电工第4章正弦交流电路
合集下载
电工基础 第4章正弦交流电

1.瞬时值、最大值和有效值 .瞬时值、 把任意时刻正弦交流电的数值称为瞬时值,用小写字母表示,如i、u及e 表示电流、电压及电动势的瞬时值。瞬时值有正、有负,也可能为零。 最大的瞬时值称为最大值(也叫幅值、峰值)。用带下标的小写字母表 示。如Im、Um及Em分别表示电流、电压及电动势的最大值。 正弦量的有效植: Im Um Em I= U = E= 2 2 2 例4.1 已知某交流电压为V,这个交流电压的最大值和有效值分别为多少? 解:最大值 有效值
u = U m sin(ωt + u )
i = I m sin(ωt + i )
4.1.2正弦交流电的基本特征和三要素 . . 正弦交流电的基本特征和三要素
两个同频率正弦量的相位角之 差或初相位角之差,称为相位 相位 差,用 表示。 图4.3中电压u和电流i的相位差 为
= (ωt + u ) (ωt + i ) = u i
第4章 正弦交流电路 章
4.1交流电路中的基本物理量 . 交流电路中的基本物理量 4.2正弦量的相量表示 4.3电路基本定律的相量形式 4.4 电阻、电感、电容电路 4.5 谐振电路 . 4.6正弦交流电路中的功率 . 正弦交流电路中的功率
第4章 正弦交流电路 章
4.1交流电路中的基本物理量 . 交流电路中的基本物理量
U m = 220 2V = 311.1V
U= U m 220 2 = V = 220V 2 2
4.1.2正弦交流电的基本特征和三要素 . . 正弦交流电的基本特征和三要素
2.频率与周期 . 正弦量变化一次所需的时间(秒)称为周期T,如图4.2所示。每秒内变化 的次数称为频率f,它的单位是赫兹(Hz)。 频率是周期的倒数,即
u = U m sin(ωt + u )
i = I m sin(ωt + i )
4.1.2正弦交流电的基本特征和三要素 . . 正弦交流电的基本特征和三要素
两个同频率正弦量的相位角之 差或初相位角之差,称为相位 相位 差,用 表示。 图4.3中电压u和电流i的相位差 为
= (ωt + u ) (ωt + i ) = u i
第4章 正弦交流电路 章
4.1交流电路中的基本物理量 . 交流电路中的基本物理量 4.2正弦量的相量表示 4.3电路基本定律的相量形式 4.4 电阻、电感、电容电路 4.5 谐振电路 . 4.6正弦交流电路中的功率 . 正弦交流电路中的功率
第4章 正弦交流电路 章
4.1交流电路中的基本物理量 . 交流电路中的基本物理量
U m = 220 2V = 311.1V
U= U m 220 2 = V = 220V 2 2
4.1.2正弦交流电的基本特征和三要素 . . 正弦交流电的基本特征和三要素
2.频率与周期 . 正弦量变化一次所需的时间(秒)称为周期T,如图4.2所示。每秒内变化 的次数称为频率f,它的单位是赫兹(Hz)。 频率是周期的倒数,即
《电工技术基础与技能》教学课件—第4章 单相交流电路

nu
4.1单相正弦交流电的认识
2.正弦交流电的产生
交流发电机模型
oc
4.1单相正弦交流电的认识
正弦交流电的波形图
正弦交流电的波形图 正弦交流电的解析式
伽 e
=
E m
sin
+ %)
4.1单相正弦交流电的认识
3.正弦交流电的三要素 正弦交流电包含三个要素:最大值(或有效值)、周期
(或频率、角频率)和初相位。
4.3.3 RLC串联电路 1.RLC串联电路中电压间关系
X <X
C
L
2.RLC串联电路的阻抗
』 Z| = U = JRR + (XL - XQ2 = R2 + X2
3.RLC串联电路的功率
RLC串联电路 RLC串联电路功率三角形
• 4.4.1电能的测量
电能做功所消耗电能的多少可以用电功来度量。电 功的计算公式为:W = Ult = Pt
nu
4.1单相正弦交流电的认识
• 4.1.2旋转矢量表示法 1.旋转矢量表示法
旋转矢量图表示法
正弦交流电的旋转矢量表示法
♦只有同频率正弦量的矢量才能画在同一个矢量图中。 ♦旋转矢量的加、减运算可以按平行四边形法则进行。
oc
4.1单相正弦交流电的认识
2.同频率正弦交流电相加的矢量运算
同频率的正弦交流量相加,其和仍为同频率正弦交流量。 它们的运算可以按平行四边形法则进行。步骤为: •(1)作基准线x轴(基准线通常省略不画),确定比例单位; •(2)作出正弦交流电相对应的旋转矢量; •(3)根据矢量的平行四边形法则作图; •(4)根据得到的和矢量的长度及和矢量与x轴的夹角就是所 得正弦量的最大值(或有效值)和初相角D0;写出表达式。
《电工学》(秦曾煌主编第六版)第四章__正弦交流电路(完整版)

∴
,
,
, 4.5.8 解 求图 4.15 所示电路的阻抗 Zab。 对图 4.15(a)所示电路
对图 4.15(b)所示电路 ,
4.5.9 解
求图 4.16 两图中的电流 。
用分流比法求解。
对图 4.16(a)所示电路
对图 3.18(b)所示电路
4.5.10 解
计算上题中理想电流源两端的电压。
对图 4.16(a)所示电路
线圈电感 43.3 H,试求线圈电流及功率因数。 解
, 4.4.5 日光灯管与镇流器串联接到交流电压上,可看作为
1=280Ω
, 串联电路。
2=20Ω
如已知某灯管的等效电阻 =1.65H,电源电压
,镇流器的电阻和电感分别为
和
=220V,试求电路中的电流和灯管两端与镇流器上的电压。
这两个电压加起来是否等于 220V?电源频率为 50HZ。 解 日光灯电路的等效电路见图 T4.4.5。
根据题意画出等效电路图 T4.4.2
4.4.3
一个线圈接在
=120V 的直流电源上, =20A;若接在 f=50HZ, 及电感 。
=220V 的交流电源上,则 =28.2A。试求线圈的电阻 解 线圈加直流电源,电感 看作短路,电阻
。 。
线圈加交流电源,等效阻抗 感抗 ∴
4.4.4
有一 JZ7 型中间继电器,其线圈数据为 380V 50HZ,线圈电阻 2KΩ ,
,试求电容值。同上题比较,u2
画出相量图 T4.4.9 ,由相量图知 u2 滞后 u1
, u1 滞后 i
。
4.4.10
图 4.07 所示的是桥式移相电路。当改变电阻
时,可改变控制电
压 ug 与电源电压 u 之间的相位差 ,但电压 ug 的有效值是不变的,试证明之。 图中的 Tr 是一变压器。 证 ,设 ,则
第4章 正弦交流电

i = I m sin(ωt + ϕ i )
u、 i
0
t
3
正弦交流电路分析中仍然使用参考方向, 正弦交流电路分析中仍然使用参考方向,当实际方向 与参考方向一致时,正弦量大于零;反之小于零。 与参考方向一致时,正弦量大于零;反之小于零。
i
u
R
i
实际方向和参考方向一致
t
实际方向和参考方向相反
用小写字母表 示交流瞬时值
ωt
22
3.相量表示法 3.相量表示法
一个正弦量的瞬时值可以用一个旋转矢量 旋转矢量在纵轴上 概念 :一个正弦量的瞬时值可以用一个旋转矢量在纵轴上 的投影值来表示。 投影值来表示。 来表示
u = U m sin (ω t + ϕ )
Um
ωϕ
ϕ
矢量长度 =
ωt
Um
矢量与横轴夹角 = 初相位
在t = 0时刻,矢量以角速度ω按逆时针方向旋转
19
复数的加减可以在复平面上用平行四边形来进行。 复数的加减可以在复平面上用平行四边形来进行。前 面例题的相量图见下面左图,右图是另一种画法。 面例题的相量图见下面左图,右图是另一种画法。右图的 画法更为简捷,当有多个相量相加减时会显得很方便。 画法更为简捷,当有多个相量相加减时会显得很方便。 +j A1+ A2 A1+ A2 A2 A1 O +1 O A1 +1 A2
= r (cos ϕ + j sin ϕ )
复数的指数形式 复数的指数形式: 指数形式: 复数的极坐标形式 复数的极坐标形式: 极坐标形式:
A = re
jϕ
A = r∠ϕ
实部相等、虚部大小相等而异号的两个复数叫做共轭复数。用 实部相等、虚部大小相等而异号的两个复数叫做共轭复数 共轭复数。 A*表示A的共轭复数,则有 表示A的共轭复数, A=a+jb +jb A*=a-jb
《电工技术基础与仿真(Multisim 10)》项目4单相正弦交流电路分析

p
ui
Im
sin tU m
sin(t
2
)
U m I m cos t sin t
UI sin 2t
在电感元件的交流电路中,没有任何能量消耗,只 有电源与电感元件之间的能量交换,其能量交换的 规模用无功功率Q来衡量,它的大小等于瞬时功率 的幅值。
QL UI I 2 X L
4.2.3 纯电容电路
将开关K1闭合,K2和K3断开,分别按给定的频 率值调节信号源的频率,每次在信号发生器中设 置好频率后,打开仿真开关,双击万用表符号, 得到测量数据,
任务3 相量法分析正弦交流电路
4.3.1 RLC串联电路 1.RLC串联电路电压电流关系 (1)瞬时关系 由于电路是串联的,所以流过R、L、C三元
件的电流完全相同
1 Z1
1 Z2
(2)复阻抗并联的分流关系
I1
U Z1
I
Z Z1
I
Z2 Z1 Z2
U
I2
I Z1 Z1 Z2
I I1 I2 Z1 Z2
a)
I
U
Z
b)
4.3.3 功率因数的提高
1.提高功率因数的意义 功率因数愈大,所损耗的功率也就愈小,
输电效率也就愈高。 负载的功率因数 愈高,发电机可提供的有
1.电压与电流的关系 线性电容元件在图所示的关联方向的条件下
iC
C duc dt
i +
u
C
_
i C duc dt
C dUm sin t
dt
U mC cost
U
mC
s
in(t
2
)
据此,可得出电容元件电压与电流关系的结论:
电工学 秦曾煌第七版 第四章

(4-38)
正误判断
u 1s 0 i0 tn × U
瞬时值
复数
U 5e j1 0 × 552 0 sit n 1 ) (5
复数
瞬时值
(4-39)
正误判断
已知: i1s0i nt(45 )
j45
× 则: I 10 45 2 有效值
× Im10e45
已知: u21s0i(n t15) -j15
(4-11)
§4.1.3 正弦波特征量之三 —— 初相位
i2Isi nt
(t ):正弦波的相位角或相位。
: t = 0 时的相位,称为初相位或初相角。
i
t
说明: 给出了观察正弦波的起点或参考点,
常用于描述多个正弦波相互间的关系。
(4-12)
两个同频率正弦量间的相位差( 初相差)
i1 i2
t
1 2
设: U1 U11 U2 U22
则:
U1 U2
U1 U2
(1 2)
例 : U 1 9 3 , U 2 0 3 7 , U U 0 1 / U 2 3 4
(4-30)
# 计算器上的复数运算操作
代数式→极坐标形式
-3+j4 = 5 /126.9°
3 +/- a 4 b 2nd →rθ
i1 Im1sint1 i2 Im2sint2
t 2 t 1 2 1 (4-13)
两种正弦信号的相位关系
相
i2
位
超
前 1 2
i1 120
t
i i 超前于
1
2
相 位
i1
滞 后
2 1
i2
120
t
i i 滞后于
正误判断
u 1s 0 i0 tn × U
瞬时值
复数
U 5e j1 0 × 552 0 sit n 1 ) (5
复数
瞬时值
(4-39)
正误判断
已知: i1s0i nt(45 )
j45
× 则: I 10 45 2 有效值
× Im10e45
已知: u21s0i(n t15) -j15
(4-11)
§4.1.3 正弦波特征量之三 —— 初相位
i2Isi nt
(t ):正弦波的相位角或相位。
: t = 0 时的相位,称为初相位或初相角。
i
t
说明: 给出了观察正弦波的起点或参考点,
常用于描述多个正弦波相互间的关系。
(4-12)
两个同频率正弦量间的相位差( 初相差)
i1 i2
t
1 2
设: U1 U11 U2 U22
则:
U1 U2
U1 U2
(1 2)
例 : U 1 9 3 , U 2 0 3 7 , U U 0 1 / U 2 3 4
(4-30)
# 计算器上的复数运算操作
代数式→极坐标形式
-3+j4 = 5 /126.9°
3 +/- a 4 b 2nd →rθ
i1 Im1sint1 i2 Im2sint2
t 2 t 1 2 1 (4-13)
两种正弦信号的相位关系
相
i2
位
超
前 1 2
i1 120
t
i i 超前于
1
2
相 位
i1
滞 后
2 1
i2
120
t
i i 滞后于
电工学第4章

i1 i i2
i1与i2 同相 i1与i2 反相
i1 ωt o ψ1 ψ2 ϕ i i2 ωt
ψ2 o ψ1
注意:不同频率的正弦量比较无意义。 注意:不同频率的正弦量比较无意义。
[例题] 正弦电流 =100sin(6280t − π)mA,指出它的周期 例题] i , 4 频率,角频率幅值 有效值初相位画出波形图 , , , , . 解:Im =100mA i 100(mA) Im = 100=70.7mA I= 2 2 ω=6280rad/s oπ f = ω = 6280=1000Hz =1kHz 4 2π 2π T= 1 = 1 =0.001s=1ms f 1000 ψ=− π 4
4.1.2 幅值与有效值
幅值: 幅值:Im、Um、Em 有效值: 有效值:与交流热效应相等的直流定义为交流电的 有效值。 有效值。
幅值必须大写, 幅值必须大写, 下标加 m。
= I 2 RT ∫0 i R dt
T 2
交流
直流
则有
I =
Im 1 T 2 2 有效值必 = Imsin ωt dt = 2 须大写 T ∫0 Um Em 同理: 同理: U = E= 2 2 注意:交流电压、电流表的刻度、 注意:交流电压、电流表的刻度、数据为有效值
r ψ
a
A = r cos ψ + j r sin ψ = r (cos ψ + jsin ψ)
jψ
由欧拉公式: 由欧拉公式 cos ψ = e 可得: 可得 (3)
= cos ψ + jsin ψ 指数式 A = r ej ψ e
jψ
+e 2
−j ψ
ej ψ − e− j ψ , sin ψ = 2j
i1与i2 同相 i1与i2 反相
i1 ωt o ψ1 ψ2 ϕ i i2 ωt
ψ2 o ψ1
注意:不同频率的正弦量比较无意义。 注意:不同频率的正弦量比较无意义。
[例题] 正弦电流 =100sin(6280t − π)mA,指出它的周期 例题] i , 4 频率,角频率幅值 有效值初相位画出波形图 , , , , . 解:Im =100mA i 100(mA) Im = 100=70.7mA I= 2 2 ω=6280rad/s oπ f = ω = 6280=1000Hz =1kHz 4 2π 2π T= 1 = 1 =0.001s=1ms f 1000 ψ=− π 4
4.1.2 幅值与有效值
幅值: 幅值:Im、Um、Em 有效值: 有效值:与交流热效应相等的直流定义为交流电的 有效值。 有效值。
幅值必须大写, 幅值必须大写, 下标加 m。
= I 2 RT ∫0 i R dt
T 2
交流
直流
则有
I =
Im 1 T 2 2 有效值必 = Imsin ωt dt = 2 须大写 T ∫0 Um Em 同理: 同理: U = E= 2 2 注意:交流电压、电流表的刻度、 注意:交流电压、电流表的刻度、数据为有效值
r ψ
a
A = r cos ψ + j r sin ψ = r (cos ψ + jsin ψ)
jψ
由欧拉公式: 由欧拉公式 cos ψ = e 可得: 可得 (3)
= cos ψ + jsin ψ 指数式 A = r ej ψ e
jψ
+e 2
−j ψ
ej ψ − e− j ψ , sin ψ = 2j
正弦交流电路

幅值(最大值)、有效值:表示正弦量的大小 周期、频率、角频率:表示正弦量的变化速度 初相位:给出观察正弦量的起始点
目录
正弦交流电的基本概念 正弦量的向量表示法 单一参数的交流电路 RLC串联交流电路 阻抗的串并联
正弦量的相量表示法
●瞬时值表达式(三角函数表达式)
●波形图
i 2I sin(wt )
例
u1 4 2 sin wt 60
u2 3 2 sin wt 30
U2
ua u1 u2 ub u1 u2
U a U1 U 2 523
ua 5 2 sin wt 23
U b U1 U 2 597
ub 5 2 sin wt 97
Ub
5
U1
4
Ua
97 o
U
U
有效值相量图
用符号: I U E 表示。
包含大小与相位信息。
例
i1 8 2 sin wt 60 i2 6 2 sin wt 30
I1 860o A I2 6 30o A
相量式
有效值
I1 8
60 o
30 o
6
I2
初相位
相量图
正弦量的相量表示法
●同频率正弦量的运算
加减运算用相量图—平行四边形法则
有向线段表示正弦量 有向线段不等于正弦量
ω
u Um sinw t
Um
wt
正弦量的相量表示法
相量用复平面的有向线段表示,其长度(相量的模)表示正弦量的有效值;其与横轴 的夹角(相量的幅角)表示正弦量的初相位。
直角坐标式:
U a jb U cos j sin
指数式:
U Ue j
极坐标式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、交流电的相位、初相位、相位差
i = 10 sin(1 000 t + 30°)A u = 311sin(314 t-60°)V
相位: ωt + ψ 初相位:ψi = 30° , ψu =-60°
相位 初相位
相位差: 同频率的正弦电量的初相位之差。
i = 100 sin(314 t + 30)A u = 311sin(314 t-60)V
电工与电子技术B
第 4 章 交流电路
第一节 正弦交流电的基本概念 第二节 正弦交流电的相量表示法 第三节 单一参数交流电路 第四节 R、L、C串联交流电路 第五节 R、L、C并联交流电路 第六节 正弦交流电路的分析 第七节 功率因数的提高 * 第八节 交流电路中的频率特性
电工与电子技术B
第一节 正弦交流电的基本概念
(3) 指数式 A rejψ
达式用于方便
(4) 极坐标式 Ar ψ
计算
A a j b r co jr si n r e jψ rψ
相量: 表示正弦量的复数称相量
设正弦量: uU m si(ω ntψ )
相量表示:
U Ujψ eUψ相量的模=正弦量的有效值
相量辐角=正弦量的初相角
电压的有效值相量
总目录 章目录 返回 上一页 下一页
U I
电工与电子技术B
③相量的两种表示形式
相量式: U U e jψ U ψ U (cψ o jss ψ )in
相量图: 把相量表示在复平面的图形
可不画坐标轴
④相量的书写方式
• 模用最大值表示 ,则用符号:Um、Im
• 实际应用中,模多采用有效值,符号:U 、I
U m22e405V ?
瞬时值
4.已知:
U 10 015V
2.已知: I1060A U10V 0?负号
? i1s0i(n ω t60 )A ? 最大值
U 100ej15V
总目录 章目录 返回 上一页 下一页
电工与电子技术B
例: 已知 i11.2 72si(n 3t 134 )0A+j
i2112si(n3t1640 )A
一、交流电的周期、频率、角频率
i
2π
O
ωt
T
周期 T :变化一周所需要的时间(s)。
频率 f :1s 内变化的周数(Hz)。
f
=
1 T
角频率ω : 正弦量 1s 内变化的弧度数。
ω = 2πf
=
2π T
(rad/s)
总目录 章目录 返回 上一页 下一页
电工与电子技术B
常见的频率值
各国电网频率(工频):中国和欧洲国家 50 Hz, 美国 、日本 60 Hz
电工与电子技术B
注意:
① 两同频率的正弦量之间的相位差为常数, 与计时的选择起点无关。
i i1
i2
O
t
② 不同频率的正弦量比较无意义。
总目录 章目录 返回 上一页 下一页
电工与电子技术B
第二节 正弦交流电的相量表示法
(a) 旋转矢量 +j
(b) 正弦交流电
ω
ωt1
ωt2
ψ
O
O
+1
ψ
ωt
ωt1
正弦交流电可以用一个 固定矢量对应表示
有线通信频率:300 ~ 5 000 Hz; 无线通信频率:30 kHz ~ 3×104 MHz ; 高频加热设备频率:200 ~ 300 kHz。
总目录 章目录 返回 上一页 下一页
电工与电子技术B
二、交流电瞬时值、最大值、有效值
e、i、u
Em、Im、Um E、I、U
瞬时值 最大值 有效值
IR
i
ψr aar2ctab2nb
复数的模
复数的辐角
(2) 三角式
a
A r cψ o jr s sψ i r n (c ψ j o sψ is )n
由欧拉公式:
coψ s ejψejψ, 2
ej ψ ej ψ sinψ
2j
总目录 章目录 返回 上一页 下一页
电工与电子技术B
可得: ejψcoψsjs iψ n相量: 不同表
总目录 章目录 返回 上一页 下一页
电工与电子技术B
或:U mU m ejψU mψ相相量量辐的角模==正正弦弦量量的的初最相大角值
注意:
电压的幅值相量
①相量只是对应表示正弦量,而不等于正弦量。
? iImபைடு நூலகம்si(ω ntψ)=ImejψImψ
②只有同频率正弦量才能用相量表示, 非正弦量和不同频率的正弦量不能用相量表示。
正弦交流电的优越性:
便于传输;易于变换电压、电流; 交流电机设备结构简单、
工作稳定、效率高;等等
正弦交流电: 按正弦规律变化的交流电。
i
i = Imsin(ωt +ψ)
Im
瞬时值最大值
最大值
角频 初相位 率
O
ψ
角频率 正弦交流电的三要素
初相位
ωt
总目录 章目录 返回 上一页 下一页
电工与电子技术B
求:II2 1 i i11 1i21 2 。6 3 .7 0 0 A A
I1
30 +1 60 I2
I I 1 I 2 13 2 A 0 . 1 7 6 1 A 0
1c 2 3 o j . s 0 7 3 s i )n ( 0 1 A c 6 1 o j s 0 (6 s i )n 0 A
R
Wd = RI2T
Wa =∫ R0T i2 dt
如果热效应相当,Wd = Wa ,则 I 是 i 的有效值。
正弦电量的有效值: 注意:交I 流= 电√2I压m 、电U流=表√2测Um量数E据为=√有2Em效值
交流设备名牌标注的电压、电流均为有效值 总目录 章目录 返回 上一页 下一页
电工与电子技术B
如:已知 u22 si(0 ω n t4) 5V 则U m22 ej4 0 V 5或 U 220ej45V
2
总目录 章目录 返回 上一页 下一页
电工与电子技术B
正误判断
1.已知:
3.已知:
u22 si(0 ω nt4)5VI4ej30A复数
•
U
220
45V?
42si(nωt30)A ?
2
有效值
j45
=ψu -ψi = -60-30 =-90
总目录 章目录 返回 上一页 下一页
电工与电子技术B
iu
0< <180°
i u -180°< < 0°
O
ωt
O
ωt
u 超前于 i
u 滞后于 i
iu
= 0°
iu
= ±180°
O
ωt
O
u 与 i 同相位
ωt
u 与 i 反相
总目录 章目录 返回 上一页 下一页
如:i = Imsin(ωt +ψ)
最大值相量 Im 有效值相量 I
ωt2 +j
ψ O
Im I
+1
总目录 章目录 返回 上一页 下一页
电工与电子技术B
一、复数的表示方法
模
辐角
正弦量的相量表示
+j
实质:用复数表示正弦量
b
A
复数表示形式
r
设A为复数: (1) 代数式 A =a + jb
0
a +1
式中: arcoψs brsinψ