过程控制实验报告
北京科技大学过程控制实验报告

实验报告课程名称:过程控制系统实验项目名称:被控对象特性测试实验日期与时间: 2022.07 指导教师:班级:姓名:学号:成绩:一、实验目的要求1.了解控制对象特性的基本形式。
2.掌握实验测试对象特性的方法,并求取对象特性参数二、实验内容本节实验内容主要完成测试对象特性,包含以下两部分内容:1.被控对象特性的实验测定本实验采用飞升曲线法(阶跃向应曲线法)测取对象的动特性。
飞升曲线是指输入为阶跃信号时的输出量变化的曲线。
实验时,系统处于开环状态,被控对象在某一状态下稳定一段时间后,输入一阶跃信号,使被控对象达到另一个稳定状态,得到被控对象的飞升曲线。
在实验时应注意以下的一些问题:1)测试前系统应处于正常工作状态,也就是说系统应该是平衡的。
采取一切措施防止其他干扰的发生,否则将影响实验结果。
2)在测试工作中要特别注意工作点与阶跃幅度的选取。
作为测试对象特性的工作点,应该选择正常工作状态,也就是在额定负荷及正常的其他干扰下,因为整个控制过程将在此工作点附近进行。
阶跃作用的取值范围为其额定值的 5-10%。
如果取值太小,由于测量误差及其它干扰的影响,会使实验结果不够准确。
如果取值过大,则非线性影响将扭曲实验结果。
不能获得应有的反应曲线,同时还将使生产长期处于不正常的工作状态,特别是有进入危险区域的可能性,这是生产所不能允许的。
3)实验时,必须特别注意的是,应准确地记录加入阶跃作用的计时起点,注意被调量离开起始点时的情况,以便计算对象滞后的大小,这对以后整定控制器参数具有重要的意义。
4)每次实验应在相同的条件下进行两次以上,如果能够重合才算合格。
为了校验线性,宜作正负两种阶跃进行比较。
也可作不同阶跃量的实验。
2.飞升曲线数据处理在飞升曲线测得以后,可以用多种方法来计算出所测对象的微分方程式,数据处理方法有面积法、图解法、近似法等。
面积法较复杂,计算工作量较大。
近似法误差较大,图解法较方便,误差比近似法小。
过程控制实验报告

实验一 基于Matlab/Simulink 的控制系统仿真研究一、实验目的1)学习使用Matlab 命令软件对控制系统进行时域特性仿真研究的基本方法。
2)学习使用Simulink 工具箱对控制系统进行时域特性仿真研究的基本方法。
3)加深对各典型环节的理解。
4)研究二阶系统的特征参数,阻尼比ξ和自然频率n ω对系统动态性能的影响。
二、实验原理1. 基于Matlab 的时域特性分析 已知系统的闭环传递函数26543222050()1584223309240100s s G s s s s s s s ++=++++++ 试求系统的单位脉冲、单位阶跃、单位速度、单位加速度响应。
% 输入系统传递函数模型 num=[2 20 50];den=[1 15 84 223 309 240 100];t=0:0.1:20; % 生成时间向量 % 求系统的单位脉冲响应subplot(2, 2, 1); % 设定子图形显示位置 impulse(num, den, t); % 求单位脉冲响应 ylabel('y(t)'); % 显示纵轴名称 title('单位脉冲响应'); % 显示图形名称 % 求系统的单位阶跃响应subplot(2, 2, 2); % 设定子图形显示位置 step(num, den, t); % 求单位阶跃响应 ylabel('y(t)'); % 显示纵轴名称 title('单位阶跃响应'); % 显示图形名称 % 求系统的单位速度响应subplot(2, 2, 3); % 设定子图形显示位置u1=t; % 单位速度输入信号 plot(t, u1); % 绘制单位速度输入信号hold on; % 图形保持,在同图中绘制响应曲线 lsim(num, den, u1, t); % 求单位速度响应 ylabel('x(t), y(t)'); % 显示纵轴名称text(10, 12, 't'); % 显示单位速度函数表达式 title('单位速度响应'); % 显示图形名称 % 求系统的单位加速度响应subplot(2, 2, 4); % 设定子图形显示位置u2=t.*t/2; % 单位加速度输入信号 plot(t, u2); % 绘制单位加速度输入信号hold on; % 图形保持,在同图中绘制响应曲线 lsim(num, den, u2, t); % 求单位加速度响应 ylabel('x(t), y(t)'); % 显示纵轴名称text(11, 100, '1/2*t^2'); % 显示单位加速度函数表达式 title('单位加速度响应'); % 显示图形名称2. 基于Simulink 的时域特性分析按图建立系统的Simulink 模型,对不同的输入信号进行仿真,改变传递函数12325()()s (4)G s G s s s ==+,,观察仿真结果。
过程控制实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。
本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。
一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。
二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。
温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。
三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。
2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。
3. 打开控制器,开始实验。
观察温度的变化过程,并记录实验数据。
4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。
5. 重复步骤3和4,直到达到满意的控制效果。
四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。
通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。
五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。
实践操作使我们更加熟悉了过程控制的过程和技巧。
同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。
六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。
未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。
结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。
通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。
希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。
过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。
2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。
过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。
过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。
3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。
实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。
(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。
(3) 将执行器与控制器连接,并调试执行器的控制参数。
(4) 在控制软件中设置控制策略和控制目标,并启动控制器。
(5) 监测被控制物理过程的状态,并记录相关数据。
(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。
4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。
实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。
5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。
通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。
在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。
《过程控制系统》实验报告

《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。
它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。
在工业生产中,过程控制系统起到了至关重要的作用。
本实验旨在了解过程控制系统的基本原理、组成以及操作。
二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。
三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。
四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。
在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。
通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。
当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。
在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。
实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。
通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。
五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。
我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。
实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。
然而,本次实验还存在一些不足之处。
首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。
其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。
《过程控制系统》实验报告

《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。
二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。
2、计算机及相关软件用于编程、监控和数据采集分析。
三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。
其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。
常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。
四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。
(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。
(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。
(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。
2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。
设置温度设定值和控制算法参数。
(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。
五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。
(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。
快速性分析:计算液位达到设定值所需的时间。
过程控制实验报告3(液位单闭环实验)

班级:082班座号:姓名成绩:
课程名称:过程控制工程实验项目:液位单闭环实验
一、实验目的:
通过实验掌握单回路控制系统的构成。
学生可自行设计,构成单回路单容液位,并采用临界比例度法、阶跃反应曲线法和整定单回路控制系统的PID参数,熟悉PID参数对控制系统质量指标的影响,用计算机进行PID参数的调整和自动控制的投运。
二、实验设备:
水泵、变频器、压力变送器、主回路调节阀、上水箱、上水箱液位变送器、牛顿模块(输入、输出)。
表4-13 阶跃反应曲线整定参数表
4、将计算所得的PID参数值置于计算机中。
5、使水泵Ⅰ在恒压供水状态下工作。
观察计算机上液位曲线的变化。
6、待系统稳定后,给定加个阶跃信号,观察其液位变化曲线。
7、再等系统稳定后,给系统加个干扰信号,观察液位变化曲线。
8、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果于表格4.12中。
五、试验报告:
根据试验结果编写实验报告,并根据K、T、τ平均值写出广义的传递函数。
过程控制实验报告.doc

实验报告专业:自动化姓名:学号:实验一、计算机控制系统实验一、实验目的1、了解计算机控制系统的基本构成。
2、掌握本装置计算机实时监控软件的使用3、熟悉计算机控制算法。
4、掌握计算机控制的参数整定方法。
二、实验设备1、THKGK-1过程控制实验装置:GK-02 GK-03 GK-072、计算机及上位机监控软件三、实验原理与常规仪表控制系统相比,计算机控制系统的最大区别就是用微型机和A/D、D/A转换卡来代替常规的调节器。
基本构成框图如下:计算机根据测量值与设定值的偏差,按程序设定的算法进行运算,并将结果经D/A转换器输出。
控制算法有位置式,增量式和速度式。
为了使采样时间间隔内,输出保持在相应的数值,在D/A卡上设有零阶保持器。
四、实验步骤(一)、监控软件的使用及安装说明:1、计算机硬件要求:CPU:486以上。
内存:32MB或更多。
硬盘:1GB。
操作系统:Windows98/2000/XP。
显示器:1024×768。
串行口:COM12、软件安装安装过程已经在上位机光盘里面。
(二)、登录后选择PID算法对上水箱液位进行控制1、将计算机与单片机控制屏结合使用,对上水箱液位进行直接数字DDC控制实验。
系统连接图自拟。
(单片机控制屏仅起A/D、D/A转换的作用)2、设置适当的作图时间间隔和给定值,调整PID参数K、、Ti、Td、直到得到较好的过程控制实时曲线。
3、对不同PID参数下的实时控制曲线进行比较,分析各参数变化对控制质量的影响。
4、自行选择其他控制算法进行实验,了解不同算法的控制质量。
五、实验小结1、将上述实验结果整理好,写出参数整定的具体步骤及整定数值,整理出系统的结构图。
Kp=2 Ki=6 K=5 阀门开度为60%2、简述PID参数对系统性能的影响。
PID调节器分别对应比例、积分和微分作用1、比例参数KP的作用是加快系统的响应速度,提高系统的调节精度。
随着KP的增大系统的响应速度越快,系统的调节精度越高,但是系统易产生超调,系统的稳定性变差,甚至会导致系统不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 5.2 外给定校正
..
..
.
.
.
六、 串级调节系统Ⅱ
6.1 实验过程
·Step1:控制面板连线。按照单回路方框图,主控制器的(PV,4-20mA)接到液位变送器, 接口,(OUT,4-10mA)接到副控制器的(外给定,4-20mA);副控制器的(PV,4-20mA) 接到电磁阀开度变送器,(OUT,4-10mA)接到电磁阀接口。如图 6.1。
·电磁阀
MODEL UW-15,VOLTS 220V,ORIFICE 15,CYCLES 60Hz,PIPESIZE 1/ ,
OFERATING PRESSURE MINI 0kg/ —MAX 8kg/
·交流变频器 功率 1500w,电源 220V(单相输入) 380V(三相输入)
1.2 电气接线图
..
..
.
.
.
图 3.1 电动阀连线图
在软件平台上观察电动阀开度从 0%-100%以及不同开度的变化曲线(图 3.2),从而得出 传递函数。
图 3.2 电动阀开度调节曲线
从图 3.2 可以得出,电动阀的开度变化和时间是线性关系,设为 开度=kt,进一步分析 曲线知 k=100/(0.8×60)=2.1,所以开度(%)= 2.1t,传递函数为
·泵:
Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V,
IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B
·全自动微型家用增压器:
型号 15WZ-10,单相电容运转马达
最高扬程 10m,最大流量 20L/min,级数 2,转速 2800rmp,电压 220V,
外给定校正:主控制器的输出值即电动阀开度的给定值,所以外给定校正的连线图如图 5.2。先将主控制器调到手动模式,手动设置 OUTL 为 0,使副控制器进入到 level3,在 ANL2 中调节 SV 的大小使 PV 值为 0。再先将主控制器手动设置 OUTL 为 100,使副控制器进入到 level3,在 ANH2 中调节 SV 的大小使 PV 值为 100。通过以上两步,完成高点和低点的外给 定校正。
·故障与排除
2.4 对象建模
为了实现对水箱的建模,应该在断开所有的控制器的情况下让水箱获得自然平衡点。利 用 P909 手动控制电动阀的开度,保持出水阀的开度不变,手动调节进水阀的开度,使得液 位逐渐达到平衡点。在液位到达第一个平衡点之后保持进水阀和出水阀的开度不变,通过 P909 手动增大电动阀的开度。(这里之所以实用电动阀来控制输入量是因为电动阀的是线性 的,而进水阀是非线性的,从而电动阀的开度该变量是可以量化的)由于开度的增大,进水 量必然会增大,但是由于液位不断升高,出水量也会随之增大,最终进水量与出水量相等从 而液位重新达到平衡点。这个过程的液位-时间曲线称为飞升曲线。通过飞升曲线可以估计 出水箱的模型结构,并且通过分析该曲线的数据可以得到模型的相关参数。
·压力传感器
YMC303P-1-A-3
RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V-
·SBWZ 温度传感器 PT100
量程 0-100℃,精度 0.5%Fs,输出 4-20mADC,电源 24VDC
..
..
.
.
.
·智能电动调节阀 型号 2DYP-16P 压力 1.6MPa,输入信号 4-20mA, 口径 2.5mm,电源 220V, 反馈信号 4-20mA,阀门控制精度 0.1%-8%可调
电流 0.36A,频率 50Hz,电容 3.5µ F,功率 80w,绝缘等级 E
·LWY-C 型涡轮流量计:
口径 4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V,
标准信号输出 4-20mA,负载 0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65
..
..
.
.
.
一、 系统概论
1.1 实验设备
1.1.1 组成器件
图 1.1 实验设备正面图
图 1.2 实验设备背面图
本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、
流量计、压力传感器、温度传感器、操作面板等。
1.1.2 铭牌
·加热控制器:
功率 1500w,电源 220V(单相输入)
图 6.1 串级控制连线图
·Step2:串级控制系统中有两个 PID 控制器,在调节参数时不应该同时调节,而是应该先 调节副控制器再调节主控制器。对于副控制器的要响应速度快,电磁阀的开度要能跟得上给 定值,所以副控制器的 PID 参数要求为放大倍数比较大,积分时间比较小。对于主控制器的 要输出的开度调节幅度不能太大,反应速度应该比副控制器慢,所以主控制器的 PID 参数要 放大倍数比较小,积分时间比较大。(注:P909 中的 P 为比例度,为放大倍数的倒数,所以 在调节参数时应该是主控制器的 P 比较大,副控制器的 P 比较小。) ·Step3:与单回路调节系统相同,由于在实际的过程控制中被控量是不可能大幅度变化的, 所以在对控制的效果进行评判时是观察在给定值附近的控制效果是否理想。(本实验为 300mm)
..
.
.
.
五、 串级调节系统Ⅰ
5.1 串级调节系统方框图
图 5.1 串级调节方框图
5.2 PV 校正
5.1.1 主控制器的 PV 校正 主控制器的测量值为液位,所以它的 PV 校正和单回路 PV 校正相同,控制面板连线见图
4.2。 5.1.2 副控制器的 PV 及外给定校正
串级控制系统比单级控制系统多一个控制器,即副控制器。副控制器的给定值是主控制 器的输出值,反馈值是电磁阀开度,所以副控制器需要 PV 校正和外给定校正。
图 2.2 飞升曲线
由图 2.2 可以看出水箱的模型为一节惯性系统,其传递函数为
,
其中,K =
0.32mm/%,T = 4.6min = 276s
所以水箱的传递函数为
三、 执行机构
本实验的执行机构为电动阀。下面的工作是探究电动阀的传递函数。将 P909 的(PV, 4-20mA)接到电动阀开度变送器的接口,(OUT,4-20mA)接到电动阀的接口,连线如图 3.1。
见最后一页
1.3 操作面板图
控制面板中有 4 个 P909 仪表,以及执行机构和变送器的接口。 每个 P909 有 4 组接口,分别为(PV,4-20mA),(外给定,4-20mA),(OUT,4-20mA), (报警)。PV 为测量值的输入口,即在闭环回路中为反馈值的输入口,该接口一般与变送器 相连。外给定为该 P909 的给定值是由其他仪器给定,而非手动人为调节,在串级控制中为 外环的输出口与环给定的接口。OUT 为该 P909 的输出值。 实验中用到的执行机构和变送器为电动阀、电动阀开度变送器、液位变送器。
..
..
.
.
.
在 IO 设备组态中配置设备参数
..
..
.
.
.
完成所有设备配置后,全部编译并运行
..
..
.
.
.
登陆
2.3 P909 的认识和应用
..
..
.
.
.
与本实验有关的一些功能操作: ·设定 SV 值
·各阶层参数说明
·PV 高点和低点校正 Level3 层中
..
..
.
.
.
·外给定高点和低点校正 Level3 层中
图 4.2 单回路 PV 校正
4.3 实验过程
·Step1:控制面板连线。按照单回路方框图,P909 的(PV,4-20mA)接到液位变送器, 接口,(OUT,4-10mA)接到电磁阀接口。如图 4.3。
..
..
.
.
.
图 4.3 单回路控制面板连线图
·Step2:由于在实际的过程控制中被控量是不可能大幅度变化的,所以在对控制的效果进 行评判时是观察在给定值附近的控制效果是否理想。例如,实验时设定液位从 100mm 升到 200mm,而为了模拟实际情况,我们应该观察从 180mm 到液位稳定这段时间的控制效果。基 于以上的分析,在实验中我们分两步进行,手动与自动相结合。首先,当液位低于 180mm 时,手动设置 OUTL 为 100(即电动阀开度最大),使液位快速上升。当液位达到 180mm 时, 切换到自动调节,根据设定的参数进行 PID 调节,使液位最终稳定。
四、 单回路调节系统
4.1 单回路调节系统方框图......
.
图 4.1 单回路调节方框图
4.2 PV 校正
通过测量知:低水位 10mm,对应的液位变送器值为 7mA;高水位 510mm,对应的液位变 送器值为 20mA。由于此处需要有一个量程的变换,即 4-20mA→0-100,所以 7mA→20,20mA →100。在校正 PV 时,需要两个 P909(A 和 B),连线如图 4.2。先将 A 调到手动模式,手动 设置 OUTL 为 20,使 B 进入到 level3,在 ANL1 中调节 SV 的大小使 PV 值为 10。再先将 A 手 动设置 OUTL 为 100,使 B 进入到 level3,在 ANH1 中调节 SV 的大小使 PV 值为 510。通过以 上两步,完成高点和低点的 PV 校正。