过程控制课设报告
过程控制课程设计报告

过程控制课程设计报告设计题目:液氨蒸发器温度控制器设计学号:110210124姓名:王希进指导教师:谢玮信息与电气工程学院二零一四年十一月液氨蒸发器温度控制器设计1. 设计任务液氨蒸发器主、副对象的传递函数分别为:主、副扰动通道的传递函数分别为:试分别采用单回路控制和串级控制设计温度控制系统,具体要求如下:1) 分别进行控制方案设计,包括调节阀的选择、控制器参数整定,给出相应的 闭环系统原理图;2) 进行仿真实验,分别给出系统的跟踪性能和抗干扰性能(包括一次扰动和二 次扰动);3) 说明不同控制方案对系统的影响。
2. 整体方案设计2.1单回路控制系统选择液氨蒸发器是一个换热设备。
它是利用液氨的汽化需要吸收大量热量,以此 来冷却流经管内的被冷物料。
工业过程的输入变量有两类:控制变量和扰动变量。
其中,干扰时客观存在 的,它是影响系统平稳操作的因素,而操纵变量是克服干扰的影响,使控制系统 重新稳定运行的因素。
操纵变量的基本原则为:选择对所选定的被控变量影响较 大的输入变量作为操纵变量;在以上前提下,选择变化范围较大的输入变量作为 控制变量,以便易于控制;在前面的基础上选择对被控变量作用效应较快的输入 变量作为控制变量,使控制系统响应较快;液氨流量方便控制,且对温度的影响 较大,故选择液氨流量作为操纵变量。
2.2串级控制系统选择串级控制系统选择主变量时要遵循以下原则:在条件许可的情况下,首先应 尽量选择能直接反应控制目的的参数为主变量; 其次要选择与控制目的有某种单 值对应关系的间接单数作为主变量;所选的主变量必须有足够的变化灵敏度。
故在本系统中选择物料温度作为主变量。
G oi (s) 1 (20s 1)(30s 1) G 02 (s) 1 0.1se 0.2s 1 G f1(s) 10.2s 1 G f2(s) 1副回路的设计质量是保证发挥串级系统优点的关键。
副变量的选择应遵循以下原则:应使主要干扰和更多的干扰落入副回路;应使主、副对象的时间常数匹配;应考虑工艺上的合理性、可能性和经济型。
过程控制设计报告

星期二、三了解串级控制系统原理
星期四 、星期五设计串级控制系统
第二周
星期一、单回路系统仿真设计
星期二、串级系统仿真设计
星期三、单回路系统与串级系统性能比较
星期四、写说明书
星期五、上午:写说明书,整理资料
下午:交设计资料,答辩
参 考 文 献
过程控制与SIMULINK应用
湖南工程学院
课程设计
课程名称过程控制
课题名称串级控制系统仿真设计
专业
班级
学号
姓名
指导教师
200年月日
湖南工程学院
课程设计任务书
课程名称过程控制
课题串级控制系统仿真设计
专业班级
学生姓名
学号
指导老师
审批
任务书下达日期200年月日
任务完成日期200年月日
设计内容与设计要求
设计内容:
某隧道窑炉系统,考虑将燃烧室温度作为副变量,烧成温度为主变量,燃烧室温度为副变量的串级控制系统中主、副对象的传递函数分别为:
说 明 书 格 式
1.课程设计任务书
2.目录
3.系统总体方案选择与说明
4.结果与必要的调试说明
7.使用说明
8.程序清单
10、总结
11、参考文献
附录
附录A 系统原理图
附录B 程序清单
进 度 安 排
设计时间为两周
第一周
星期一、上午:布置课题任务,讲课及课题介绍
G01(s)=1/(30s+1)(3s+1);g02(s)=1/((10s+1)(s+1)^2);
主控制器采用比例积分控制,副控制器采用比例控制
设计要求:
过程控制系统课程设计报告报告实验报告1

过程控制系统课程设计报告报告实验报告成都理工大学工程技术学院《过程控制系统课程设计实验报告》名称:单容水箱液位过程控制班级:2011级自动化过程控制方向姓名:学号:目录前言一.过程控制概述 (2)二.THJ-2型高级过程控制实验装置 (3)三.系统组成与工作原理 (5)(一)外部组成 (5)(二)输入模块ICP-7033和ICP-7024模块 (5)(三)其它模块和功能 (8)四.调试过程 (9)(一)P调节 (9)(二)PI调节 (10)(三)PID调节 (11)五.心得体会 (13)前言现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。
首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。
通过对基础训练设施的集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。
其次,工程实训的内容应一定程度地体现技术发展的时代特征。
为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。
应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。
第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。
以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。
本次工程实践就是针对单容水箱液位进行恒高度控制通过调试,来熟悉THJ-2型高级过程控制实验装置。
通过本次工程实践,来熟悉工业过程控制的工作流程以及其控制原理。
过程控制课设报告

课程设计报告名称:过程控制院系:班级:学号:学生姓名:同组人:指导教师:设计周数: 1 成绩:一.课程设计总体目标通过该课程设计,使学生进一步掌握过程控制课程主要内容,深入理解过程控制系统的分析与综合。
要求学生:1.了解过程控制技术与系统设计与分析的关键技术;2.了解过程控制方案的组成;3.能够进行控制系统的设计与仿真及工程实现。
二.课程设计主要内容本课程设计是为实现生产过程自动化,应用图纸资料和文字资料来表达设计思想、实验室试验、现场工程实现方法。
设计分为两个阶段:1.设计前期工作(1)查阅资料:对被控对象动态特性进行分析;确定控制系统的被调量和调节量(2)确定自动化水平:自动控制范围、控制质量指标、报警设限及手自动切换水平(3)提出仪表选型原则:包括测量、变送、调节及执行仪表的选型2.设计工作(1)根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图;(2)根据确定控制设备和测量取样点和调节机构,绘制控制系统工艺流程图(PID图);(3)根据确定的自动化水平和系统功能,选择控制仪表,完成控制系统SAMA图(包括系统功能图和系统逻辑图);(4)对所设计的系统进行仿真试验并进行系统整定(5)编写设计报告(说明书)。
三.设计正文:1.主汽温串级控制系统的基本任务和要求锅炉过热蒸汽温度是影响机组生产过程安全性和经济性的重要参数。
现代锅炉的过热器是在高温、高压的条件下工作的,过热器出口的过热蒸汽温度是机组整个汽水行程中工质温度的最高点,也是金属壁温的最高处。
过热器采用的是耐高温高压的合金刚材料,过热器正常运行的温度已接近材料所允许的最高温度。
如果过热蒸汽温度过高,容易损坏过热器,也会使蒸汽管道、汽轮机内某些零部件产生过大的热膨胀而毁坏,影响机组的安全运行。
如果过热蒸汽温度过低,将会降低机组的热效率,一般蒸汽温度降低5-10℃,热效率约降低1%,不仅增加燃料的消耗量,浪费能源,而且还将使汽轮机最后几级的蒸汽湿度增加,加速汽轮机叶片的水蚀。
过程控制系统课程设计报告

~过程控制系统课程设计报告·题目:温度控制系统设计姓名:学号:班级:指导教师:`)温度控制系统设计一、设计任务设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。
二、预期实现目标通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。
(三、设计方案(一)系统数学模型的建立要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。
数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。
在本系统中,被控量是温度。
被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。
在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。
在整个实验过程中,水量是不变的。
经过试验,得到下表所示的时间-温度表:表1 采样时间和对应的温度值采样时间t 8 》910 11 12 13 温度值℃64·7279869398以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: <图1 时间-温度曲线采用实验法——阶跃响应曲线法对温箱系统进行建模。
将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。
从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。
因此我们选用()1ske G s Ts τ-=+(式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。
(1)k 的求法:k 可以用下式求得:()(0)y y k x ∞-=(x :输入的阶跃信号幅值)](2)过程时间常数T 和滞后时间τ可用两点法求得:T=)](1ln[)](1ln[2*1*12t y t y t t ---- τ=)](1ln[)](1ln[)](1ln[)](1ln[2*1*2*11*2t y t y t y t t y t ------ 选取系统终值100℃,t 1=90s ,对应)(1*t y =,t 2=300s ,对应)(2*t y =得到K=,T=, τ=系统开环传递函数:K=11388.0+S^(二)基于MATLAB 的PID 仿真(1)PID 控制算法目前大部分温度控制器还是采用PID 控制算法,PID 控制是比例—积分—微分控制,PID 控制是最早发展起来的、应用领域至今仍然广泛的控制策略之一。
华北电力大学过程控制课设报告

课程设计(综合实验)报告( 2014 -- 2015 年度第2学期)名称:过程控制技术与系统课程设计题目:汽包锅炉三冲量给水控制系统设计院系: 控制与计算机工程学院班级: 自动化学号:学生姓名:指导教师:设计周数:一周成绩:日期:年月日一、控制系统的基本任务和要求汽包水位是工业蒸汽锅炉安全、稳定运行的重要指标,水位过高会导致蒸汽带水进入过热器,并在过热管内结垢,影响传热效率,严重的将引起过热器爆管;水位过低又将破坏部分水冷壁的水循环引起水冷壁局部过热而爆管。
高性能的锅炉产生的蒸汽流量很大,而汽包的体积相对来说较小,水位的时间常数很小。
大容量锅炉若给水不及时,数秒之内就可能达到危险水位,所以锅炉汽包水位的控制显得非常重要。
因此,必须采取有效、精确的自动调节,严格控制汽包水位在规定范围内。
影响汽包水位变化的因素很多,如燃煤量、给水量和蒸汽流量。
燃煤量对水位变化的影响是比较缓慢的,容易克服。
因此,主要考虑给水量和蒸汽流量对水位的影响。
本设计的主要任务即是保证给水流量W和主蒸汽流量D保持平衡,维持汽包水位H在较小范围内波动。
二、被控对象动态特性分析做各种主要影响因素的阶跃扰动,记录并分析汽包水位的响应曲线1)给水扰动Simulink中系统连接图如下:运行结果如下:由被控对象在给水量扰动下的水位阶跃响应曲线,可以看出该被控对象无自平衡能力,且有较大的迟延,可近似的看作积分环节和迟延环节的串联,因此应采用串级控制,将给水流量的扰动消除在采用带比例作用的副调节回路中,以保证系统的稳定性。
2)蒸汽流量扰动Simulink中系统连接图如下:运行结果如下:由仿真结果看出对象在蒸发量D扰动下,水位阶跃反应曲线有一段上升的过程,表现有“虚假水位”现象,(出现虚假水位现象的原因:当负荷突然增加,蒸汽流量增加,汽包的压强变小,导致水气化,导致水位升高,同样的,当负荷突然减小,蒸汽流量减小,汽包的压强变大,导致水中气泡液化,水位降低,这两种情况都会出现虚假水位现象。
过程控制系统课程设计报告

过程控制系统课程设计报告题目:温度控制系统设计姓名:学号:班级:指导教师:温度控制系统设计一、设计任务设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。
二、预期实现目标通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。
三、设计方案(一)系统数学模型的建立要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。
数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。
在本系统中,被控量是温度。
被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。
在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。
在整个实验过程中,水量是不变的。
经过试验,得到下表所示的时间-温度表:表1 采样时间和对应的温度值以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线:图1 时间-温度曲线采用实验法——阶跃响应曲线法对温箱系统进行建模。
将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。
从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。
因此我们选用()1ske G s Ts τ-=+(式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。
(1)k 的求法:k 可以用下式求得:()(0)y y k x ∞-=(x :输入的阶跃信号幅值)(2)过程时间常数T 和滞后时间τ可用两点法求得:T=)](1ln[)](1ln[2*1*12t y t y t t ----τ=)](1ln[)](1ln[)](1ln[)](1ln[2*1*2*11*2t y t y t y t t y t ------选取系统终值100℃,t 1=90s ,对应)(1*t y =0.36,t 2=300s ,对应)(2*t y =0.86得到K=0.8,T=138.1, τ=28.3系统开环传递函数:K=11388.0+S(二)基于MATLAB 的PID 仿真(1)PID 控制算法目前大部分温度控制器还是采用PID 控制算法,PID 控制是比例—积分—微分控制,PID 控制是最早发展起来的、应用领域至今仍然广泛的控制策略之一。
过程控制课程设计报告书.甘

目录一、概述-----------------------------------------------------------------------2 1.1工业锅炉概述----------------------------------------------------------------2 1.2国内工业锅炉发展状况--------------------------------------------------------2 1.3国外工业锅炉发展状况--------------------------------------------------------2 1.4工业锅炉的调节任务----------------------------------------------------------2 二、工业锅炉控制系统的基本任务和要求--------------------------------------------3 2.1给水控制系统----------------------------------------------------------------3 2.2过热蒸汽温度的调节系统------------------------------------------------------3 2.3燃烧调节系统----------------------------------------------------------------3 2.4锅炉的主要设计参数----------------------------------------------------------4 三、工业锅炉自动控制系统方案的设计----------------------------------------------4 3.1给水控制系统----------------------------------------------------------------4 3.1.1 锅炉汽包给水控制对象的特点3.1.2锅炉汽包给水控制对象的动态特性3.1.3测量给水控制系统仪表的选择3.1.4给水控制系统的设计3.1.5给水控制系统的工作原理及SAMA图3.2过热蒸汽温度的调节系统-----------------------------------------------------10 3.2.1过热蒸汽温度的调节系统对象的动态特性3.2.2测量过热蒸汽温度仪表的选择3.2.3过热蒸汽温度的调节系统的设计3.2.4过热蒸汽温度串级控制系统的工作原理3.3燃烧调节系统---------------------------------------------------------------12 3.3.1燃烧调节系统的对象动态特性3.3.2测量燃烧调节系统仪表的选择3.3.3燃烧调节系统的设计3.3.4燃烧控制系统的工作原理及炉膛负压子系统的SAMA图四、锅炉的报警系统-------------------------------------------------------------17五、工业锅炉热工控制系统流程图-------------------------------------------------17六、设计小结-------------------------------------------------------------------18七、参考文献-------------------------------------------------------------------18八、附页-----------------------------------------------------------------------19一、概述1.1工业锅炉概述锅炉由汽锅和炉子组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制课设报告课程设计报告(2015—2016年度第二学期)名称:过程控制课程设计题目:电厂锅炉过热蒸汽温度控制系统院系:控制与计算机工程学院班级:姓名:学号:指导老师:张建华老师设计周数: 1 周日期:2016年6月24日设计正文:1.控制系统的基本任务和要求过热蒸汽温度控制的任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。
过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以致烧坏过热器的高温段,严重影响安全。
一般规定过热蒸汽的温度上限不能高于其额定值+5℃。
如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,汽温每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽湿度升高,甚至使之带水,严重影响汽轮机的安全运行。
所以,过热蒸汽温度过高或过低都是生产过程所不允许的。
以600MW机组国产直流锅炉为例,其过热蒸汽温度额定值为541℃(主汽压力为17.3MPa),在负荷为额定值的60%~100%范围内变化时,过热蒸汽温度不超过额定值的-10~+5,长期偏差不允许超过±5℃。
为了防止过快的蒸汽温度变化速率造成某些高温工作不部件产生较大的热应力,还对温度变化速率进行限制,一般限制在3℃/min内。
本次课程设计以600MW超临界直流锅炉主汽温控制系统为例:某电厂600MW 汽包锅炉过热蒸汽温度是通过喷水减温来实现对温度的自动调节。
已知该系统减温水流量W和过热蒸汽流量D可通过加装流量计进行检测,电动调节阀的开度可根据控制器输出值自动调整。
其动态特性如下:设计相应的自动控制系统保证过热蒸汽温度为给定值,即该系统既能消除来自减温水及燃烧侧等内扰的影响,又能完全消除来自过热蒸汽流量D变化等外部扰动对过热蒸汽温度的影响。
2.被控对象动态特性分析(1)、影响过热蒸汽温度的因素:①蒸汽流量(负荷)扰动;②烟气热量扰动(燃烧器运行方式、燃料量变化、风量变化等);③减温水流量扰动。
(2)、过热气温控制对象的动态特性分析①蒸汽流量(负荷)扰动下的动态特性汽机负荷变化会引起蒸汽量的变化,蒸汽量的变化将改变蒸汽和烟气的传热条件,导致气温的变化。
如图1,在t=0s时刻产生的蒸汽流量扰动在△D下的过热蒸汽的响应曲线,由分析可得由于管道中沿长度方向上的点温度几乎同时变化,所以温度响应有自平衡特性,而且关心很延迟都比较小。
图1 蒸汽流量(负荷)扰动下的动态特性曲线②烟气热量扰动(燃烧器运行方式、燃料量变化、风量变化)下的动态特性燃料量增减,燃料种类的变化,送风量,引风量的改变都将引起烟气流速和烟气温度的变化,从而改变了传热情况,导致过热器出口温度的变化。
由于烟气传热量的改变时沿着整个过热器长度方向上同时发生的,因此气温变化的延迟很小,一般在10-20s之间,同时体现出自平衡特性。
烟气侧扰动的气温响应曲线如下图2。
图2 烟气侧扰动的气温响应曲线③减温水流量扰动下的动态特性应用喷水来控制蒸汽温度是目前采用最广泛的一种方式,对于这种方式,喷水量振动就是基本振动。
过热器是具有分布参数的多容对象,可以把管内的蒸汽和金属管壁看作成无穷多个单容对象串联组成的多容对象,当喷水量发生变化后,需要通过这些串联单容对象,最终影响出口蒸汽温度θ的变化。
因此,θ会有很大的延迟,减温器离过热器出口越远,延迟越大,其响应曲线如下图3。
喷水量振动响应曲线具有惯性,有延迟,有自平衡性,其延迟与管道长度成正比,一般锅炉延迟在30-60s。
图3 减温水流量扰动下的气温响应曲线3.选择控制系统控制结构,画控制原理图(1)、系统控制结构的选择通过对过热蒸汽汽温动态特性的分析可知,该被控对象惯性比较大,且过热器惯性比较大。
目前普遍采用的控制方案有:采用导前汽温微分信号的双回路控制系统、过热汽温串级控制系统、采用相位补偿的汽温控制系统、过热汽温分段控制系统等。
通过对这些控制方案的比较发现,采用导前汽温微分信号控制系统的控制效果不如串级控制系统好,尤其当控制对象惰性区的惯性比较大时更为明显。
因此,本次课程设计采用串级控制。
(2)、过热气温串级控制系统原理图图4 串级控制结构方框图4.选择测点和调节机构,画控制系统工艺流程图针对过热气温调节对象调节通道惯性迟延大、被调量出口气温反馈慢的特点, 从对象的调节通道中找出一个比被调量反应快的中间点信号( 喷水减温器出口气温) 作为调节器的补充反馈信号, 以改善对象调节通道的动态特性, 提高调节质量。
构成的串级过热气温调节的工艺流程见图5。
图5 串级过热汽温调节系统工艺流程图系统中有主副两个调节器, 主调节器接受被调量出口气温θ1及其给定值信号, 主调的输出I给与喷水减温器出口气温θ1 共同作为副调节器输入, 副调节器输出IT 控制执行机构位移, 从而控制减温水调节阀门的开度。
假如有喷水量WB 的自发性上升造成内扰, 如果不及时加以调节,出口气温θ将会下降。
但因为喷水内扰引起的θ1下降快于θ的下降, 温度测量变送器输出θ1降低, 副调节器输出IT 降低, 通过执行器使喷水阀开度μ下降, 则WB 降低, 使扰动引起的θ1波动很快消除, 从而使主气温θ基本不受影响。
另外副调还受到主调输出的影响, 假如负荷或烟气扰动引起主气温θ提高, 测量变送器输出Iθ增加, Iθ对主调是反作用, 主调输出I 给降低, I给对副调也是反作用, 使副调输出IT 增加, 通过执行器使喷水阀开度μ提高, 则WB 提高, 从而稳定主气温θ。
从图5中可看到, 串级系统和单级系统有一个显著的区别, 即在结构上形成了两个闭环。
一个闭环在里面, 被称为内回路或副回路, 包括副对象( 其输入为调节量WB, 输出为θ1) 、副参数θ1测量变送器、副调节器、执行器、喷水阀。
内回路任务是尽快消除减温水量的自发性扰动和其他进入内回路的各种扰动( 喷水减温器入口蒸汽温度、流量变化) , 在调节过程中起着粗调的作用; 副调一般采用P 或PD 调节器。
一个闭环在外面, 被称为外回路或主回路, 包括主对象( 即过热器, 其输入为θ1, 输出为θ) 、主参数θ测量变送器、主调节器、副回路, 外回路的任务是保持过热器出口气温等于给定值, 起细调作用, 主调一般采用PI 或PID 调节器。
5.选择控制仪表,画SAMA图(标出调节器作用方向)图6 控制系统的SAMA图图7 控制系统逻辑图为开关量输出,在操作器上则操作器的“程控手动”输入为一差值报警,当被调量与给定值之差超过某一设定的限值(上下限)时,给出报警信号也是一个差值报警,当调节器输出与阀位反馈值(执行器输出)之差过大时,发出报警信号为开关量输出,在操作器上则是操作器的“程控自动”输入为一个开关量,它表示操作器“自动/手动”状态,当它为“0”时,表示操作器处于手动状态,调节器为跟踪状态,输出到执行器的信号由操作器控制。
当它为“1”时,表示操作器处于自动状态。
是一个外跟踪开关。
当这个开关量状态为“1”时,PID为跟踪状态,输出等于外跟踪信号(阀位反馈),而其状态为“0”时,PID恢复正常运算,输出就是运算得到值。
6.仿真实验与整定(1)、系统仿真针对上述的被控对象,采用常规PID串级控制。
在串级主汽温控制系统中,副回路应尽快地消除扰动对主汽温的影响,对主汽温起粗调的作用,因此副控制器采用的是P控制器;主控制器的作用是的主汽温起细调作用,因此采用的是PID控制器(2)、仿真图的建立图8 仿真结构图(3)、内回路参数整定断开主环,按单回路整定方法整定,采用衰减曲线法进行整定。
建立如下图所示的仿真图。
图9 内回路的整定仿真图整定步骤:a断开主回路,用衰减曲线法,整定内回路。
副调节器,纯P作用。
b反复调整比例带 ,做副回路定值阶跃扰动实验,直到衰减率ψ=0.75~0.9,记录曲线。
调整控制参数:当P=-8.4815时得到控制输出曲线图10 内回路整定输出曲线由图可见:第一个峰值:y1=1.4第二个峰值:y2=1.05稳态值:y=0.947×100%=0.77;那么可得ψ=y1−y2y1−y此处副回路选择P控制(4)外回路参数整定:把上面整定好的副环作为主环中的一个环节,进行整定。
建立如下所示的仿真图:图11 外回路衰减曲线法整定仿真图整定步骤:a 闭合主回路,整定外回路。
b 反复调整主调节器比例带 和积分时间I,直到衰减率ψ=0.76记录曲线。
调整控制参数:当P=0.5529,I=0.00149,D=30.5906时得到控制输出曲线图12 外回路整定输出曲线由图可见:第一个峰值:y1=1.17第二个峰值:y2=1.04稳态值:y=1×100%=0.76;那么可得ψ=y1−y2y1−y由上图可以看出,外环的控制输出曲线在没有外绕和内扰的情况下,输出曲线超调量较小,调节时间小,曲线光滑,控制效果良好。
(5)、存在外扰时搭建如下图所示的仿真图:图13 主汽温控制抗外扰测试仿真图得到控制输出曲线:图14 主汽温在外扰存在时控制输出曲线由图可见,该控制系统的抗外扰能力并不强,扰动发生时,超调量过大,这是在实际运行中不允许发生的。
(6)、改进方案:由前面的抗扰动测试中可以看出,控制系统抗外扰能力较弱,响应曲线的超调量过大,针对这一问题,可以引入前馈控制。
完全补偿条件为G ff(s)=− G d(s) K z(s)由于补偿器不能是超前环节,所以针对本系统设计的补偿器表达式为:G ff(s)=−2.6(58s+1)3(45s+1)3因采用此前馈补偿器时,可完全消除外扰,导致仿真效果对比不明显,因此在实际仿真中采用的补偿表达式为 G ff(s)=−2.5(58s+1)3(45s+1)3前馈控制仿真图如下图15 控制系统前馈控制的仿真图得到系统的抗外扰输出曲线:图16 引入前馈时控制系统抗外扰测试输出曲线由图可以看出,在外扰情况下,系统的抗干扰能力明显增强,超调量大大减小,控制品质较高,符合了实际电厂主汽温控制的要求。
所以该串级控制回路在引入了前馈时能够有效的克服外扰对控制系统的影响,使控制品质得到保证,该串级控制设计合理。
7、课程设计总结本次课程设计过程中主要完成了被控对象分析,根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图;同时,根据确定控制设备和测量取样点和调节机构,绘制出了控制系统工艺流程图,完成控制系统SAMA 图;最后还对所设计的系统进行仿真试验并进行系统整定并进行了分析。
我认为本次课程设计的难点在于对所设计的系统进行仿真试验并进行系统整定并进行分析。
因为在整定过程中电路结构的搭建比较容易出错,而且寻找合适的PID参数需要足够的耐心,但通过不断的实践我从中学习到了很多好的方法,这也是我的收获之一。