indicates the system has the fine control precision and the stability.Key words: water level control system, PLC, PID control, cascade control目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1引言 (1)1.2水位控制当前的研究动态 (1)1.3PID调节器概述 (2)1.3.1PID控制特点 (2)1.3.2PID 控制中尚需解决的问题 (3)1.4本文的主要工作 (4)2 水位控制系统的整体分析 (5)2.1水位控制系统的整体设计 (5)2.2控制平台介绍 (5)2.2.1电源控制屏 (5)2.2.2交流变频调速器 (6)2.3被控对象介绍 (7)3 可编程序控制器PLC 概述 (8)3.1PLC的基本结构 (8)3.1.1 CPU 模块 (8)3.1.2 I/O 模块 (9)3.1.3 编程装置 (9)3.1.4电源 (10)3.2西门子S7-200PLC简介 (10)3.2.1 西门子 S7-200 PLC 的功能概述 (10)3.2.2 西门子 S7-200 PLC 的特点 (11)3.2.3 西门子 S7-200 PLC 的硬件结构 (11)3.2.4 西门子 S7-200 PLC 的工作原理 (12)3.3西门子S7-200PLC的编程语言 (14)3.4S TEP 7-M ICRO/WIN编程软件简介 (15)3.5西门子S7-200PLC的程序结构 (15)4 PID控制器的设计 (16)4.1PID算法概述 (16)4.2 串级控制系统 (18)4.2.1 串级控制系统的特点 (18)4.2.2 串级控制系统的设计 (19)4.3基于PLC的串级控制 (19)4.3.1控制系统框架 (19)4.3.2串级系统的参数整定 (21)5 控制结果 (22)5.1控制软件简介 (22)5.1.1控制界面 (22)5.1.2 控制软件的主要功能 (22)5.2实验结果及分析 (23)结束语 (26)致谢 (27)参考文献 (28)附录A(英文文献) (30)附录B(中文译文) (36)1 绪论1.1引言随着现代工业的进步,水位控制技术迅速发展,但与国外相比仍有很大的差距,当国内还在对水利采取笨拙的排水、泄水方式时,国外便开始通过先进的测控设备,对水利资源进行合理的疏导。

课程设计报告-液位控制系统设计

课程设计报告-液位控制系统设计

目录一、《控制系统分析与综合》任务书31.1、工程训练任务31.2、工程训练目的31.3、工程训练内容31.4、工程训练报告要求41.5、工程训练进度安排41.6、工程训练考核办法5二、总体设计方案52.1、控制系统目标52.2、控制系统要求5三、硬件设计63.1、PLC系统设计的基本原则63.2、PLC控制系统设计的基本内容和步骤73.2.1、设计的基本内容73.2.2、设计的基本步骤73.3、PLC的选型73.3.1、PLC机型选择83.3.2、PLC容量的选择8四、软件设计94.1、PLC相关设定94.1.1、PLC的元件分配94.1.2、PLC程序顺序功能图104.1.3、PLC程序104.1.4、PID控制器参数整定13五、组态监控软件的设计145.1、建立新工程145.2、建立通讯口155.3、新建变量165.4、新建监控画面17六、运行调试步骤与结果196.1、调试步骤196.2、运行结果20七、收获与小结22八、参考文献23一、《控制系统分析与综合》任务书题目:液位控制系统设计1.1、工程训练任务本实训综合运用自动化原理、PLC技术以及组态软件等相关课程,通过本实训的锻炼,使学生掌握自动化系统的基础理论、技术与方法,巩固和加深对理论知识的理解。

本课题针对液位控制系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,运用PID控制算法对水箱液位进行控制。

1.2、工程训练目的通过本次工程训练使学生掌握运用组态王软件及PLC构建工业控制系统的能力,增强学生对PLC控制系统以及组态王软件的应用能力,培养学生解决实际问题的能力,为今后从事工程技术工作、科学研究打下坚实的基础。

1.3、工程训练内容1)确定PLC的I/O分配表;2)根据PID控制算法理论,运用PLC程序实现PID控制算法;3)编写整个液位控制系统实训项目的PLC控制程序;4)在组态王中定义输入输出设备;5)在组态王中定义变量;6)设计上位机监控画面;7)进行系统调试。

液位控制系统毕业论文

液位控制系统毕业论文

液位控制系统毕业论文液位控制系统毕业论文引言液位控制系统是工业自动化领域中常见的控制系统之一。

它的主要功能是根据液体的实时液位信息,通过控制阀门或泵等装置,实现对液体液位的精确控制。

液位控制系统在化工、石油、食品等行业中得到广泛应用,对提高生产效率、降低安全风险具有重要意义。

本篇论文将对液位控制系统的原理、设计与应用进行深入研究和分析。

一、液位控制系统的原理液位控制系统的原理基于液位传感器的测量技术。

常见的液位传感器包括浮球式、压力式和电容式等。

浮球式液位传感器通过浮子的浮沉来感知液位高低,压力式液位传感器则通过测量液体对传感器的压力变化来确定液位。

电容式液位传感器则是通过测量电容的变化来反映液位的变化。

液位控制系统的工作原理可以简单描述为:液位传感器感知液位的变化,并将信号传递给控制器;控制器根据设定的目标液位,通过控制阀门或泵等执行器来调整液位。

这一过程需要涉及到信号采集、信号处理、控制算法和执行器控制等多个环节。

二、液位控制系统的设计液位控制系统的设计需要考虑多个因素,包括控制精度、响应速度、稳定性和可靠性等。

其中,控制精度是指系统输出与设定值之间的偏差,响应速度则是指系统对液位变化的迅速程度。

稳定性是指系统在长时间运行中的抗干扰能力,而可靠性则是指系统在各种环境条件下的正常工作能力。

液位控制系统的设计需要根据具体的应用场景来确定。

在化工行业中,由于液体的性质多变,设计师需要考虑液体的温度、压力、粘度等因素对系统的影响。

在石油行业中,由于液位控制系统通常需要应对高温、高压等极端环境,设计师需要选择适合的材料和技术来保证系统的可靠性。

在食品行业中,设计师还需要考虑食品安全和卫生要求,确保系统不会对食品质量产生负面影响。

三、液位控制系统的应用液位控制系统在工业生产中有着广泛的应用。

在化工行业中,液位控制系统可以用于控制反应釜中液位的变化,确保反应过程的稳定性和安全性。

在石油行业中,液位控制系统可以用于储罐的液位控制,避免液位过高或过低带来的安全隐患。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学《过程控制仪表》课程设计报告设计题目液位控制系统指导老师设计者专业班级设计日期2011年6月目录第一章过程控制课程设计的目的和意义 (3)1.1课程设计的目的 (3)1.2课程设计的意义 (3)1.3课程设计在教学计划中的地位和作用 (3)第二章液位控制系统的设计任务 (4)2.1设计内容及要求 (4)2.2课程设计的要求 (4)第三章实验内容及调试中遇到的具体问题和解决的办法 (5)3.1实验目的 (5)3.2实验内容 (5)3.2.1流量单闭环控制系统 (5)3.2.2流量比值控制系统 (7)3.3实验调试中遇到的具体问题和解决办法 (8)第四章液位控制系统总体设计方案 (9)4.1液位控制系统在工业上的应用 (9)4.2液位控制系统变送器以及开关阀的选择 (11)4.3控制算法 (11)4.4系统控制主机的选择 (12)4.5系统的硬件设计(单纯的逻辑控制) (13)4.5.1 水塔液位控制系统的主电路图 (13)4.5.2 I/O接口的分配 (14)4.5.3 水塔液位控制系统的I/O设备 (14)4.5.2 控制系统硬件介绍 (15)第五章系统软件设计 (17)5.1系统软件设计1(单纯的逻辑控制) (17)5.1.1水塔液位控制系统的程序流程图 (17)5.1.2 水塔液位控制系统的工作过程 (18)5.1.3 水塔液位控制系统的梯形图 (19)5.2系统控制的程序 (20)5.3 加入PID控制的指令的软件程序 (20)5.3.1PID控制系统梯形图 (21)5.3.2PID控制系统的指令: (24)第六章收获、体会和建议 (25)参考文献 (26)第一章过程控制课程设计的目的和意义1.1课程设计的目的本课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用。

其目的在于培养学生综合运用理论知识来分析和解决实际问题的能力,使学生通过自己动手对一个工业过程控制对象进行仪表设计与选型,促进学生对仪表及其理论与设计的进一步认识。

课程设计的主要任务是设计工业生产过程经常遇到的压力、流量、液位及温度控制系统,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。

1.2课程设计的意义课程设计综合了各门学科的知识,它将我们平时课堂上所学习的知识有效的结合起来。

使学生有更强的综合运用的能力,是一个从书本到实践的过渡,以便毕业以后能够更好的投入到实际的工作中去。

而且,自动化这个专业最后的目的就是要将这些只是灵活有效的运用于各种工业上去,如锅炉的系统控制、自来水厂的水流量的控制和发电厂的一系列控制系统等等。

1.3课程设计在教学计划中的地位和作用所谓“学有所用”,“学以致用”,我们平时在课堂中学习了很多的知识,但是我们都知道如果没有把知识运用于实际,那么学了也是白学。

课程设计正是体现了这个“用”字,它是一个展示知识的平台。

通过课程设计我们能够更好了解掌握平时课堂上所学到的知识,这也只是教学的目的。

可见,课程设计在教学计划中有着至关重要的地位和作用,它让我们的学习不再是纸上谈兵。

第二章液位控制系统的设计任务2.1设计内容及要求课程设计的主要任务是设计工业生产过程中遇到的液位控制系统,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。

具体内容如下:1.了解某种典型工业生产过程的工艺流程和控制要求;2.分别设计典型工业生产过程中相应的压力、流量、液位及温度控制系统(包括控制系统的软硬件的总体设计,如参数检测变送器、控制器、执行器及调节阀的选型和控制算法的程序设计及控制系统参数整定);3. 在实验室分别调试一种压力、流量、液位的串级或比值控制系统,并调节参数使控制系统达到要求的技术指标;4.提交系统设计报告一份,阐述系统设计思想和方案,包括对所选取工业生产过程的工艺分析、控制要求、总体方案设计。

2.2课程设计的要求本课程设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。

基本要求如下:1. 掌握变送器功能原理,能选择合理的变送器类型型号;2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;3. 掌握PID调节器的功能原理,完成相应的压力、流量、液位及温度控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。

4.通过对一个典型工业生产过程(如煤气脱硫工艺过程)进行分析,并对其中的一个参数(如温度、压力、流量、液位)设计其控制系统。

第三章实验内容及调试中遇到的具体问题和解决的办法3.1实验目的1、控制系统的全貌,建立一个感性的认识。

加深了解电子电动势执行器的结构原理和使用方法。

通过对电子执行器的测试和校验,掌握执行器的校验方法,理解其相关的特性及性能指标含义。

2、PID调节器的结构、工作原理,掌握调节器的使用及性能,对调节器的参数进行整定。

3、掌握流量控制系统的PID调节功能,熟练的使用PID调节器,了解单闭环控制系统和流量比值控制系统的规律以及性能。

3.2实验内容3.2.1流量单闭环控制系统流量单闭环控制系统的被控量选择的是内容器的流量,操作变量则是内容器的调节阀。

它的工艺流图和方块图如图3.2所示。

Q1图3.1 内容器单闭环流量控制系统工艺流程及方块图案对于流量控制系统,采用的是LZ型金属管浮子流量计,输入0—50L/h,输出4—20mA信号。

流量控制中的电子执行器就是用来控制流量计的阀门开度来控制流量的大小。

本系统采用单回路的PID控制,将人为设定的流量和变送器测量的流量做比较,通过PID算法调节电子调节阀VL1的阀位开度输出,从而使测量的流量达到要求。

PID控制算式是很常用和很灵活的一种工业控制算法,对于一个不确定的系统,通过试凑法整定PID参数,一般都可以达到很好的设计效果。

并且,还可以采用PID的改进式,如积分分离和微分先行,在一些场合会达到更好的控制效果。

PID凑试法:凑试法是参考PID参数对控制过程的影响趋势,对参数实行下述先比例,后积分,再微分的整定步骤。

1.首先只整定比例部分。

即将比例系数由小变大,并观察相应的系统响应,直到得到反应快,超调小的响应曲线。

如果系统没有静差或静差已小到允许范围内,并且响应曲线已属满意,则只需用比例调节器即可,最优比例系数可由此确定。

2.如果在比例调节的基础上系统的静差不能满足设计要求,则需加入积分环节。

整定时首先置积分时间TI为一较大值,并将经第一步整定得到的比例系数略微缩小(如缩小为原值的0.8倍),然后减小积分时间,使在保持系统良好动态性能的情况下,静态误差得到消除。

在此过程中,可根据响应曲线的好坏反复改变比例系数与积分时间,以期得到满意的控制过程与整定参数。

3.若使用比例积分调节器消除了静态误差,但动态过程经反复调整仍不能满意,则可加入微分环节,构成比例积分微分调节器。

在整定时,可先置微分时间TD为0。

在第二步整定的基础上,增大TD,同时相应地改变比例系数和积分时间,逐步凑试,以获得满意的调节效果和控制参数。

3.2.2流量比值控制系统本装置中有两个可控制的水流量,一路进夹套,一路进内容器。

一般可从中任意选择一路流量为主动量,另一路则为从动量,以此组成单闭环比值控制系统或双闭环比值控制系统。

下图示例是以进内容器水流量Q1为主动量、进外容器水流量Q2为从动量的双闭环比值控制系统。

它的工艺流图和方块图如图3.3所示。

图3.2双闭环流量比值控制工艺流程及方块图案本系统有两个输出,以进内容器水流量Q1为主动量,进外容器水流量Q2为从动量的双闭环控制系统。

其中主控制器的输出(Q1)直接决定第二个控制系统的输入,故第一个系统称为定常系统,而第二个系统称为随动系统,显然第二个系统的调节时间会更长一些,控制难度会更大一些。

很显然,随动系统在用PID算法进行控制时,必须去掉微分项,否则输入发生变化就会引起输出便或波动相当大,甚至会引起整个系统的不稳定。

这里就可以看出定常系统和随动系统在PID控制上参数选择的区别了。

3.3实验调试中遇到的具体问题和解决办法实验中主要的问题是在PID的调节上,这是一个比较漫长而且也比较细致的工作,它需要不断的调节PID中的参数,来使系统达到试验的要求,在短时间内系统能够达到稳定的状态,而且静差要在1%——2%。

(1)如果一开始就使用凑试法,要达到接近的实验要求效果是很困难的,因为凑试法存在很大的基数,要是很多次才能达到想要的效果。

所以最开始我们只能按照实验仪器上以及指导书上对流量控制给出的PID的参数来进行一个基本参数,然后再开始在这个范围内开始调节。

(2)我们使用的是金属管浮子流量计,所以根据测量的结果可知,有效的工作区是在15L/h——40L/h之间,所以当我们的参数设定在P=240,I=25,D=1时,各个阶段的动态性能是不一样的。

a、当前值是25,设定值是30时,整个系统达到稳定所用的时间是60s左右,而且稳定后的阀门开度是29.8;b、当前值是30,设定值是35时,整个系统达到稳定所用的时间是60s左右,而且稳定后的阀门开度是35.3;c、当前值是30,设定值是25时,整个系统达到稳定作用的时间是90s左右,而且稳定后的阀门开度是25.3;从上面的数值可见,系统在这个PID的参数下还算是比较稳定,但是在从20——25以及35——40这个阶段的阀门开度的调节时,静差就会很大了,而且达到稳定所需的时间也在100s以上,这个问题使我们在PID的调节上费了很大的功夫。

首先,设定20这个阀门开度值时,系统很难达到这个值,而且一直不能稳定,跳动的范围为21——23,这样的话静差就非常的大。

分析出现的这个情况的原因,系统的稳定线性是在15L/h—40L/h之间,在值为20时,是在线性区的起始阶段,所以会不稳定。

所以最后也不用去要求在这个值上的稳定,所以最后可以确定稳定的线性曲线是在24—40这个阶段。

最后我们定的PID是P=240、I=25、D=1时,单闭环系统的稳定性比较好。

(3)在比值系统调节时,遇到的问题更麻烦,将Q1的输出作为随动系统的输入,经过乘法器将随动系统的输入值减小到1/2,这样调节出来的稳定系统的静差就能减小。

但是在这个比值系统中调节的PID就不能像单闭环系统一样调节PID,而且原来单闭环系统的PID参数用于比值系统时,系统特别不稳定,所以只能一直增大P值来使系统能够稳定。

最后能使系统基本稳定是P=400、I=27、D=0时。

相关文档
最新文档