统计学名词解释
统计学名词解释

1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。
2、指标和标志标志是说明总体单位属性或特征的名称。
指标是说明总体综合数量特征和数量关系的数字资料。
3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。
简称总体。
构成总体的个体则称为总体单位,简称单位。
样本是从总体中抽取的一部分单位。
4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。
它是取得统计数据的重要手段。
5、统计绝对数和统计相对数反映总体规模的绝对数量值,在社会经济统计中称为总量指标。
统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。
6、时期指标和时点指标时期指标是反映总体在一段时期内累计总量的数字资料,是流量。
时点指标是反映总体在某一时刻上具有的总量的数字资料,是存量。
7、抽样估计和假设检验抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。
假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。
8、变量和变异标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。
数量标志和指标在统计中称为变量。
9、参数和统计量参数是反映总体特征的一些变量,包括总体平均数、总体方差、总体标准差等。
统计量是反映样本特征的一些变量,包括样本平均数、样本方差、样本标准差等。
10、抽样平均误差样本平均数与总体平均数之间的平均离散程度称之为抽样平均误差,简称为抽样误差。
重复抽样的抽样平均误差为总体标准差的1/n。
11、抽样极限误差抽样极限误差是指样本统计量和总体参数之间抽样误差的可能范围。
我们用样本统计量变动的上限或下限与总体参数的绝对值表示抽样误差的可能范围,称为极限误差或允许误差。
统计学名词解释(超全)

统计学名词解释(超全)统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。
总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。
参数:是描述总体数量特征的指标,又称总体指标。
样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。
变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。
总体参数:描述总体数量特征的指标,又称总体指标。
样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。
普查:为某一特定目的而专门组织的一次性全面调查。
抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。
统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。
统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。
时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。
时点指标:反应现象整体在某一的点(瞬间)上所处状况的总量指标。
众数:是一组数据中出现次数最多的变量值。
时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。
发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。
均匀发展水平:将不同时间的发展水平加以均匀而得到的均匀数。
发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。
环比发展速度:是时间序列中敷陈期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。
定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。
统计学名词解释

17.相对指标:也称相对数,就是将两个有联系指标的数值进行对比的结果;
18.时期数列:是由时期指标形成的,数列中的每个指标数值都是反映某种社会经济现象在一段时期内发展过程的总量;
29.简单随机抽样:这是按随机原则从总体N个单位中直接抽取n个单位做样本,使总体中每一个单位都有同等的可能性被抽中;
30.简单相关表:是资料未经分组的相关表,它是相关因素的标志值按照大小顺序并配合结果标志值一一对应而平行排列起来的统计表;
31.常住单位:是指在我国的经济领土上具有经济利益中心的经济单位;
88.组中值:指本组的上限与下限之间的中点值。它代表组内所有单位的标准值的平均水平。
89.次数分布:是指在统计分组的基础上,将总体的所有单位按组归类整理,并按一定顺序排列,形成总体单位在各组间的分布。
90.总体:按数量标志分组就形成变量分配数列,简称变量数列。
91.统计表就是用来表现统计资料汇总整理结果的汇总表。
92.累计次数:是指数列中高于或低于某一变量值的次数总和。
93.强度相对指标:是两个性质不同但是存在一定联系的指标的对比,用来反映事物的强度、密度和普遍程度的指标。
94.众数:是指总体中出现次数最多的标志值。
95.平均发展水平:将不同时期的发展水平加以平均而得的平均数叫平均发展水平,在统计上又称为序时平均数或动态平均数。
44.资本形成
:是指各机构单位通过经济交易获得或处理生产资产的行为;
45.因素分析法:它是利用指数体系,对现象的综合变动从数量上分析其受各因素影响的一种分析方法。
统计学名词解释超级大全

大量惰性原则:某一事物的某一性质或状态,在反复观察或试验中是保持不 变的。
有效数字:指能影响测量准确性的数字。
变量:又称随机变量。具有变异性的数据。三个特性,离散型,变异性,规 律性。
推断统计:又称抽样统计。它是根据对部分个体进行观测所得到的信息,通 过概括性的分析、论证,在一定可靠程度上去推测相应团体。换言之,就是根据 已知的情况推测未知情况。
实验设计:研究如何更加合理、有效地获得观测资料,如何更正确、更经济、 更有效地达到实验目的,以揭示试验中各种变量关系的实验计划。
统计常态法则:从总体中随机抽取一部分个体所组成的样本,差不多可以保 持总体的特征。这种样本特性保持着总体特性的现象叫做统计常态法则。
次数:某一事件在某一类别中出现的数目,又叫频数,用 f 表示。 频率:指每一组的数据个数除以数据的总和,又称相对次数。用符号 p 表示。 百分频率:频率与百分数的乘积。
组中值:每一组的中点值,常用 m 或 Xc 表示。 全距:全部数据的距离,也称极差,是用一群数据中的最大值减去最小值。 组距:指每一组所包含的间隔或数据单位,用 i 表示。 组限:指每一组的起止点或每一组的界限。
统计表:以表格的形式表达统计资料数量关系的方式或工具。 统计图:以几何图形和形象图形表示统计资料数量关系的工具。
次数分布 累积次数:以简单次数为基础,从最低组开始逐级累加直至最高组,或从最 高组开始逐级累加直至最低组,用符号 cum﹒f 或 F 表示。 累积百分频率:各组累计次数与总次数的比值。
一时性资料:在一定时限内所收集的有关问题的资料为一时性资料。来源三 个方面,教育与心理调查,教育与心理测量和教育与心理实验。
统计学名词解释

名词解释●统计工作:是从数量方面对社会经济现象做调查研究的一种工作,是人们为认识客观事物而进行的搜集、整理、分析和提供统计资料的工作过程;●统计资料:是统计工作的成果,是指在统计实践活动中所取得的,反映统计研究对象有关特征的各种综合性的数字资料和分析报告;●统计学:是阐述统计理论与方法的系统性科学,是统计工作实践的理论概括和科学总结,是研究、整理、分析统计资料的理论和方法的科学;●总体:是指客观存在的,在某一相同性质基础上结合起来的许多个别事物的整体●总体单位:构成总体的个别事物●样本:从总体当中抽取出来,用从代表这一总体的部分个体组成的集合●标志:是说明总体单位属性或特征的名称●统计指标:说明总体数量特征的,简称指标;有俩种理解,一是指反映现象总体数量特征的概念;二是指反映现象总体数量特征的概念及其数量表现;●普查:是专门组织的一次性的全面调查;这种调查,主要用来搜集一些比较全面而又不能或不宜从经常调查中得出的统计资料;●重点调查:是一种非全面调查,它是从所要调查的单位中选择一部分重点单位进行调查●抽样调查:也是一种非全面调查,它是按照随机原则从被研究总体中抽取出一定数量的单位样本进行调查,根据样本指标数值来推算总体指标数值的一种调查●典型调查:是一种十分重要的、行之有效的非全面调查方法;它是从研究总体中有意识地选取若干具有代表性单位典型单位进行调查,用来了解总体的详细情况●统计调查:根据统计工作任务和统计设计的要求,用科学的方法,有计划有组织地向调查单位搜集调查资料的过程●统计分组:根据统计研究的需要,将统计总体按照一定的标志区分为若干组成部分的一种统计方法●分配数列:又称分布数列、次数数列,是在统计分组的基础上形成的,用来反映总体单位在各组中分布状况的统计数列●总量指标:是反映社会经济现象的总体规模和水平的统计指标;总量指标通常是将总体单位数相加或总体单位某一数量标志值相加得到的,大多数是统计整理的直接成果,是用绝对数的形式表示的,因此也称统计绝对数●相对指标:是将两个有联系的反映社会经济现象的统计指标相互对比得到的一种抽象的比值,是反映社会经济现象间数量对比关系的综合指标●平均指标:是反映总体各单位某一数量标志值一般水平的综合指标,又称统计平均数●标志变异指标:是反映总体各单位标志值的差异程度的,即反映分配数列中各标志值的变动范围或离差程度的综合指标,也叫标志变动度,简称变异指标●成数:具有某种表现或不具有某种表现的单位数占全部总体单位数的比重●时间数列:是将说明社会经济象在各个不同时期或时点上某种数量特征的指标数值,按时间的先后顺序排列起来而形成的统计数列; 时间数列中每项数值是与时间相对应的,所以又称动态数列●时期数列:在绝对数动态数列中,各项指标都是反映某种现象在一段时间内发展过程的总量●时点数列:在绝对数动态数列中,每个指标所反映的事现象在某一时点上瞬间所处状态的数量水平●发展水平:社会经济现象在某时期或某时点达到的指标数值●统计指数:广义指同类社会经济现象数量对比的相对数,包括动态相对数、比较相对数、计划完成程度相对数等;狭义指用来反映由不能直接加总的多要素所构成的复杂社会经济现象综合变动程度的特殊相对数●抽样误差:指在遵守随机原则的条件下,用抽样指标代表总体所产生的不可避免的误差;●简单随机抽样:又称纯随机抽样;它是对全及总体的所有单位不进行任何分类或排队处理,而是完全按照随机原则从总体中抽出样本单位加以观察,以保证总体中每个单位有相等被抽中的机会●类型抽样:也称分层抽样或分类抽样;它首先把全及总体按某一标志分成若干组,然后分别在各组内按随机原则抽取一定数目的样本单位构成样本的抽样方式●等距抽样:又称机械抽样或系统抽样,它是先将总体各单位按某一标志排队,然后按固定的顺序和间隔来抽选样本单位的一种抽样组织形式●整群抽样:将总体各单位划分成若干群或组,然后以群或组为单位从中随机抽取一些群,对中选群的所有单位进行全面调查的抽样组织形式●相关关系:是现象之间确实存在有数量上的依存关系,但这种数量上的关系式不确定的●相关表:指按照相关现象的数量对应关系以及一定的逻辑顺序编制成的一种统计表。
统计学名词解释

1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。
具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。
2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。
3、变异:同一性质的事物,其观察值(变量值)之间的差异。
4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。
这种用样本指标推论总体参数的方法称为抽样研究。
5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。
6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。
7、概率:是指某事件出现可能性大小的度量,以符号P表示。
8、医学参考值范围:参考值范围又称正常值范围。
医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。
9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。
10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相同或相近。
11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。
12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。
13、标准误:表示样本均数间变异程度。
14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。
15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。
16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。
统计学名词解释

1第一章1.统计数据:即统计信息,是指通过统计工作过程中取得的各项数据资料以及与之相关的其他资料的总称。
2.统计学:即统计理论,是指系统地阐述统计实践活动根本原理和研究方法的理论。
它是一门研究如何搜集、整理和分析统计资料的理论和方法论科学。
4.统计学的研究对象:客观事物中的数量特征、数量关系和数量变化。
5.统计学包括商务管理统计的研究对象特点:数量性〔根本特点〕、总体性、变异性。
7.商务管理统计研究方法大量观察法统计分组法比照分析法综合指标法统计推断法动态测定法8.统计总体。
又称“调查总体〞简称“总体〞,在数理统计中又称母体,与样本相对应。
但凡客观存在的、具有共同性质的个体所构成的整体就是统计总体。
其形成必须具备以下条件:客观性:即统计总体必须是客观存在的,并且能实际观察到的。
同质性:即构成统计总体的所有单位至少具有某一个共同性质是统计总体的前提条件。
变异性:即构成统计总体的各总单位至少在某一性质上具有共同特征外,在其他性质上应具有差异性,变异性是统计研究的重点。
9.总体单位:构成统计总体的每个根本单位称为总体单位,简称单位或个体,它是各项统计特征的原始承当者。
10.统计总体分类:按其包含的单位数是否可计分为有限总体与无限总体按总体单位的形态分为实体总体和行为总体。
11.总体与总体单位的关系:a.总体是由总体单位组成,总体单位是组成总体的个别事物。
b.根据研究目的不同,总体和总体单位是可以相互转化的。
12.标志:表示总体单位特征的名称。
如性别、年龄、籍贯、企业所有制、规模等。
13.标志表现:即标志特征在各单位的具体表现。
如性别标志的表现有“女〞、“男〞,年龄标志用“30〞岁“50〞岁等数量来表现。
14.标志的分类a.根据标志表现的形式不同。
数量标志,说明总体单位数量特征的标志,是可以用数值表示的。
品质标志,说明总体单位属性特征的标志,不能用数值表现。
b.按照各总体单位标志的具体表现是否一样。
不变标志:某一标志的具体表现在总体中各总体单位都一样。
统计学的名词解释

统计学的名词解释统计学是一门研究数据收集、分析和解释的学科,旨在通过收集和解析数据来支持决策过程和了解现象。
统计学涉及一系列概念和方法,包括数据收集、数据描述性统计、概率理论、假设检验、统计推断和回归分析等。
1. 数据收集:统计学中的第一步是收集数据。
数据可以通过各种方法获得,包括实地观察、实验、调查问卷和从现有的数据集中获取等。
2. 数据描述性统计:在收集到数据后,统计学家使用描述性统计来总结和描述数据的特征。
描述性统计包括计算数据的平均数、中位数、众数、标准差和百分位数等。
3. 概率理论:概率理论是统计学的基石之一。
它研究随机现象发生的可能性,并给出事件发生的数学表达。
概率理论为统计推断和建立模型提供了理论基础。
4. 假设检验:假设检验用于确定一个观察结果是否与一个给定的假设相符。
它提供了一种确定性地评估研究或实验结果的方法,并决定是否拒绝或接受一个假设。
5. 统计推断:统计推断是通过对样本数据进行分析和推断来对总体进行推断的过程。
它使用样本数据估计总体参数,并根据这些估计进行一些统计判断。
6. 回归分析:回归分析是一种统计方法,用于建立和探索变量之间的关系。
它可以用来预测一个变量(因变量)如何随着其他变量(自变量)的变化而变化。
7. 统计模型:统计模型是由统计学方法和理论构建的数学表达式,用于描述和解释观察数据之间的关系。
统计模型可以是简单的线性模型,也可以是更复杂的非线性模型。
8. 抽样方法:在统计学中,由于往往难以调查每一个个体或观察每一个事件,人们通常采用抽样方法来从总体中选择一部分样本进行研究。
常见的抽样方法包括随机抽样和分层抽样等。
9. 统计图表:统计图表是一种可视化数据的方式,用来展示和比较数据。
常见的统计图表包括柱状图、饼图、散点图和箱线图等。
10. 多元统计分析:多元统计分析是一项通过同时考虑多个变量来分析数据的方法。
它包括主成分分析、因子分析和聚类分析等。
总之,统计学是一门研究数据收集、分析和解释的学科,它运用一系列概念和方法来帮助人们理解数据,并从中获取有关现象和决策的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释1.统计学:是应用概率论和数理统计的基本原理和方法,研究数据的收集、整理、分析、表达和解释的一门科学。
2.医学统计学:是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集整理、分析、表达和解释的一门科学。
3.抽样:是从研那个研究总体抽取少量有代表性的个体,称为抽样。
4.统计推断:是根据已知的样本信息来推断未知的总体,是统计分析的目的,包括参数估计和假设检验。
5.总体:是根据研究目的确定的同质研究对象的全体。
6.概率:是随机事件发生可能性大小的数值度量。
7.同质:是指所研究的观察对象具有某些相同的性质或特征。
8.变异:是同质个体的某项指标之间的差异,即个体差异。
9.正态分布:频数分布的高峰在中间,两端基本对称,逐步减少,这种分布称为近似正态分布,如果两端完全对称则称为正态分布。
10.医学参考值围:又称正常值围,医学上常将包括绝大多数正常人的某指标值的波动围称为该指标的正常值围。
11.动态数列(dynamic series):是按照一定的时间顺序,将一系列描述某事物的统计指标依次排列起来,观察和比较该事物在时间上的变化和发展趋势,这些统计指标可以为绝对数、相对数或平均数。
12.人口金字塔:将人口的性别与年龄资料结合起来以图形的方式表达人口的性别与年龄结构,以年龄为纵轴,人口百分比为横轴,左侧为男,右侧为女,两个对应的直方图,其形似金字塔。
13.负担系数(dependency ratio):又称抚养比或抚养系数,是指人口中非劳动年龄人数与劳动年龄人数之比。
14.标准化死亡比(SMR):实际死亡人数与期望死亡人数之比称为标准化死亡比。
15.统计图:是用点的位置、线段的升降、直条的长短和面积的大小等来表达数据的一种形式。
16.半对数线图(semi-logarithmic linear chart):横轴是算数尺度,纵轴是对数尺度,使线图上的数量关系变为对数关系。
适用于描述某项指随某个连续型数值变量变化而变化的速度(相对变化趋势)。
17.直方图(histogram):一般用横轴表示连续性数值变量,纵轴表示表示频数或频率,每个矩形的宽度等于各组段的组距,高度等于相应组段的频数或频率。
常适用于描述连续性数值变量的频数或频率分布了解一组数据的分布类型和分布特征。
18.散点图(scatter plot):是用直角坐标上点的密集程度或趋势表示两变量间的相关关系。
19.箱式图(box plot):箱式图用于描述练箱连续型变量的分布特征,它表现连续型变量的5个特征值,即最小值、下四分位数、中位数、上四分位数、最大值。
20.统计地图(statistical map):是运用统计数据反应制图对象数量特征的一种图形,主要用于某种现象的数量在地域空间上的分布。
21.随机抽样(random sampling):是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
22.抽样误差(sampling error of mean):是抽样产生的由于个体差异所导致的样本均数与样本均数之间、样本均数与总体均数之间的差异。
23.统计推断(statistical inference):通过样本指标来说明总体特征,这种通过样本获取有关总体信息的过程称为统计推断。
24.四分位数间距(inter-quartile range, IQR):是由第三(上)四分位数减去第一(下)四分位数所得,常常与中位数一起使用,用来描述偏态分布资料的分布特征,较极差稳定。
25.变异系数(coefficient of variation):用于观察指标单位不同或均数相差较大时两组资料变异程度的比较。
用CV 表示。
24.第Ⅰ类错误(typeⅠerror):是指拒绝了实际上成立的H0,这类“弃真”的错误称为Ⅰ型错误,其概率大小用α表示。
25. II 型错误(type II error):是指接受了实际上不成立的H0,这类“存伪”的错误称为II 型错误,其概率大小用β表示,未知。
26. 检验效能:1- β称为检验效能(power of test),也称把握度,它是指当两总体确有差别,按规定的检验水准a 能发现它们有差异的能力。
27. 随机区组设计(randomized block design):是事先将全部受试对象按某种可能与实验因素有关的特征分为若干个区组(block),使每一区组的受试对象例数与处理因素的分组数相等,使每个实验组从每一区组得到一例受试对象。
28.完全随机设计(completely random design):是采用完全随机化的分组方法,将全部试验对象分配到g个处理组(水平组),各组分布接受不同的处理,试验结束后比较各组均数之间的差别有无统计学意义,推论处理因素的效应。
29.配对设计:是将受试对象按一定条件配成对子,再随机分配每对中的两个受试对象到不同的处理组,或者比较受试者实验前后的变量值改变情况,甚至比较同一标本接受两种不同测定方法的检查结果的差别。
29.析因设计(factorial design )实验:凡同时配置两个或两个以上处理因素,这些因素的各水平又具有完全组合的实验,统称为析因设计(factorial design )实验。
30.方差分析(analysis of variance ANOVA )的基本思想:是把全部观察值的总变异按设计和需要分解成两个或多个组成部分,再进行分析。
31 . LSD-t 检验:即最小显著性差异t 检验,适用于一对或几对在专业上有特殊意义的样本均数间的比较。
32. SNK (student-Newman-Keuls )法:又称q 检验,是根据q 值的抽样分布作出统计推论,适用于多个样本均数两两之间的全面比较。
33.Dunnett-t 检验:适用于g-1个实验组与一个对照组均数差别的多重比较。
34. 二项分布(binorminal distribution):是指每次试验有且仅有两个可能结果如“阳性或“阴性“之一的n 次独立重复试验中,每次试验的发生”阳性“概率“π保持不变,出现”阳性“数x=0,1,2,3…,n 的一种概率分布。
35.率的抽样误差(standard error of rate ):由于个体差异的存在,在抽样研究中表现出来的样本率与总体率或样本率的之间的差异称为率的抽样误差。
36.Poisson 分布:是一种离散型分布,二项分布的一种极限情况,用于描述单位时间、空间、面积等小概率事件发生次数的概率分布。
它是由法国人S.D.Poisson 首先提出来。
37. 分布:是一种以分布为基础的连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相符等问题,以值为检验统计量的计数资料的假设检验方法。
标准正态分布:对任意一个服从正态分布(U,)的随机变量,可经Z 变换后的Z 值仍然服从正态分布,且其总体均数为0、总体标准差为1。
我们称此正态分布为标准正态分布,用N(0,1)表示。
38.nonparametric statistics :非参数检验,针对某些资料的总体分布难以用某种函数式来表达,或者资料的总体分布函数式是未知的,只知道总体分布是连续型的或离散型的,用于解决这类问题需要一种不依赖总体分布的具体形式的统计分析方法。
由于该方法不受总体参数的限制,故称为非参数检验,或称为不拘分布的统计分析方法,又称为无分布形式假定的统计分析方法。
39.参数检验(parametric text):通常要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行估计和检验,称为参数检验。
40.Wilcoxon 两样本秩和检验的基本思想:如果Ho 成立,则两样本来自分布相同的总体,两样本的平均秩次T1/n1与T2/n2应相等或接近,含量n1的样本的秩和T1应在n1(N+1)/2的左右变化。
若T 值偏离此值太远,H0成立的可能性就很小。
若偏离出给定值所确定的围时,则P<,拒绝H0。
41.Friedman 的M 检验的基本思想:在H0成立的条件下,各区组观察值取秩次为1,2,…,k 的概率相等,则各处理组的秩和应接近R(平均)=n(k+1)/2,而M 值反映了实2χ2χ2χ际获得的k 个处理组的秩和与偏离的程度。
M 值越大,越有理由怀疑各处理组的总体分布不同。
随着b 和k 的增大,M 值近似服从自由度为k-1的分布。
42.直线相关:是分析服从正态分布的两个随机变量x 与y 有无线性相关关系的一种统计分析方法。
43.相关系数:是描述两个变量间线性相关关系的密切程度与方向的统计指标。
44.直线回归(linear regression ):建立一个描述应变量依自变量变化而变化的直线方程,并要求各点与该直线纵向距离的平方和为最小。
直线回归是回归分析中最基本、最简单的一种,故又称简单回归。
45. 回归系数(regression coefficient ):即回归直线的斜率(slope),表示自变量x 每改变一个单位时,应变量y 平均变化b 个单位。
46.可信区间:按预先给定的概率确定的包含未知总体参数的可能围。
该围称为总 体参数的可信区间(confidence interval ,CI )。
它的确切含义是:可信区间包含总体参数的可能性是1- α ,而不是总体参数落在该围的可能性为1-α 。
47.四分位数间距(inter-quartile range, IQR):是由第三(上)四分位数减去第一(下)四分位数所得,常常与中位数一起使用,用来描述偏态分布资料的分布特征,较极差稳定。
48.标准正态分布:均数为0,标准差为1的正态分布被称为标准正态分布(standard normal distribution),通常记为N(0, 12)。
49.偏回归系数:多元线性回归中的偏回归系数表示在其他自变量固定不变的情况下,自变量Xj 每改变一个单位时,单独引起应变量Y 的平均改变量。
50.系统抽样(systematic sampling):又称机械抽样和等矩抽样,现将总体的观察单位按照某一顺序分成n 个部分,再从第一部分随机抽取第k 号观察单位,依次用相等的间隔,从每一部分抽取一个观察单位组成样本。
51.分层抽样(stratified sampling):又称分类抽样,先按影响观察值变异较大的某种特征将总体分为若干层,再将从每层随机抽取一定数量的观察单位组成的样本。
52.r*r 称为决定系数(coefficient of determination ),表示由x 与y 的直线关系导致的y 的变异SS 回在总变异SS 总中所占的比重,即回归效果的好坏,r*r 越接近1,即回归的效果越好。