广东省清远市中考数学试题解析

合集下载

中考数学试题及解析 广东清远

中考数学试题及解析 广东清远

C图2广东省清远市初中毕业生学业考试数学科试题一、选择题(本大题共10小题,每小题3分,共30分) 1.(11·清远)—3的倒数是 A .3 B .—3C .13D .— 13【答案】D2.(11·清远)数据2、2、3、4、3、1、3的众数是 A .1 B .2C .3D .4【答案】C3.(11·清远)图1中几何体的主视图是【答案】C4.(11·清远)据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为 A .0.68×109 B .6.8×108C .6.8×107D .68×107【答案】B5.(11·清远)下列选项中,与xy 2是同类项的是 A .—2xy 2 B .2x 2yC .xyD .x 2y 2【答案】A6.(11·清远)已知∠α=35°,则∠α的余角是 A .35° B .55°C .65°D .145°【答案】B7.(11·清远)不等式x —1>2的解集是 A .x >1 B .x >2C .x >3D .x <3【答案】C8.(11·清远)如图2,点A 、B 、C 在⊙O 上,若∠BAC =20º,则∠BOC 的度数为 A .20º B .30ºC .40ºD .70º【答案】C9.(11·清远)一次函数y =x +2的图象大致是B . A .C .D .【答案】A10.(11·清远)如图3,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是 A .AB =CDB .AD =BC C .AB =BCD .AC =BD【答案】C二、填空题(本大题共6小题,每小题3分,共18分) 11.(11·清远)计算:2x 2·5x 3= _ ▲ .【答案】10x 712.(11·清远)分解因式:2x 2-6x =_ ▲ .【答案】2x (x -3)13.(11·清远)反比例函数y =k x的图象经过点P(-2,3),则k 的值为 _ ▲ .【答案】y =- 6x14.(11·清远)已知扇形的圆心角为60°,半径为6,则扇形的弧长为_ ▲ .(结果保留π)【答案】2π15.(11·清远)为了甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为S 2甲=18,S 2乙=12,S 2丙=23.根据统计结果,应派去参加竞赛的同学是 _ ▲ .(填“甲”、乙、“丙”中的一个) 【答案】(填)16.(11·清远)如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为 _ ▲ .【答案】三、解答题(本大题共5小题,每小题6分,共30分) 17.(11·清远)计算:9+2cos60º+(12)-1-0.【答案】原式=3+1+2-1=5 18.(11·清远)解方程:x 2-4x -1=o .【答案】【答案】方法一:由原方程,得(x -2)2=5 x +2=± 5B图4B图3∴x =-2± 5方法一:△=20,x =-4±202∴x =-2± 519.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位. (1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.【答案】20.(11·清远)先化简、再求值:(1-1x +1)÷xx 2-1,其中x =2+1.【答案】原式=(x +1x +1-1x +1)÷x x 2-1=x x +1×x 2-1x =xx +1×(x -1)( x +1)x =x -121.(11·清远)如图6,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间?(结果精确到0.1).(参考数据:sin28º=0.46,cos28º=0.87,tan28º=0.53)【答案】在Rt △ABC 中,BC =24,∠A =28º,AB =BC ÷sin ∠A =24÷0.46≈52.18 ∴小明从山脚爬上山顶需要时间=52.183÷3≈17.4 (秒) 答:小明从山脚爬上山顶需要17.4秒四、解答题(本大题共3小题,每小题8分,共24分)22.(11·清远)如图2,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,D 为⊙O 上一点,AD 与OC 相交于点E ,且∠DAB =∠C . (1)求证:OC ∥BD ;(2)若AO =5,AD =8,求线段CE 的长.【答案】(1)∵AB 是⊙O 的直径,∴∠ADB =90º,∵AC 与⊙O 相切,∴∠CAB =90º, ∵∠DAB =∠C ∴∠AOC =∠B ∴OC ∥BD(2)∵AO =5,∴AB =10,又∵AD =8,∴BD =6 ∵O 为AB 的中点,OC ∥BD , ∴OE =3,∵∠DAB =∠C ,∠AOC =∠B ∴△AOC ∽△DBA∴CO AB =AO DB ∴CO 10=56 ∴CO =253∴CE =CO -OE =253-3=16323.(11·清远)在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余相同),其中黄球有图7A图6C1个,从袋中任意摸出一个球是黄球的概率为13.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画状图的方法求两次都摸到黄球的概率.【答案】(1)1÷13=3(个)∴白球的个数=3-1=2(2)列表如下:∴共有16种不同的情况,两次都摸出黄球只有一种情况, 故两次都摸到黄于的概率是1924.(11·清远)如图8,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:AB =DF ;(2)若AD =10,AB =6,求tan ∠EDF 的值.【答案】(1)在矩形ABCD 中,AD ∥BC ,AD =BC ,∠ABE =90º ∴∠DAE =∠AEB , 又∵AE =BC ∴AE =AD ∵DF ⊥AE ∠AFD =90º ∴∠AFD =∠ABE∴△ABE ≌△DF A ∴AB =DF(2)∵△ABE ≌△DF A ∴AB =DF =6 AE =AD =10在Rt △ADF 中,AD =10 DF =6 ∴AF =8 ∴EF =2 在Rt △DFE 中,tan ∠EDF =EF DF =13五、解答题(本大题共2小题,每小题9分,共18分)25.(11·清远)某电器城经销A 型号彩电,今年四月份每台彩电售价为元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元. (1)问去年四月份每台A 型号彩电售价是多少元?B 图8E(2)为了改善经营,电器城决定再经销B 型号彩电.已知A 型号彩电每台进货价为1800元,B 型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A 型号彩电继续以原价每台元的价格出售,B 型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获得最大?最大利润是多少? 【答案】(1)设去年四月份每台A 型号彩电售价是x 元50000x =400002000∴x =2500 经检验x =2500 满足题意答:去年四月份每台A 型号彩电售价是2500元≤≥ (2)设购进A 型号彩电y 台,则购进B 型号彩电(20-y )台根据题意可得:⎩⎨⎧1800y +1500(20-y )≥320001800y +1500(20-y )≤33000解得203≤y ≤10∵y 是整数∴y 可取的值为7,8,9,10共有以下四种方案:购进A 型号彩电7台,则购进B 型号彩电13台 购进A 型号彩电8台,则购进B 型号彩电12台 购进A 型号彩电9台,则购进B 型号彩电11台 购进A 型号彩电10台,则购进B 型号彩电10台 (3)设利润为W 元,则W =(-1800) y +(1800-1500) (20-y )=6000-100 y ∵W 随y 的增大而减小 ∴y 取最小值7时利润最大 W =6000-100 y =6000-100×7=5300(元)购进A 型号彩电7台,则购进B 型号彩电13台时,利润最大,最大利润是5300元 26.(11·清远)如图9,抛物线y =(x +1)2+k 与x 轴交于A 、B 两点,与y 轴交于点C (0,-3). (1)求抛物线的对称轴及k 的值;(2)抛物线的对称轴上存在一点P ,使得P A +PC 的值最小,求此时点P 的坐标; (3)点M 是抛物线上一动点,且在第三象限.① 当M 点运动到何处时,△AMB 的面积最大?求出△AMB 的最大面积及此时点M 的坐标; ② 当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标.【答案】(1)抛物线的对称轴为直线x =-1,把C (0,-3)代入y =(x +1)2+k 得 -3=1+k ∴k =-4 (2)连结AC ,交对称轴于点P∵y =(x +1)2-4 令y =0 可得(x +1)2-4=0∴x 1=1 x 2=-3 ∴A (-3,0) B (1,0)设直线AC 的关系式为:y =m +b =0 b =-3 ∴线AC 的关系式为y =-CB 的最大面积及此时点M 的坐标.(3)① 设M 的坐标为(x , (B =12×AB ×|y m |=12×4×[4-(x =8-2(x +1)2当x =-1时,S 最大,最大值为S =8 M 的坐标为(-1,-4) ② 过M 作,S 四边形AMCB =S △AMO +S △CMO +S △CBO =12×AB ×|y m |+12×CO ×|x m |+12×OC ×BO=6-32 (x +1)2+12×3×(-x )+12×3×1=-32x 2-92 x +6=-32(x 2+3x -9)=-32(x +32)2-818当x =-32 时,S 最大,最大值为818。

2023清远中考数学试题及答案

2023清远中考数学试题及答案

2023清远中考数学试题及答案2023年清远中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是整数?A. 3.14B. 0.5C. -2D. 0.33333答案:C2. 以下哪个表达式等于2?A. 3 + 1B. 2 × 1C. 4 ÷ 2D. 5 - 3答案:C3. 如果一个数的平方是9,那么这个数可能是?A. 3B. -3C. 3和-3D. 以上都不是答案:C4. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 任意三角形答案:B5. 以下哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D6. 以下哪个方程的解是x=2?A. 2x - 4 = 0B. 3x + 6 = 12C. x^2 - 4 = 0D. 2x + 3 = 7答案:A7. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x答案:A8. 以下哪个选项是正确的三角函数值?A. sin(30°) = 1/2B. cos(60°) = √3/2C. tan(45°) = √2D. cot(30°) = √3答案:A9. 以下哪个选项是正确的统计量?A. 平均数B. 中位数C. 众数D. 以上都是答案:D10. 以下哪个选项是正确的几何定理?A. 勾股定理B. 泰勒斯定理C. 欧拉定理D. 以上都是答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 如果一个角的补角是120°,那么这个角是______。

答案:60°13. 一个等腰三角形的底角是45°,那么顶角是______。

答案:90°14. 一个圆的半径是5cm,那么它的周长是______。

精选题库广东省清远市中考数学试卷〔含参考答案〕

精选题库广东省清远市中考数学试卷〔含参考答案〕

D. 60°
9.( 3 分)关于 x 的一元二次方程 x2﹣3x+m=0 有两个不相等的实数根, 则实数 m 的取值范
围是(

A .m<
B .m≤
C. m>
D. m≥
10.(3 分)如图,点 P 是菱形 ABCD 边上的一动点,它从点 A 出发沿在 A→ B→ C→ D 路径 匀速运动到点 D,设△ PAD 的面积为 y, P 点的运动时间为 x,东省清远市中考数学试卷
一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有
一个是正确的,请把答题卡上对应题目所选的选项涂黑.
8
C. 1.442× 10
8
D. 0.1442× 10
3.( 3 分)如图,由 5 个相同正方体组合而成的几何体,它的主视图是(

A.
B.
C.
D.
4.( 3 分)数据 1、 5、 7、 4、8 的中位数是(

A .4
B.5
C. 6
D.7
5.( 3 分)下列所述图形中,是轴对称图形但不是中心对称图形的是(
三、解答题 17.【解答】 解:原式= 2﹣ 1+2
= 3.
18.【解答】 解:原式=
?
= 2a,
当 a= 时,
原式= 2× = . 19.【解答】 解:( 1)如图所示,直线 EF 即为所求;
( 2)∵四边形 ABCD 是菱形, ∴∠ ABD=∠ DBC= ∠ABC= 75°, DC ∥ AB,∠ A=∠ C.
20.( 7 分)某公司购买了一批 A、 B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,已知该公司用 3120 元购买 A 型芯片的条数与用 4200 元购买 B 型芯片的条数相等.

[中考专题]2022年广东省清远市中考数学三年高频真题汇总 卷(Ⅲ)(含详解)

[中考专题]2022年广东省清远市中考数学三年高频真题汇总 卷(Ⅲ)(含详解)

2022年广东省清远市中考数学三年高频真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、平面直角坐标系中,已知点()21,P m n -,()2,1Q m n -,其中0m >,则下列函数的图象可能同时经过P ,Q 两点的是( ).A .2y x b =+B .22y x x c =--+C .()20y ax a =+>D .()220y ax ax c a =++> 2、下列关于x 的二次三项式在实数范围内不能够因式分解的是( )A .x 2﹣3x +2B .2x 2﹣2x +1C .2x 2﹣xy ﹣y 2D .x 2+3xy +y 2 3、某优秀毕业生向我校赠送1080本课外书,现用A 、B 两种不同型号的纸箱包装运送,单独使用B 型纸箱比单独使用A 型纸箱可少用6个;已知每个B 型纸箱比每个A 型纸箱可多装15本.若设每个A 型纸箱可以装书x 本,则根据题意列得方程为( )A .10801080615x x =+- B .10801080615x x =-- C .10801080615x x =-+ D .10801080615x x =++ 4、有理数a 、b 、c 、d 在数轴上对应的点的位置如图所示,则下列结论错误的是( )·线○封○密○外A .3d >B .0bc <C .0b d +>D .c a c a -+=5、如图,ABC 的三个顶点和它内部的点1P ,把ABC 分成3个互不重叠的小三角形;ABC 的三个顶点和它内部的点1P ,2P ,把ABC 分成5个互不重叠的小三角形;ABC 的三个顶点和它内部的点1P ,2P ,3P ,把ABC 分成7个互不重叠的小三角形;ABC 的三个顶点和它内部的点1P ,2P ,3P ,…,n P ,把ABC 分成( )个互不重叠的小三角形.A .2nB .21nC .21n -D .2(1)n +62272π中无理数有( ) A .4个 B .3个 C .2个 D .1个7、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm8、如图,已知菱形OABC 的顶点O (0,0),B (2,2),菱形的对角线的交于点D ;若将菱形OABC 绕点O 逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D 的坐标为( ) A .(1,1)B .(﹣1,﹣1)C .(-1,1)D .(1,﹣1)9、下列图形绕直线旋转一周,可以得到圆柱的是( )A .B .C .D . 10、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB 于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为( )A .50cmB .35cmC .25cmD .20cm 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) ·线○封○密○外1、计算:√2(√3+√2)= _______2、如图,在△AAA 中,AB 的垂直平分线交BC 于D ,AC 的中垂线交BC 于E ,∠AAA =20°,则∠AAA 的度数为________.3、如图,在边长1正网格中,A 、B 、C 都在格点上,AB 与CD 相交于点D ,则sin ∠ADC =_____.4、已知圆弧所在圆的半径为36cm .所对的圆心角为60°,则该弧的长度为______cm .5、若A 是方程A 2−A −3=0的一个实数根,则代数式(A 2−A )(A −3A +1)的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数y kx b =+的图象交反比例函数m y x =的图象于()2,4A -,(),1B a -两点.(1)求反比例函数与一次函数解析式.(2)连接,OA OB ,求OAB ∆的面积.(3)根据图象直接回答:当x 为何值时,一次函数的值大于反比例函数的值?2、计算:()()224223mn mn mn mn ---+. 34、对于平面直角坐标系xOy 中的任意一点(,)P x y ,给出如下定义:记a x y =+,b y =-,将点(,)M a b 与(,)N b a 称为点P 的一对“相伴点”.例如:点(2,3)P 的一对“相伴点”是点(5,3)-与(3,5)-. (1)点(4,1)Q -的一对“相伴点”的坐标是______与______; (2)若点(8,)A y 的一对“相伴点”重合,则y 的值为______; (3)若点B 的一个“相伴点”的坐标为(1,7)-,求点B 的坐标; (4)如图,直线l 经过点(0,3)-且平行于x 轴.若点C 是直线l 上的一个动点,点M 与N 是点C 的一对“相伴点”,在图中画出所有符合条件的点M ,N 组成的图形.5、计算:()()3211232⎛⎫⎡⎤----÷- ⎪⎣⎦⎝⎭. -参考答案- 一、单选题1、 B·线○封○密·○外【分析】先判断1,m m 221,n n 再结合一次函数,二次函数的增减性逐一判断即可.【详解】解:22221110,n n n n221,n n同理:1,m m∴ 当0m >时,y 随x 的增大而减小,由2y x b =+可得y 随x 的增大而增大,故A 不符合题意;22y x x c =--+的对称轴为:21,21x 图象开口向下,当1x >-时,y 随x 的增大而减小,故B 符合题意;由()20y ax a =+>可得y 随x 的增大而增大,故C 不符合题意;()220y ax ax c a =++>的对称轴为:21,2ax a 图象开口向上,1x ∴>-时,y 随x 的增大而增大,故D 不符合题意;故选B【点睛】本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.2、B【分析】利用十字乘法把选项A ,C 分解因式,可判断A ,C ,利用一元二次方程根的判别式计算的值,从而可判断B ,D ,从而可得答案.【详解】解:23212,x x x x 故A 不符合题意; 令22210,x x 2=242140, 所以2221x x -+在实数范围内不能够因式分解,故B 符合题意; 2222,x xy y x y x y 故C 不符合题意; 令2230,xxy y 22234150,y y y所以223x xy y ++在实数范围内能够因式分解,故D 不符合题意; 故选B 【点睛】 本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.3、C 【分析】 由每个B 型包装箱比每个A 型包装箱可多装15本课外书可得出每个B 型包装箱可以装书(x +15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x 的分式方程,此题得解. 【详解】 解:∵每个A 型包装箱可以装书x 本,每个B 型包装箱比每个A 型包装箱可多装15本课外书, ∴每个B 型包装箱可以装书(x +15)本. ·线○封○密○外依题意得:10801080615x x=-+ 故选:C .【点睛】 本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.4、C【分析】根据有理数a ,b ,c ,d 在数轴上对应的点的位置,逐个进行判断即可.【详解】解:由有理数a ,b ,c ,d 在数轴上对应的点的位置可得,-4<d <-3<-1<c <0<1<b <2<3<a <4, ∴3d >,0bc <,0b d +<,c a c c a c a -+=-++=,故选:C .【点睛】本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.5、B【分析】从前三个内部点可总结规律,即可得三角形内部有n 个点时有21n 个互不重叠的小三角形.【详解】由1P ,2P ,3P 三个内部点可总结出规律每增加一个内部点三角形内部增加两个小三角形,∴ABC 的三个顶点和它内部的点1P ,2P ,3P ,…,n P ,把ABC 分成21n 个互不重叠的小三角形.故选:B .【点睛】本题考查了图形类规律问题,图形规律就是根据所给出的图形的结构特特征,需要认真分析观察、分析、归纳,从图形所蕴含的数字信息总结出一般的数式规律,然后再应用规律做题.用代数式表示数字或图形的规律,有其自身的解题规律,掌握其正确的解题方法,这类题目将会迎刃而解. 6、B 【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】,是整数,属于有理数; 227是分数,属于有理数; 无理数有2 ,共3个. 故选:B . 【点睛】 此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 7、B 【分析】 根据中点的定义求出AE 和AD ,相减即可得到DE . 【详解】 ·线○封○密○外解:∵D 是线段AB 的中点,AB =6cm ,∴AD =BD =3cm ,∵E 是线段AC 的中点,AC =14cm ,∴AE =CE =7cm ,∴DE =AE -AD =7-3=4cm ,故选B .【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.8、B【分析】分别过点D 和点B 作DE x ⊥轴于点E ,作BF x ⊥轴于点F ,根据菱形的性质以及中位线的性质求得点D 的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D 坐标【详解】如图,分别过点D 和点B 作DE x ⊥轴于点E ,作BF x ⊥轴于点F ,∴DE BF ∥,∵四边形OABC 为菱形,∴点D 为OB 的中点,∴点E 为OF 的中点, ∴12DE BF =,12OE OF =, ∵(2,2)B , ∴(1,1)D ; 由题意知菱形OABC 绕点O 逆时针旋转度数为:45602700︒⨯=︒, ∴菱形OABC 绕点O 逆时针旋转27003607.5︒÷︒=周, ∴点D 绕点O 逆时针旋转7.5周, ∵(1,1)D , ∴旋转60秒时点D 的坐标为()1,1--. 故选B 【点睛】 根据菱形的性质及中点的坐标公式可得点D 坐标,再根据旋转的性质可得旋转后点D 的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键. 9、A 【分析】 根据面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,直角梯形绕直角边旋转是圆台,半圆案绕直径旋转是球,可得答案. 【详解】 解:A.旋转后可得圆柱,故符合题意; B. 旋转后可得球,故不符合题意; C. 旋转后可得圆锥,故不符合题意; D. 旋转后可得圆台,故不符合题意; ·线○封○密○外故选:A.【点睛】本题考查了面动成体的知识,熟记各种图形旋转得出的立体图形是解题关键.10、C【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.AB=20cm,Rt△OBC中,BC=12根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二、填空题1、√6+2##【分析】根据二次根式的加减乘除运算法则逐个运算即可. 【详解】解:原式=√2(√3+√2)=√6+2,故答案为:√6+2.【点睛】本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可.2、100°【分析】根据线段的垂直平分线的性质得到AA =AA ,AA =AA ,得到∠A=∠AAA 和∠A =∠AAA ,根据三角形内角和定理计算得到答案.【详解】解:∵AA 是线段AA 的垂直平分线,∴AA =AA ,∴∠A =∠AAA ,·线○封○密·○外同理∠A =∠AAA ,180B DAB C EAC DAE ∠+∠+∠+∠+∠=︒,80DAB EAC ∴∠+∠=︒,∴∠AAA =100°,故答案是:100°.【点睛】本题考查的是线段的垂直平分线的性质和三角形内角和定理,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.3、25√5##【分析】将∠AAA 转化成其他相等的角,在直角三角形中,利用正弦函数值的定义求解即可.【详解】解:延长CD 交正方形的另一个顶点为A ,连接BE ,如下图所示:由题意可知:∠AAA =90°,∠AAA =∠AAA ,根据正方形小格的边长及勾股定理可得:AA =2√2,AA =√10,∴在RtBDE 中,sin BE BDE BD ∠==sin sin ADC BDE ∴∠=∠=故答案为:25√5.【点睛】本题主要是考查了勾股定理和求解正弦值,熟练地找到所求角在的直角三角形,利用正弦函数值的定义进行求解,这是解决该题的关键.4、12A【分析】根据弧长公式直接计算即可.【详解】∵圆的半径为36cm.所对的圆心角为60°,∴弧的长度为:AAA180=60×A×36180=12π,故答案为:12π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.5、6【分析】根据一元二次方程解的意义将m代入求出A2−A=3,进而将方程两边同时除以m进而得出答案.【详解】解:∵A是方程A2−A−3=0的一个实数根,∴A2−A=3,∴A−1−3A=0,∴A−3A =1,·线○封○密○外∵(A2−A)(A−3A+1)=3×(1+1)32=⨯=6;故答案为:6.【点睛】本题考查了一元二次方程的解的应用,能理解一元二次方程的解的定义是解此题的关键.三、解答题1、(1)8yx=-,152y x=-;(2)15;(3)0<x<2或x>8.【分析】(1)先把点A的坐标代入myx=,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;(3)观察函数图象即可求得.(1)解:把A(2,-4)的坐标代入myx=得:m=-8,∴反比例函数的解析式是8yx=-;把B (a ,-1)的坐标代入8y x =-得:-1=8a -, 解得:a =8,∴B 点坐标为(8,-1),把A (2,-4)、B (8,-1)的坐标代入y =kx +b ,得:2481k b k b +=-⎧⎨+=-⎩, 解得:125k b ⎧=⎪⎨⎪=-⎩ , ∴一次函数解析式为152y x =-; (2) 解:设直线AB 交x 轴于C . ∵152y x =-, ∴当y =0时,x =10, ∴OC =10, ∴△AOB 的面积=△AOC 的面积-三角形BOC 的面积 =111041011522⨯⨯-⨯⨯=; (3) 解:由图象知,当0<x <2或x >8时,一次函数的值大于反比例函数的值. 【点睛】 本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B 的坐标是解题的关键. 2、2146mn mn ﹣ ·线○封○密○外【分析】去括号合并同类项即可.【详解】解:原式22=+﹣8-462mn mn mn mn2=﹣.mn mn146【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.3、【分析】先将二次根式化简,再去括号、合并即可.【详解】===【点睛】本题主要考查了二次根式的加减运算,注意二次根式的加减法实质是合并同类二次根式.4、(1)(1,3),(3,1)(2)-4(3)(6,7)B -或(6,1)(4)见解析【分析】(1)根据相伴点的含义可得4(1)3a =+-=,(1)1b --=,从而可得答案;(2)根据相伴点的含义可得8y y +=-,再解方程可得答案; (3)由点B 的一个“相伴点”的坐标为(1,7)-,则另一个的坐标为7,1, 设点(,)B x y ,再根据相伴点的含义列方程组,再解方程组即可; (4)设点(,3)C m -,可得3a m =-,3b =,可得点C 的一对“相伴点”的坐标是(3,3)M m -与(3,3)N m -,再画出,M N 所在的直线即可. (1) 解:(4,1)Q -, 4(1)3a ∴=+-=,(1)1b --=, ∴点(4,1)Q -的一对“相伴点”的坐标是(1,3)与(3,1), 故答案为:(1,3),(3,1); (2) 解:点(8,)A y , 8a y ∴=+,b y =-, ∴点(8,)A y 的一对“相伴点”的坐标是(8,)y y +-和(,8)y y -+, 点(8,)A y 的一对“相伴点”重合, 8y y ∴+=-, 4y ∴=-, 故答案为:4-; (3)·线○封○密○外解:设点(,)B x y ,点B 的一个“相伴点”的坐标为(1,7)-,则另一个的坐标为7,1, ∴17x y y +=-⎧⎨-=⎩或17y x y -=-⎧⎨+=⎩, ∴67x y =⎧⎨=-⎩或61x y =⎧⎨=⎩, (6,7)B ∴-或(6,1);(4)解:设点(,3)C m -,3a m ∴=-,3b =,∴点C 的一对“相伴点”的坐标是(3,3)M m -与(3,3)N m -,当点C 的一个“相伴点”的坐标是(3,3)M m -,∴点M 在直线:3m y =上,当点C 的一个“相伴点”的坐标是(3,3)N m -,∴点N 在直线:3n x =上,即点M ,N 组成的图形是两条互相垂直的直线m 与直线n ,如图所示,【点睛】本题考查的是新定义情境下的坐标与图形,平行线于坐标轴的直线的特点,二元一次方程组的应用,理解新定义再进行计算或利用新定义得到方程组与图形是解本题的关键. 5、15- 【详解】解:原式()11292⎛⎫=---÷- ⎪⎝⎭ 1172⎛⎫ ⎪⎝=-+÷⎭- 114=-- 15=-. 【点睛】 本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行. ·线○封○密○外。

广东省清远市2010年中考数学试卷(含答案)

广东省清远市2010年中考数学试卷(含答案)

2010年清远市初中毕业生学业考试数学试题一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上。

1.计算:0-12=( ) A.12 B. -2 C.-12D. 2 【答案】 C2.地球上的海洋面积约为361000000千米2,将361000000这个数用科学计数法表示为( )A. 3.61×108 B 3.61×107 C. 361×107 D.0.361 ×109 【答案】 A3.如图1,在数轴上点A 表示( )A. -2B. 2C. ±2D. 0【答案】 A4.下列各图中,∠1=∠2的是( )【答案】D 5.函数y =41x 中,自变量x 的取值范围是( ) A.x ≠0 B.x ≥-1 C. x ≠-1 D. x ≤-1 【答案】C6.(2010广东清远,6,3分)下列各点中,在反比例函数y =4x的图象上的是( ) A .(-1,4) B .(1,-4) C .(1,4) D .(2,3) 【答案】C 7.(2010广东清远,7,3分)三视图都是一样的几何体是( )A .球、圆柱B .球、正方体C .正方体、圆柱D .正方体、圆锥 【答案】B 8.(2010广东清远,8,3分)若⊙O 1的半径为2cm ,⊙O 2的半径为3cm ,圆心距O 1O 2的长是5cm ,则⊙O 1与⊙O 2的位置关系为( ) A .外离 B .外切 C .相交 D .内切 【答案】B9.(2010广东清远,9,3分)等腰三角形的底角为40°,则这个等腰三角形的顶角为( )A .40°B .80°C .100°D .100°或40° 【答案】C 10.(2010广东清远,10,3分)如图2,在ABCD 中,已知∠ODA =90°,AC =10cm ,BD =6cm ,则AD 的长为( ) A .4cm B .5cm C .6cm D .8cm【答案】A二、填空题(每小题3分,共18分) 11.25的平方根是 .【答案】±512. 计算:a 8÷a 2= . 【答案】a 613. 从围棋盒里抓一打把棋子,所抓出棋子的个数是偶数的概率是 . 【答案】0.514.如图3,DE 是△ABC 的中位线,若△ADE 的周长是18,则△ABC 的周长是 .解:DE 是△ABC 的中位线,所以BC=2DE ,AB=2AD ,AC=2AE ,由于△ADE 的周长是18,即AD+DE+EA=18,所以AB+BC+CA=2(AD+DE+EA )=36.15.方程2x(x-3)=0的解是 .解:2x(x-3)=0,所以x(x-3)=0,所以x=0,或者x-3=0,即x 1=0,x 2=3。

2022年广东清远中考数学真题及答案

2022年广东清远中考数学真题及答案

2022年广东清远中考数学真题及答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|2|-=()A.﹣2 B.2 C.12-D.122.计算22()A.1 B.2C.2 D.4 3.下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.如题4图,直线a//b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.如题5图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14B.12C.1 D.26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.14B.13C.12D.238.如题8图,在▱ABCD中,一定正确的是()A .AD=CDB .AC=BDC .AB=CD D .CD=BC9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A .1yB .2yC .3yD .4y10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( )A .2是变量B .π是变量C .r 是变量D .C 是常量参考答案: 题号 1 2 3 4 5 6 7 8 9 10 答案 BDABDABCDC二、填空题:本大题共5小题,每小题3分,共15分. 11.sin 30°=____________.12.单项式3xy 的系数为____________.13.菱形的边长为5,则它的周长为____________. 14.若x =1是方程220x x a -+=的根,则a =____________.15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________. 参考答案: 题号 11 12 13 14 15答案 123201π三、解答题(二):本大题共3小题,每小题8分,共24分 16.解不等式组:32113x x ->⎧⎨+<⎩参考答案:32113x x ->⎧⎨+<⎩①② 由①得:1x > 由②得:2x <∴不等式组的解集:12x <<17.先化简,再求值:211a a a -+-,其中a =5.参考答案:原式=(1)(1)1211a a a a a a a -++=++=+-将a =5代入得,2111a +=18.如题18图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:△OPD ≌△OPE . 参考答案:证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中 PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨== ∴△OPD ≌△OPE (AAS )四、解答题(二):本大题共3小题,每小题9分,共27分.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少? 参考答案:设学生人数为x 人8374x x -=+7x =则该书单价是8353x -=(元)答:学生人数是7人,该书单价是53元.20.物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足看数关系y =kx +15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5 y151925(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量. 参考答案:(1)将2x =和19y =代入y =kx +15得19=2k +15解得:2k =∴y 与x 的函数关系式:y =2x +15 (2)将20y =代入y =2x +15得20=2x +15解得: 2.5x =∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg .21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445378210318715x +⨯+⨯++⨯+⨯+==(万元)∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如题22图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,∠ADB =∠CDB . (1)试判断△ABC 的形状,并给出证明; (2)若2AB =,AD =1,求CD 的长度.参考答案:(1)△ABC 是等腰直角三角形,理由如下:∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90°∴△ABC 是等腰直角三角形 (2)在Rt △ABC 中222AC AB BC =+可得:2AC = ∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中 222AC AD DC =+可得:3DC = ∴CD 的长度是323.如题23图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A (1,0),AB =4,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q . (1)求该抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标. 参考答案:(1)∵A (1,0),AB =4∴结合图象点B 坐标是(﹣3,0)将(1,0),(﹣3,0)代入2y x bx c =++得 01093b c b c =++⎧⎨=-+⎩解得:23b c =⎧⎨=-⎩ ∴该抛物线的解析式:223y x x =+- (2)设点P 为(,0)m∵点C 是顶点坐标∴将1x =-代入223y x x =+-得4y =- ∴点C 的坐标是(1,4)--将点(1,4)--,(1,0)代入y kx b =+得 04k b k b =+⎧⎨-=-+⎩解得:22k b =⎧⎨=-⎩ ∴AC 解析式:22y x =-将点(1,4)--,(﹣3,0)代入y kx b =+得034k b k b =-+⎧⎨-=-+⎩解得:26k b =-⎧⎨=-⎩ ∴BC 解析式:26y x =-- ∵PQ //BC∴PQ 解析式:22y x m =-+ 2222y x m y x =-+⎧⎨=-⎩解得:121m x y m +⎧=⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2mm +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△11144(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△21322CPQ S m m =--+△21(1)22CPQ S m =-++△当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)。

广东省清远市中考数学试卷及答案

广东省清远市中考数学试卷及答案

2009年清远市初中毕业生学业考试数学科试题说明:1.全卷共4页,考试时间为100分钟,满分120分.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指字区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域. 不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的清洁,考试结束后,将本试卷和答题卡一半交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上.1. —5等于()A . 5 B. -5 C. -1 D.-5 52 .不等式X-2 < 0的解集在数轴上表示正确的是()-3 -2 -1 0 1 2 3C.3.今年我国参加高考人数约为10200000,将10200000用科学记数法表示为2, 2 A. a b2 3B. a b2」6C. a bA. 10.2勺07 B • 1.02W07 C. 0.102X107 D. 102X1074 .某物体的三视图如图1所示,那么该物体形状可能是(A.圆柱B.球C.正方体D.长方体5.小明记录某社区七次参加“防甲型33, 32, 32, 31, 32, 28, A .26.6.28 C. 32H1N1流感活动”的人数分别如下:这组数据的众数是()D. 33方程X2 =16的解是(A .7 .已知OO的半径r ,圆心是(A.相交C. X = -4D. X=16O到直线l的距离为d ,当d = r时,直线l与OO的位置关系8.计算:B.相切3 2(ab3)=(C.相离D.以上都不对-3 ^2 -1 0 1 2 3A. _3 -2-10 1 2 3B.I J I I u u I-3 -2-10 1 2 3D.9.如图 2, AB // CD , A . 20° B. 60° EF_LAB 于 E, EF 交 CD 于 F ,已知 4 = 60°,则』2=()C. 30°D.45图2 图310.如图3, AB 是CDO 的直径,弦 则 tan£COE=( A . 3 B. 4 5 5 、填空题(本大题共 应题号的答题卡上. CD_LAB 于点 E,连结 OC ,若 OC=5, CD =8, 八 3C,— 4 6小题,每小题 D. 4 3 3分,共18分)请把下列各题的正确答案填写在相 11 .计算:3乂(-2)= 12.当 X = 时,分式 x —2 1 …、——无意义. k 13.已知反比例函数 y=-的图象经过点(2,3),则此函数的关系式是 14 .如果a 与5互为相反数,那么 a=. 15.如图4所示,转盘平面被等分成四个扇形,并分别填上红、黄两种颜色,自由转动这个 转盘,当它停止转动时,指针停在黄色区域的概率为 05NB4)。

清远中考数学试题及答案

清远中考数学试题及答案

清远中考数学试题及答案一、选择题:1. 若函数f(x)在区间[0,5]上连续,则f(x)=|x-3|的最小值是()A. 0B. 1C. 2D. 32. 三个有理数x,y,z满足x<y<z,若x、y、z能被7整除,则x、y、z的最小值是()A. -5B. 0C. 1D. 23. 已知函数f(x)=3x^2+2x+1,则f(-1)+f(1)=()A. 2B. 4C. 6D. 84. 二次函数y=(-x+4)(x+a)的图象与x轴交于点(-3,0)和(1,0),则a的值为()A. 6B. -6C. -2D. 25. 已知等差数列{an}的前n项和为Sn=n(2n+1),则a1的值为()A. 1B. 3C. 5D. 7二、填空题:1. 设函数f(x)=ax^2+bx+c的图像经过点(1,1),则a+b+c=()。

2. 若正方形ABCD的边长为2a,则对角线AC的长为()。

3. 将20元纸币兑换成1元、5元和10元三种零钱,其中1元纸币4张,10元纸币2张,剩下的都是5元纸币,那么共有()张5元纸币。

4. 解方程|x-3|=7的解集为()。

5. 若a:b=3:5,b:c=4:7,c:d=9:7,则a:b:c:d=()。

三、解答题:1. 用有理数表示根号12的最简形式。

2. 某商品原价800元,现在打折6折出售。

小明购买该商品需要支付的金额是多少?3. 解方程组:{2x-y=3{3x+y=44. 某数乘以它的倒数等于1,这个数是多少?5. 在△ABC中,∠B=60°,AB=8,AC=4,则BC的长度为多少?答案:一、选择题:1. B 2. D 3. C 4. B 5. A二、填空题:1. -1 2. 2a√2 3. 3 4. {-4, 10} 5. 27:45:28:35三、解答题:1. 2√32. 480元3. {x=2, y=1}4. 15. 4以上为清远中考数学试题及答案,供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C图2广东省清远市2011年初中毕业生学业考试数学科试题一、选择题(本大题共10小题,每小题3分,共30分) 1.(11·清远)—3的倒数是 A .3 B .—3C .13D .— 13【答案】D2.(11·清远)数据2、2、3、4、3、1、3的众数是 A .1 B .2C .3D .4【答案】C3.(11·清远)图1中几何体的主视图是【答案】C4.(11·清远)据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为 A .0.68×109 B .6.8×108C .6.8×107D .68×107【答案】B5.(11·清远)下列选项中,与xy 2是同类项的是 A .—2xy 2 B .2x 2yC .xyD .x 2y 2【答案】A6.(11·清远)已知∠α=35°,则∠α的余角是 A .35° B .55°C .65°D .145°【答案】B7.(11·清远)不等式x —1>2的解集是 A .x >1 B .x >2C .x >3D .x <3【答案】C8.(11·清远)如图2,点A 、B 、C 在⊙O 上,若∠BAC =20º,则∠BOC 的度数为 A .20º B .30ºC .40ºD .70º【答案】C9.(11·清远)一次函数y =x +2的图象大致是B . A .C .D .【答案】A10.(11·清远)如图3,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是 A .AB =CDB .AD =BC C .AB =BCD .AC =BD【答案】C二、填空题(本大题共6小题,每小题3分,共18分) 11.(11·清远)计算:2x 2·5x 3= _ ▲ .【答案】10x 712.(11·清远)分解因式:2x 2-6x =_ ▲ .【答案】2x (x -3)13.(11·清远)反比例函数y =k x的图象经过点P(-2,3),则k 的值为 _ ▲ .【答案】y =- 6x14.(11·清远)已知扇形的圆心角为60°,半径为6,则扇形的弧长为_ ▲ .(结果保留π)【答案】2π15.(11·清远)为了甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为S 2甲=18,S 2乙=12,S 2丙=23.根据统计结果,应派去参加竞赛的同学是 _ ▲ .(填“甲”、乙、“丙”中的一个) 【答案】(填)16.(11·清远)如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为 _ ▲ .B图4B图3【答案】三、解答题(本大题共5小题,每小题6分,共30分) 17.(11·清远)计算:9+2cos60º+(12)-1-20110.【答案】原式=3+1+2-1=5 18.(11·清远)解方程:x 2-4x -1=o .【答案】【答案】方法一:由原方程,得(x -2)2=5 x +2=± 5∴x =-2± 5方法一:△=20,x =-4±202∴x =-2± 519.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位.(1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.【答案】20.(11·清远)先化简、再求值:(1-1x +1)÷xx 2-1,其中x =2+1.【答案】原式=(x +1x +1-1x +1)÷x x 2-1=x x +1×x 2-1x =xx +1×(x -1)( x +1)x =x -121.(11·清远)如图6,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC 为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间?(结果精确到0.1).(参考数据:sin28º=0.46,cos28º=0.87,tan28º=0.53)【答案】在Rt △ABC 中,BC =24,∠A =28º,AB =BC ÷sin ∠A =24÷0.46≈52.18 ∴小明从山脚爬上山顶需要时间=52.183÷3≈17.4 (秒) 答:小明从山脚爬上山顶需要17.4秒四、解答题(本大题共3小题,每小题8分,共24分)22.(11·清远)如图2,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,D 为⊙O 上一点,AD 与OC 相交于点E ,且∠DAB =∠C . (1)求证:OC ∥BD ;(2)若AO =5,AD =8,求线段CE 的长.A 图6C【答案】(1)∵AB 是⊙O 的直径,∴∠ADB =90º,∵AC 与⊙O 相切,∴∠CAB =90º, ∵∠DAB =∠C ∴∠AOC =∠B ∴OC ∥BD(2)∵AO =5,∴AB =10,又∵AD =8,∴BD =6 ∵O 为AB 的中点,OC ∥BD , ∴OE =3,∵∠DAB =∠C ,∠AOC =∠B ∴△AOC ∽△DBA∴CO AB =AO DB ∴CO 10=56 ∴CO =253∴CE =CO -OE =253-3=16323.(11·清远)在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余相同),其中黄球有1个,从袋中任意摸出一个球是黄球的概率为13.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画状图的方法求两次都摸到黄球的概率.【答案】(1)1÷13=3(个)∴白球的个数=3-1=2(2)列表如下:黄 白1 白2 黄 (黄,黄) (黄,白1) (黄,白2) 白1 (白1,黄) (白1,白1) 白1,白2) 白2(白2,黄)(白2,白1)(白2,白2)∴共有16种不同的情况,两次都摸出黄球只有一种情况, 故两次都摸到黄于的概率是1924.(11·清远)如图8,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE .图7(1)求证:AB =DF ;(2)若AD =10,AB =6,求tan ∠EDF 的值.【答案】(1)在矩形ABCD 中,AD ∥BC ,AD =BC ,∠ABE =90º ∴∠DAE =∠AEB , 又∵AE =BC ∴AE =AD ∵DF ⊥AE ∠AFD =90º ∴∠AFD =∠ABE∴△ABE ≌△DF A ∴AB =DF(2)∵△ABE ≌△DF A ∴AB =DF =6 AE =AD =10在Rt △ADF 中,AD =10 DF =6 ∴AF =8 ∴EF =2 在Rt △DFE 中,tan ∠EDF =EF DF =13五、解答题(本大题共2小题,每小题9分,共18分)25.(11·清远)某电器城经销A 型号彩电,今年四月份每台彩电售价为2000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元. (1)问去年四月份每台A 型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B 型号彩电.已知A 型号彩电每台进货价为1800元,B 型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A 型号彩电继续以原价每台2000元的价格出售,B 型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获得最大?最大利润是多少?【答案】(1)设去年四月份每台A 型号彩电售价是x 元50000x =400002000∴x =2500 经检验x =2500 满足题意答:去年四月份每台A 型号彩电售价是2500元≤≥ (2)设购进A 型号彩电y 台,则购进B 型号彩电(20-y )台B图8E根据题意可得:⎩⎨⎧1800y +1500(20-y )≥320001800y +1500(20-y )≤33000解得203≤y ≤10∵y 是整数∴y 可取的值为7,8,9,10共有以下四种方案:购进A 型号彩电7台,则购进B 型号彩电13台 购进A 型号彩电8台,则购进B 型号彩电12台 购进A 型号彩电9台,则购进B 型号彩电11台 购进A 型号彩电10台,则购进B 型号彩电10台 (3)设利润为W 元,则W =(2000-1800) y +(1800-1500) (20-y )=6000-100 y ∵W 随y 的增大而减小 ∴y 取最小值7时利润最大 W =6000-100 y =6000-100×7=5300(元)购进A 型号彩电7台,则购进B 型号彩电13台时,利润最大,最大利润是5300元26.(11·清远)如图9,抛物线y =(x +1)2+k 与x 轴交于A 、B 两点,与y 轴交于点C (0,-3).(1)求抛物线的对称轴及k 的值;(2)抛物线的对称轴上存在一点P ,使得P A +PC 的值最小,求此时点P 的坐标; (3)点M 是抛物线上一动点,且在第三象限.① 当M 点运动到何处时,△AMB 的面积最大?求出△AMB 的最大面积及此时点M 的坐标;② 当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标.【答案】(1)抛物线的对称轴为直线x =-1,把C (0,-3)代入y =(x +1)2+k 得 -3=1+k ∴k =-4 (2)连结AC ,交对称轴于点P∵y =(x +1)2-4 令y =0 可得(x +1)2-4=0∴x 1=1 x 2=-3 ∴A (-3,0) B (1,0)设直线AC 的关系式为:y =m x +b把A (-3,0),C (0,-3)代入y =m x +b 得, -3m +b =0 b =-3 ∴m =-1 ∴线AC 的关系式为y =-x -3 当x =-1时,y =1-3=-2 ∴P (-1,-2)② 当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标.(3)① 设M 的坐标为(x , (x +1)2-4)∴S △AMB =12×AB ×|y m |=12×4×[4-(x +1)2]=8-2(x +1)2当x =-1时,S 最大,最大值为S =8 M 的坐标为(-1,-4)② 过M 作x 轴的垂线交于点E ,连接OM , S四边形AMCB =S △AMO +S △CMO +S △CBO =12×AB ×|y m |+12×CO ×|x m |+12×OC ×BO=6-32 (x +1)2+12×3×(-x )+12×3×1=-32x 2-92 x +6=-32(x 2+3x -9)=-32(x +32)2-818当x =-32 时,S 最大,最大值为818。

相关文档
最新文档