选修2-2综合测试题
人教a版(数学选修2-2)测试题及参考答案

人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
高中新课标数学选修(2-2)综合测试题(4)

高中新课标数学选修(2-2)综合测试题一、选择题1、函数2x y =在区间]2,1[上的平均变化率为( ) (A )2 (B )3 (B )4 (D )52曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )(A )38 (B )37 (C )35(D )343、已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e1 (B )e1-(C )e2 (D )e2-4、设ai b bi a ++,,1是一等比数列的连续三项,则b a ,的值分别为( )(A )21,23±=±=b a (B )23,21=-=b a(C )21,23=±=b a (D )23,21-=-=b a5、方程)(04)4(2R a ai x i x ∈=++++有实根b ,且bi a z +=,则=z ( )(A )i 22- (B )i 22+(C )i 22+- (D )i 22--6、已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=rc b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。
类比三角形的面积可得四面体的体积为( )(A )R s s s s V )(214321+++= (B )Rs s s s V )(314321+++=(C )Rs s s s V )(414321+++= (D )R s s s s V )(4321+++=7、数列 ,4,4,4,4,3,3,3,2,2,1的第50项是( )(A )8 (B )9 (C )10 (D )118、在证明12)(+=x x f 为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数12)(+=x x f 满足增函数的定义是小前提;④函数12)(+=x x f 满足增函数的定义是大前提;其中正确的命题是( )(A )①② (B )②④ (C )①③ (D )②③9、若R b a ∈,,则复数i b b a a )62()54(22-+-++-表示的点在( ) (A )在第一象限 (B )在第二象限(C )在第三象限 (D )在第四象限 10、用数学归纳法证明不等式“)2(2413212111>>+++++n nn n ”时的过程中,由k n =到1+=k n 时,不等式的左边( )(A )增加了一项)1(21+k(B )增加了两项)1(21121+++k k(C )增加了两项)1(21121+++k k ,又减少了11+k ;(D )增加了一项)1(21+k ,又减少了一项11+k ;11、如图是函数d cx bx x x f +++=23)(的大致 图象,则2221x x +等于( ) (A )32 (B )34 (C )38 (D )31212、对于函数233)(x x x f -=,给出下列四个命题:①)(x f 是增函数,无极值;②)(x f 是减函数,有极值;③)(x f 在区间]0,(-∞及),2[+∞上是增函数;④)(x f 有极大值为0,极小值4-;其中正确命题的个数为( )(A )1 (B )2(C )3 (D )4班级: 姓名:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为:14、若i z 311-=,i z 862-=,且21111z z z =+,则z 的值为 ;15、用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .16、物体A 的运动速度v 与时间t 之间的关系为12-=t v (v 的单位是s m /,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为t v 81+=,两个物体在相距为405m 的同一直线上同时相向运动。
高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。
A。
5+2i B。
5-2i C。
-5+2i D。
-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。
A。
1/3+cos1 B。
11/3sin1+cos1 C。
3sin1-cos1 D。
sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。
A。
0 B。
1 C。
2 D。
-14.定积分∫1x(2x-e)dx的值为()。
A。
2-e B。
-e C。
e D。
2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。
A。
1项 B。
k项 C。
2k-1项 D。
2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。
A。
40/3 B。
13 C。
25/2 D。
157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。
A。
(3,-3) B。
(-4,11) C。
(3,-3)或(-4,11) D。
不存在8.函数f(x)=x^2-2lnx的单调减区间是()。
A。
(0,1] B。
[1,+∞) C。
(-∞,-1]∪(0,1] D。
[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。
A。
f(x)=4/(2x+2) B。
f(x)=2^(12/(x+1)) C。
f(x)=(x+1)/2 D。
f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。
A。
[-1,+∞) B。
(-1,+∞) C。
高二理科数学选修2-2测试题及答案doc资料

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分) 1、复数i-25的共轭复数是( ) A 、2+i B 、2-i C 、i --2 D 、i -2 2、 已知f(x)=3x ·sinx ,则'(1)f =( )A.31+cos1B. 31sin1+cos1C. 31sin1-cos1 D.sin1+cos13、设a R ∈,函数()x x f x e ae -=-的导函数为()'f x ,且()'f x 是奇函数,则a 为( ) A .0 B .1 C .2 D .-14、定积分dx e x x ⎰-1)2(的值为( )A .e -2B .e -C .eD .e +25、利用数学归纳法证明不等式1+12+13+ (1)2n -1<f(n) (n ≥2,n ∈N *)的过程中,由n =k 变到n=k +1时,左边增加了( )A .1项B .k 项C .2k -1项 D .2k 项6、由直线y= x - 4,曲线x y 2=以及x 轴所围成的图形面积为( ) A.340 B.13 C.225D.15 7、函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为 ( ) (A ))3,3(- (B ))11,4(- (C ) )3,3(-或)11,4(- (D )不存在8、函数f(x)=x 2-2lnx 的单调减区间是( )A .(0,1]B .[1,+∞)C .(-∞,-1]∪(0,1]D .[-1,0)∪(0,1]9、 已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式( )A.4()22x f x =+; B.2()1f x x =+; C.1()1f x x =+; D.2()21f x x =+. 10、 若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞-11、点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线2y x =-的距离的最小值是( )(A) 1(C) 2 (D)12、对于R 上可导的任意函数f (x ),且'(1)0f =若满足(x -1)f x '()>0,则必有( )A .f (0)+f (2)< 2 f (1)B .f (0)+f (2)≥ 2 f (1)C .f (0)+f (2)> 2 f (1)D .f (0)+f (2)≤ 2 f (1)第Ⅱ卷 (非选择题, 共90分)二.填空题(每小题5分,共20分)13、设2,[0,1]()2,(1,2]x x f x x x ⎧∈=⎨-∈⎩,则20()f x dx ⎰=14、若三角形内切圆半径为r ,三边长为a,b,c 则三角形的面积12S r a b c =++(); 利用类比思想:若四面体内切球半径为R ,四个面的面积为124S S S 3,,S ,; 则四面体的体积V=15、若复数z =21+3i,其中i 是虚数单位,则|z |=______. 16、已知函数f(x)=x 3+2x 2-ax +1在区间(-1,1)上恰有一个极值点,则实数a 的取值范围 _____.三、解答题(本大题共70分)17、(10分)实数m 取怎样的值时,复数i m m m z )152(32--+-=是:(1)实数?(2)虚数?(3)纯虚数?18、(12分)已知函数3()3f x x x =-.(1)求函数()f x 在3[3,]2-上的最大值和最小值.(2)过点(2,6)P -作曲线()y f x =的切线,求此切线的方程.19、(12分)在各项为正的数列{}n a 中,数列的前n 项和n S 满足⎪⎪⎭⎫ ⎝⎛+=n n n a a S 121, ⑴求321,,a a a ;⑵由⑴猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想20、(12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值(1)求,a b 的值与函数()f x 的单调区间(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围21、(12分)已知函数32()23 3.f x x x =-+(1)求曲线()y f x =在点2x =处的切线方程; (2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围. 22、(12分)已知函数()2af x x x=+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.参考答案1、D2、B3、D4、A5、D6、A7、B8、A9、B 10、C 11、B 12、C 13、56 14、 23413S S ++1R (S +S ) 15、1 16、[-1,7)17.解:(1)当01522=--m m ,即3-=m 或5=m 时,复数Z 为实数;(3分)(2)当01522≠--m m ,即3-≠m 且5≠m 时,复数Z 为虚数;(7分) (3)当03-m ,01522=≠--且m m ,即3=m 时,复数Z 为纯虚数;(10分)18.解:(I )'()3(1)(1)f x x x =+-,当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >,3[3,1],[1,]2∴--为函数()f x 的单调增区间当(1,1)x ∈-时,'()0f x <, [1,1]∴-为函数()f x 的单调减区间又因为39(3)18,(1)2,(1)2,()28f f f f -=--==-=-,所以当3x =-时,min ()18f x =- 当1x =-时,max ()2f x = …………6分(II )设切点为3(,3)Q x x x -o o o ,则所求切线方程为32(3)3(1)()y x x x x x --=--o o o o 由于切线过点(2,6)P -,326(3)3(1)(2)x x x x ∴---=--oo o o , 解得0x =o 或3x =o 所以切线方程为3624(2)y x y x =-+=-或即30x y +=或24540x y --= …………12分19 .解:⑴易求得23,12,1321-=-==a a a …………2分 ⑵猜想)(1*N n n n a n ∈--= …………5分 证明:①当1=n 时,1011=-=a ,命题成立②假设k n =时, 1--=k k a k 成立, 则1+=k n 时, )1(21)1(211111kk k k k k k a a a a S S a +-+=-=++++ )111(21)1(2111--+---+=++k k k k a a k k k a a k k -+=++)1(2111, 所以,012121=-+++k k a k a , k k a k -+=∴+11.即1+=k n 时,命题成立. 由①②知,*N n ∈时,1--=n n a n . …………12分20. 解:(1)32'2(),()32f x x ax bx c f x x ax b =+++=++由'2124()0393f a b -=-+=,'(1)320f a b =++=得1,22a b =-=-'2()32(32)(1)f x x x x x =--=+-,函数()f x 的单调区间如下表:所以函数()f x 的递增区间是(,)3-∞-与(1,)+∞,递减区间是2(,1)3-;…………6分(2)321()2,[1,2]2f x x x x c x =--+∈-,当23x =-时,222()327f c -=+ 为极大值,而(2)2f c =+,则(2)2f c =+为最大值,要使2(),[1,2]f x c x <∈-恒成立,则只需要2(2)2c f c >=+,得1,2c c <->或 …………12分21 解:(1)2()66,(2)12,(2)7,f x x x f f ''=-== ………………………2分∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;……4分 (2)记322()233,()666(1)g x x x m g x x x x x '=-++=-=-令()0,0g x x '==或1. …………………………………………………………6分'2m +. ………………………10分由()g x 的简图知,当且仅当(0),(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,过点A 可作三条不同切线.所以若过点A 可作曲线()y f x =的三条不同切线,m 的范围是(3,2)--.…………12分22. 解:(1)解法1:∵()22ln a h x x x x=++,其定义域为()0 +∞,,∴()2212a h x x x'=-+.∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=.∵0a >,∴a =经检验当a =1x =是函数()h x 的极值点,∴a =解法2:∵()22ln a h x x x x=++,其定义域为()0+∞,,∴()2212a h x x x'=-+.令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=.∵2180a ∆=+>,∴()0h x '=的两个实根114x -=(舍去),214x -=,当x 变化时,()h x ,()h x '的变化情况如下表:依题意,11-=,即23a =,∵0a >,∴a =(2)解:对任意的[]12,1x x e ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1x x e ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦.当x ∈[1,e ]时,()110g x x'=+>.∴函数()ln g x x x =+在[]1e ,上是增函数.∴()()max 1g x g e e ==+⎡⎤⎣⎦.∵()()()2221x a x a a f x x x+-'=-=,且[]1,x e ∈,0a >. ①当01a <<且x ∈[1,e ]时,()()()20x a x a f x x +-'=>,∴函数()2a f x x x=+在[1,e ]上是增函数,∴()()2min 11f x f a ==+⎡⎤⎣⎦.由21a +≥1e +,得a,又01a <<,∴a 不合题意.②当1≤a ≤e 时,若1≤x <a ,则()()()2x a x a f x x+-'=<, 若a <x ≤e ,则()()()20x a x a f x x +-'=>. ∴函数()2a f x x x=+在[)1,a 上是减函数,在(]a e ,上是增函数.∴()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥1e +,得a ≥12e +,又1≤a ≤e ,∴12e +≤a ≤e .③当a e >且x ∈[1,e ]时,()()()2x a x a f x x +-'=<,∴函数()2a f x x x=+在[]1e ,上是减函数.∴()()2min a f x f e e e ==+⎡⎤⎣⎦.由2a e e+≥1e +,得a又a e >,∴a e >.综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭.。
高中数学2-1、2-2综合测试 (31)

数学选修2-1和2-2综合测试一、选择题(本大题共10小题,每小题5分)⒈有下面四个命题:⑪方程2x-5=0在自然数集N中无解⑫方程2x²+9x-5=0在整数集Z中有一解,在有理数集Q中有两解⑬x=i是方程x²+1=0在复数集C中的一个解⑭x的四次方=1在实数R上有两解,在复数集C中也有两解其中正确命题的个数为()(复数的定义)A、1B、2C、3D、42、点P是椭圆x²/5+y²/4=1上的一点,F1和F2是焦点,且F1PF2=30°,求△F1PF2的面积()(S△F1PF2=b²tanα/2)A、4/(2+√3)B、4/(2+√2)C、2D、3/23、a,b为非零向量,“a⊥b”是“函数f(x)=(xa+b)*(xb+a)为一次函数”的()(常用逻辑用语的辨别)A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件4、已知P是椭圆x²/a²+y²/b²=1(a>b>0)上的一动点,且P椭圆长轴两顶点连线的斜率之积为-1/2,则椭圆的离心率为()(椭圆的离心率)A、√3/2B、√2/2C、1/2D、√3/35、在直三棱柱ABC-A1B1C1中,∠BAC=π/2,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的最小值( )(建立空间直角坐标系)A.√5/5 B.1 C.2√5/5 D.3√5/56、设函数f(x)在实数集R上的导函数是f'(x),且2f(x)+xf'(x)>x^2 则下面不等式恒成立的是?(导数与函数结合)A.f(x)>0B.f(x)<0C.f'(x)>xD.f'(x)<x7、已知f(x)=x^3+x(x属于R),a,b,c也属于R,且a+b大于0,b+c 大于0,c+a大于0,则f(a)+f(b)+f(c)的符号为(推理与证明)A.正B.负C.等于0 D.无法确定8、7.“因为指数函数y=ax是增函数(大前提),而y=x是指数函数(小前提),所以y=x是增函数(结论)”,上面推理的错误是( )(三段论的辨析)A.大前提错导致结论错B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提错都导致结论错9、(微积分应用)10、某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a元定期储蓄,若年利率为p且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为()(归纳推理应用)A.a(1+p)7B.a(1+p)8C.ap[(1+p)7-(1+p)]D.ap[(1+p)8-(1+p)]二、填空题(本大题共4小题,每小题5分)11、已知x是实数,y是纯虚数,且满足(2x-1)+(3-y)i=y-I,则x,y的值分别是(复数的计算)12、设A,B两点的坐标是(-a,0)(a,0),若动点M满足kMA*kMB=-1,则动点M的轨迹方程为(轨迹方程及x的取值范围)13、已知F是双曲线x²/4-y²/12=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为(双曲线的性质)14、观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,……由以上等式推测到一个一般的结论:对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1=__________________.(考查归纳推理的能力)三、解答题(共6小题,15~18题每题13分,19,20题每题14分)15、已知ab≠0求证:a+b=1的充要条件是a³-b³+ab-a²-b²=0(充要条件的证明)16、求证:ln(n+1)>1/3+1/5+1/7+...+1/(2n+1) (n∈R+)(数学归纳法和导数结合)17、(微积分与导数相结合)18、(空间直角坐标系解决几何问题).19、已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P 作直线l的垂线,垂足为Q,且向量QP*QF-FP*FQ=0(椭圆综合应用),⑪求动点P的轨迹C的方程⑫已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于AB两点,设||DA|=L1,|DB|=L2,求L1/L2+L2/L1的最大值20、设函数f(x)=(a/3)x^3+bx^2+4cx+d的图象关于原点对称.y=f(x)的图象在点P(1,m)处的切线斜率为-6.且当x=2时函数f(x)有极值.(导数综合应用)1.求a.b.c.d的值2.若x1,x2属于[-1,1].求证|f(x1)-f(x2)|<=44/3答案解析1、选C.有三解1、-1、i²2、选A.S△F1PF2=b²tanα/2=4×[1/(2+√3)]= 4/(2+√3)3、选B. 函数f(x)=(xa+b)*(xb+a)为一次函数﹤=﹥a⊥b且|a|≠|b|4、选B.设P(x0,y0),则[y0/(x0-a) ] ×[y0/(x0-a]= ﹣1/2 化简得x0²/a²+2y0²/a²=1又P在椭圆上,所以x0²/a²+y0²/b²=1 所以a²=2b²,e=√2/25、选A.以A为原点,AB,AC,AA1为x,y,z轴j建立坐标系选A.D(0,y,0) F(x,0,0) ,G(1/2,0,1),E(0,1,1/2)向量GD=(-1/2,y,-1), 向量EF=(x,-1,-1/2)∵GD⊥EF ∴-x/2-y+1/2=0∴y=1/2-x/2 (0<x<1)|DF|²=x²+y²=x²+(1/2-x/2)²=5/4*x²-1/2x+1/4=5/4(x²-2/5x)+1/4=5/4(x-1/5)²+1/5≥1/5∴|DF|min=√5/56、选A.反正法:设f(x)=<0 则0<x^2<2f(x)+xf'(x)=<xf(x) 因为R上都成立如果x<0 f'(x)<0 x<0时减函数 x>0 f'(x)>0 x>0是为增所以f(x)>f(0) 令原式中x=0则f(x)>0 即f(x)>f(x)>0 矛盾则f(x)>0恒成立 f(x)>1/2*x(x-f'(x)) 因为f(x)>0恒成立则 1/2*x(x-f'(x))=<07、选A2[f(a)+f(b)+f(c)]=(a^3+b^3+a+b)+(b^3+c^3+b+c)+(c^3+a^3+c+a )=(a+b)(a^2-ab+b^2+1)+(b+c)(b^2-bc+c^2+1)+(c+a)(c^2-ca+a^ 2+1)因为(a+b)(a^2-ab+b^2+1)=(a+b)[(a-b/2)^2+3b^2/4+1]>0同理(b+c)(b^2-bc+c^2+1)>0(c+a)(c^2-ca+a^2+1)>0所以2[f(a)+f(b)+f(c)]>08、选A 当a﹥0时y=ax为增函数,当a﹤0时y=ax为减函数9、选D.∫f(ax+b)dx=(1/a)∫f(ax+b)d(ax+b)令ax+b=t则,原式=(1/a)∫f(t)dt已知:∫f(x)dx=F(x)+C所以,原式=(1/a)F(t)+C将t=ax+b代入,就有:原式=(1/a)F(ax+b)+C10、选D.到2006年5月10日存款及利息为a(1+p).到2007年5月10日存款及利息为a(1+p)(1+p)+a(1+p)=a[(1+p)2+(1+p)]到2008年5月10日存款及利息为a[(1+p)2+(1+p)](1+p)+a(1+p)=a[(1+p)3+(1+p)2+(1+p)]……所以到2012年5月10日存款及利息为a[(1+p)7+(1+p)6+…+(1+p)]=a(1+p)[1-(1+p)7]1-(1+p)=ap[(1+p)8-(1+p)].11、-3/2和4i设y=bi(b∈R且b≠0)则(2x-1)+(3-bi)i=bi-i整理得(2x-1+b)+3i=(b-1)i∴2x-1+b=0且b-1=3解得x=-3/2 y=4i12、x²+y²=a²(x≠±a)设M为(x,y) x≠±a∵kMA*kMB=-1∴y/(x+a) ×y/(x-a)=-1∴x²+y²=a²(x≠±a)13、9已知F(-4,0)设F1为双曲线的右焦点,则F1(4,0),点A(1,4)在双曲线两支之间,由双曲线定义,|PF|-|PF1|=2a=4,而|PF|+|PA|=4+|PF1|+|PA|≥4+|AF1|=4+5=9当且仅当A,P,F1三点共线时,取等号14、24n-1+(-1)n22n-1等式右端第一项指数3,7,11,15,…构成的数列通项公式为an=4n-1,第二项指数1,3,5,7,…的通项公式bn=2n-1,两项中间等号正、负相间出现,∴右端=24n-1+(-1)n22n-1.15、必要性:∵a+b=1a+b-1=0∴(a+b)(a²-ab+b²)-(a²-ab+b²)=(a²-ab+b²)(a+b-1)=0充分性:a³+b³+ab-a²-b²=0(a²-ab+b²)(a+b-1)=0∵ab≠0∴a≠0且b≠0∴a²-ab+b²=(a-b/2) ²+(3/4)b²﹥0∴a+b-1=0即a+b=1综上所述:当ab≠0时a+b=1的充要条件是a³-b³+ab-a²-b²=0 16、17、⑪设tx^2=uφ(x)=(1/x^2)∫(0,x^2sinx)f(u)du.φ'(x)=[xf(x^2sinx)(2xsinx+x^2cosx)-2∫(0,x^2sinx)f(u)du]/x^3 (x不等于0)⑫x=0时,φ(0)=0,limφ(x)/x=lim∫(0,x^2sinx)f(u)du/x^3=limf(x^2sinx)(2xsinx+x^2cosx)/3x^2=f(0)=2 x趋于0时,limφ'(x)=lim[xf(x^2sinx)(2xsinx+x^2cosx]/x^3-2lim∫(0,x^2sinx)f(u)du]/ x^3=f(0)-2limf(x^2sinx)(2xsinx+x^2cosx)/3x^2=-2在x=0处不连续18、19、⑪设P(x,y), Q(x,-1)∵QP*FQ-FP*FQ=0∴(0,y+1)●(-x,2)-(x,y-1)●(x,-2)=0∴2(y+1)-(x²-2y+2)=0∴轨迹为C:x²=4y㈡设M(t,t²/4),|MD|²=t²+(2-t²/4)²圆M:(x-t)²+(y+t²/4)²=t²+(2-t²/4)²令y=0,得(x-t)²=4,x=t±2∴A(t-2,0),B(t+2,0)l1=√(t²-4t+8),l2=√(t²+4t+8)∴l1/l2+l2/l1=(l1²+l2²)/(l1l2)=[(t²-4t+8)+ (t²+4t+8)]/ √[(t²+4t+8)(t²-4t+8)]=(2t²+16)/√[(t²+8)²-16t²]=(2t²+16)/√(t⁴+64 )=2√[(t²+8)²/(t⁴+64)]=2√[(t⁴+64+16t²)/(t⁴+64)]=2√[1+16t²/(t⁴+64)]=2√[1+16/(t²+64/t²)]∵t²+64/t²≥2√64=16∴∴1+16/(t²+64/t²)≤220、⑪函数f(x)=(a/3)x^3+bx^2+4cx+d的图象关于原点对称,则f(0)=0,所以d=0①f(x)=x[(a/3)x²+bx+4c]②,f´(x)=ax²+2bx+4c③,当x=2时函数f(x)有极值,根据对称性,当x=-2时函数f(x)也有极值,x=±2是函数的两个极值点,也是f´(x)=ax²+2bx+4c=0的两个根,代入得:4a±4b+4c=0,解得b=0④,c=-a⑤,代入②函数f(x)化为:f(x)=(a/3)x(x²-12)⑥,同时f´(x)=a(x²-4),又y=f(x)的图象在点P(1,m)处的切线斜率为-6, 所以f´(1)=a(1²-4)=-6,所a=2⑦,由⑤,c=-2⑧,于是f(x)=(2/3)x(x²-12)⑨,f´(x)=2(x²-4)⑩,a=2 b=0 c=-2 d=0⑫.当x∈[-1,1]时,由⑩f´(x)<0,f(x)单调递减,x1,x2属于[-1,1],所以|f(x1)-f(x2)|≤f(-1)-f(1)由⑨,f(-1)=22/3,f(1)=-22/3所以|f(x1)-f(x2)|≤22/3-(-22/3)=44/3。
高中数学选修2-2分章节测试卷(含答案)

第一章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.函数y =sin(π4-x )的导数为( )A .-cos(π4+x )B .cos(π4-x )C .-sin(π4-x )D .-sin(x +π4)2.(2009·广东三校联考)函数f (x )=a ln x +x 在x =1处取得极值,则a 的值为( ) A.12B .-1C .0D .-123.如果f (x )为定义在R 上的偶函数,且导数f ′(x )存在,则f ′(0)的值为( ) A .2B .1C .0D .-14.(2009·全国卷Ⅰ)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1B .2C .-1D .-25.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]( ) A .在(-2,0)上递增 B .在(0,2)上递增 C .在(-2,0)上递增 D .在(0,2)上递增6.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤47.(2009·江西高考)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或78.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 9.由y =sin x ,y =cos x ,x =0,x =π所围成图形的面积可表示为( ) A.⎠⎛0π(sin x -cos x )dxC.⎠⎛0π(cos x -sin x )dx10.已知f (a )=⎠⎛01(2ax 2-a 2x )dx ,则f (a )的最大值为( )A .-12B.19C.29D .不存在11.(2009·青岛模拟)如右图,在一个长为π,宽为2的矩形OABC 内,由曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π412.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛02(2x -e x )dx =________.14.(2009·海淀区模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的导函数y=f ′(x )的部分图象如右图所示,且导函数f ′(x )有最小值-2,则ω=________,φ=________.15.若函数y =a (x 3-x )的单调递减区间为(-33,33),则a 的取值范围是________. 16.物体A 以速度v =3t 2+1在一直线上运动,在此直线上物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,当t =________ s 时,两物体相遇,相遇时物体A 走过________m.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2009·浙江高考)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调...,求a的取值范围.18.(本小题满分12分)已知F(x)=⎠⎛x-1t(t-4)dt,x∈(0,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.19.(本小题满分12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.20.(本小题满分12分)求函数y=x3-3ax+2的极值,并说明方程x3-3ax+2=0何时有三个不同的实根?何时有唯一的实根?(其中a>0)21.(本小题满分12分)已知函数f(x)=13ax3-bx2+(2-b)x+1,在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)求z=a+2b的取值范围.22.(本小题满分12分)(2009·湖北黄冈模拟)已知函数f(x)=12x2-a ln x(a∈R).(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.第二章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分.1.所有自然数都是整数,4是自然数,所以4是整数,以上三段推理( ) A .正确 B .推理形式不正确 C .两个“自然数”概念不一致 D .两个“整数”概念不一致 2.若a >0,b >0,则有( )A.b 2a >2b -aB.b 2a <2b -aC.b 2a ≥2b -a D.b 2a≤2b -a 3.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+144.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中为真命题的是( )A .③⑤B .①②C .④⑥D .③④5.若x ,y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14B .15C .16D .176.设f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52D .57.若O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心8.如图所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走( )A .15B .16C .17D .189.对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2)定义它们之间的一种“距离”:||AB ||=|x 2-x 1|+|y 2-y 1|.给出下列三个命题:①若点C 在线段AB 上,则||AC ||+||CB ||=||AB ||; ②在△ABC 中,若∠C =90°,则||AC ||2+||CB ||2=||AB ||2; ③在△ABC 中,||AC ||+||CB ||>||AB ||. 其中真命题的个数为( ) A .0B .1C .2D .310.已知a ,b ,c ,d 是正实数,P =a a +b +c +b a +b +d +c c +d +a +d c +d +b ,则有( )A .0<P <1B .1<P <2C .2<P <3D .3<P <411.一个等差数列{a n },其中a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (1≤n ≤19).一个等比数列{b n },其中b 15=1.类比等差数列{a n }有下列结论,正确的是( )A .b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *)B .b 1b 2…b n =b 1b 2…b 29-nC .b 1+b 2+…+b n =b 1+b 2+…+b 29-n (1≤n ≤29,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 29-n 12.观察数表1 2 3 4 …第一行 2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 … … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n 列的交叉点上的数应该是( ) A .2n -1 B .2n +1 C .n 2-1D .n 2二、填空题:本大题共4小题,每小题5分,共20分.13.若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c ),根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则四面体的体积V =________.14.若符号“*”表示求实数a 与b 的算术平均数的运算,即a *b =a +b2,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是________.15.把数列{2n +1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数字之和为________.16.已知n 次多项式P n (x )=a 0x n +a 1x n -1+…+a n -2x 2+a n -1x +a n .如果在一种算法中,计算x k 0(k =2,3,4,…,n )的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=xP k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要________次运算.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)证明对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2.18.(本小题满分12分)(2009·江苏高考)如右图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C .求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)求证:y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b (a ,b ,c 是互不相等的实数)这三条抛物线中,至少有一条与x 轴有两个交点.20.(本小题满分12分)已知函数f(n)(n∈N*),满足条件:①f(2)=2,②f(xy)=f(x)·f(y),③f(n)∈N*,④当x>y时,有f(x)>f(y).(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明你猜想的f(n)的解析式的正确性.21.(本小题满分12分)已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?22.(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N)有且只有两个不动点0,2,且f(-2)<-12.(1)求函数f(x)的解析式;(2)已知各项均不为零的数列{a n}满足4S n·f(1a n)=1,求数列的通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证当n≥2时,恒有a n<3成立.第三章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.一个实数x 与一个虚数y 的和x +y 必为( )A .实数B .虚数C .可能实数也可能是虚数D .纯虚数 2.复数4+3i1+2i 的实部是( )A .-2B .2C .3D .43.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上的对应点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.若复数a +3i1+2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .65.若3+2i 是关于x 的方程2x 2+px +q =0(p ,q ∈R )的一个根,则q 的值是( ) A .26B .13C .6D .56.已知z 1=2-5i ,z 2=-3+i ,z 1,z 2的对应点分别为P 1,P 2,则向量P 2P 1→对应的复数为( ) A .-5+6iB .5-6iC .5+6iD .-1-4i7.已知m1+i =1+n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 的值为( )A .1+2iB .1-2iC .2+iD .2-i8.复数z 满足|3z +1|=|z -i|,则复数z 对应点的轨迹是( ) A .直线B .正方形C .圆D .椭圆9.“复数z =12+32i ”是“z +1z ∈R ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10.复数-35+2i 2+35i +(21+i )2008的虚部为( )A .-1B .1C .-iD .i11.设f (n )=(1+i 1-i )n +(1-i 1+i )n(n ∈N *),则集合{x |x =f (n )}中的元素有( )A .1个B .2个C .3个D .无穷多个12.若复数z ,a ,x 满足x =a -z 1-a z,且|z |=1,则|x |等于( )A .0B .1C .|a |D.12二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =________. 14.复数z 满足|z +2+2i|=|z |,那么|z -1+i|的最小值是________. 15.i 是虚数单位,若1+7i 2-i=a +b i(a ,b ∈R ),则乘积ab =________.16.对于n 个复数z 1,z 1,…,z n ,如果存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1,z 2,…,z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)设复数z 1=1+i ,z 2=x +2i(x ∈R ).若z 1z 2为实数,求实数x ; (2)计算:(4-i 5)(6+2i 7)+(7-i 11)(4-3i).18.(本小题满分12分)在复数范围内解方程|z 2|+(z +z )i =3-i2+i .(i 为虚数单位)19.(本小题满分12分)已知z =(-1+3i)(1-i)-(1+3i)i ,ω=z +a i(a ∈R ),当|ωz |≤2时,求a的取值范围.20.(本小题满分12分)已知z ∈C ,z -1z +1是纯虚数,求|z 2-z +2|的最小值.21.(本小题满分12分)设虚数z 满足|2z +5|=|z +10|. (1)求|z |的值;(2)若z m +mz为实数,求实数m 的值;(3)若(1-2i)z 在复平面上对应的点在第一、三象限的角平分线上,求复数z .22.(本小题满分12分)对任意一个非零复数α,定义M α={ω|ω=α2n -1,n ∈N *}.(1)设α是方程x +1x =2的一个根,试用列举法表示集合M α.若在M α中任取两个元素,求其和为零的概率P ;(2)若集合M α中只有三个元素,试写出满足条件的一个α值,并说明理由.第一章 综合能力检测答案一、选择题:1.解析:y ′=-cos(π4-x )=-sin[π2-(π4-x )]=-sin(π4+x ). 答案:D2.解析:f ′(x )=ax +1,令f ′(x )=0,得x =-a ,由题知当a =-1时,原函数在x =1处取得极值. 答案:B3.解析:偶函数的导数为奇函数,即f ′(x )为奇函数,故f ′(0)=0. 答案:C4.解析:y ′=1x +a ,设直线y =x +1与曲线y =ln(x +a )相切的切点为(x 0,x 0+1),则1x 0+a =1,∴x 0=1-a ,∴ln(1-a +a )=2-a ,∴e 2-a =1, ∴a =2. 答案:B5.解析:F (x )=f [g (x )]=x 4-4x 2+6,F ′(x )=4x 3-8x .令F ′(x )>0,得-2<x <0或x >2,∴F (x )在(-2,0)上递增. 答案:C6.解析:由题意,得f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0恒成立,故Δ≤0,解得2≤m ≤4. 答案:D7.解析:设直线与曲线y =x 3的切点为P (x 0,y 0), 则⎩⎪⎨⎪⎧y 0=x 30y 0x 0-1=3x 20⇒切线斜率k =3x 20=0或k =274. 若k =0,切线方程为y =0. 由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9, 消去y ,得ax 2+154x -9=0,其判别式Δ=0⇒a =-2564;若k =274,切线方程为y =274(x -1),由⎩⎨⎧y =274(x -1),y =ax 2+154x -9消去y ,得ax 2-3x -94=0,其判别式Δ=0⇒a =-1. 答案:A8. 解析:∵f ′(x )=-x +b x +2,由题知,f ′(x )<0在(-1,+∞)上恒成立,即-x +bx +2<0,∴b <x (x +2)=(x +1)2-1. ∴b <-1.又当b =-1时,f ′(x )=-x -1x +2=-x (x +2)+1x +2=-(x +1)2x +2<0,∴b ≤-1. 答案:C9.解析:由y =sin x ,y =cos x ,x =0,x =π所围成的图形,如下图的阴影部分.答案:B10.解析:⎠⎛01(2ax 2-a 2x )dx=(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29. 答案:C11.解析:根据几何概型的意义,所投的点落在阴影部分的概率是S 阴影S 矩形,由S 阴影=⎠⎛0πsin xdx =(-cos x )|π0=2,所求概率为S 阴影S 矩形=22π=1π. 答案:A 12.解析:设函数F (x )=xf (x ),∴F ′(x )=[xf (x )]′=f (x )+xf ′(x )≤0,∴F (x )=xf (x )在(0,+∞)上单调递减.∵a <b ,∴F (a )≥F (b ),即af (a )≥bf (b ).又∵0<a <b ,f (b )≥0,∴af (a )≤bf (a ),bf (b )≥af (b ).∴bf (a )≥af (b ). 答案:A二、填空题:13.解析:⎠⎛02(2x -e x )dx =(x 2-e x )|20=4-e 2+1=5-e 2. 答案:5-e 214.解析:f ′(x )=ωcos(ωx +φ), 依题意,得ω=2,2cos(π3+φ)=-1,解得φ=π3.答案:2 π315.解析:∵y ′=a (3x 2-1),令y ′<0,当a >0时,不等式的解集为(-33,33); 当a <0时,不等式的解集为(-∞,-33)∪(33,+∞).∵已知函数y =a (x 3-x )在(-33,33)上单调递减, ∴a >0. 答案:a >016.解析:设A 追上B 时,所用的时间为t 0,依题意有s A =s B +5,即10tdt+5,t 30+t 0=5t 20+5,即t 0(t 20+1)=5(t 20+1),解得t 0=5 s .所以s A =5t 20+5=130(m). 答案:130三、解答题:17.解:(1)由函数f (x )的图象过原点,得b =0, 又f ′(x )=3x 2+2(1-a )x -a (a +2), f (x )在原点处的切线斜率是-3, 则-a (a +2)=-3,所以a =-3,或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12,所以a 的取值范围是(-5,-12)∪(-12,1).18.解:F (x )=⎠⎛x -1(t 2-4t )dt =(13t 3-2t 2)|x -1=13x 3-2x 2-(-13-2)=13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4,由F ′(x )<0,即x 2-4x <0,得0<x <4,∴F (x )的单调递增区间为(-1,0)∪(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,[4,5]上递增.又∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253. 19.解:(1)f ′(x )=3ax 2+2bx +c ,因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1,②又f (1)=-1,所以a +b+c =-1.③ 由①②③,解得a =12,b =0,c =-32.(2)因为f (x )=12x 3-32x ,所以f ′(x )=32x 2-32=32(x -1)·(x +1).当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0.所以函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1,当x =1时,函数取得极小值f (1)=-1.20.解:函数的定义域为R ,其导函数为y ′=3x 2-3a .由y ′=0,得x=±a ,列表讨论如下:x (-∞,-a ) -a(-a ,a ) a (a ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得,函数x =-a 处取得极大值2+2a 32;在x =a 处取得极小值2-2a 32.根据列表讨论,可作出函数的草图(如右图所示),因为极大值f (-a )=2+2a 32>0,故当极小值f (a )=2-2a 32<0,即a >1时,方程x 3-3ax +2=0有三个不同的实根;当极小值f (a )=2-2a 32>0,即0<a <1时,方程x 3-3ax +2=0有唯一的实根.21.解:求函数f (x )的导数得 f ′(x )=ax 2-2bx +2-b .(1)证明:由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根.所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f ′(x )>0,函数为增函数, 由x -x 1<0,x -x 2<0得a >0. (2)在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0.即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0.化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上三条直线2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A (47,67),B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).22.解:(1)f ′(x )=x -ax ,∵x =2是一个极值点,∴2-a2=0.∴a =4.此时f ′(x )=x -4x =x 2-4x =(x -2)(x +2)x.∵f (x )的定义域是{x |x >0},∴当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. ∴当a =4时,x =2是f (x )的极小值点.∴a =4. (2)∵f ′(x )=x -ax,∴当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x,令f ′(x )>0有x >a ,∴函数f (x )的单调递增区间为(a ,+∞); 令f ′(x )<0有0<x <a ,∴函数f (x )的单调递减区间为(0,a ). (3)证明:设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,∴g (x )在(1,+∞)上是增函数. ∴g (x )>g (1)=16>0.∴当x >1时,12x 2+ln x <23x 3.第二章 综合能力检测答案一、选择题:1.解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A 2.解析:∵b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,∴b 2a≥2b -a . 答案:C 3.解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.故选D. 4.解析:若F (k )真,则F (k +1)一定真,其逆否命题为F (k +1)不真,则F (k )不真. ∴F (7)不真,则F (6)不真;F (6)不真,则F (5)不真. 答案:A5.解析:x 2+y 2+2x =x 2+(6x -2x 2)+2x =-x 2+8x =-(x -4)2+16≤16. 答案:C6.解析:∵f (x +2)=f (x )+f (2) ∴令x =-1则有 f (1)=f (-1)+f (2) ∴f (2)=2f (1)又∵f (1)=12,∴f (2)=1∴f (5)=f (2+3)=f (2)+f (3) =f (2)+f (2)+f (1) =2f (2)+f (1)=2+12=52. 答案:C7.解析:OP →=OA →+λ(AB →|AB →|+AC →|AC →|),AP →=λ(AB →|AB →|+AC →|AC →|)=λ(e 1+e 2),∴AP 是∠A 的内角平分线.答案:B8.解析:这是图论中的一个问题,如果一条一条的去数,由于道路错综复杂,哪些已算过,哪些没有算过就搞不清了,所以我们换一个思路,用分析法来试试.要到H 点,需从F 、E 、G 走过来,F 、E 、G 各点又可由哪些点走过来,……,这样一步步倒推,最后归结到A ,然后再反推过去得到如下的计算法:A 至B 、C 、D 的路数记在B 、C 、D 圆圈内,B 、C 、D 分别到F 、E 、G 的路数亦记在F 、E 、G 圆圈内,最后F 、E 、G 各个路数之和,即得至H 的总路数如答图1所示. 答案:C9.解析:①当点C 在线段AB 上时,可知||AC ||+||CB ||=||AB ||,故①是正确的.②取A (0,0),B (1,1),C (1,0),则||AC ||2=1,||BC ||2=1,||AB ||2=(1+1)2=4,故②是不正确的.③取A (0,0),B (1,1),C (1,0),证明||AC ||+||CB ||=||AB ||,故③不正确.故选B. 10.解析:P =a a +b +c +b a +b +d +c c +d +a +dc +d +b>a a +b +c +d +b a +b +d +c +c c +d +a +b +d c +d +b +a =1, P =a a +b +c +b a +b +d +c c +d +a +dc +d +b<a a +b +b a +b +c c +d +d c +d =2, ∴1<P <2. 答案:B11. 解析:在等差数列{a n }中,a 10=0,知以a 10为等差中项的项和为0,如a 9+a 11=a 8+a 12=…=a 2+a 18=a 1+a 19=0.而在等比数列{b n }中,b 15=1,类比地有b 1b 29=b 2b 28=…=b 14b 16=1.从而类似地总结规律应为各项之积.∵等差数列{a n }中a 10=0,∴a 1+a 19=a 2+a 18=…=a 8+a 12=a 9+a 11=0. 即:a 19-n +a n +1=0, a 18-n +a n +2=0, a 17-n +a n +3=0, …∴a 1+a 2+…+a n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n . ∵b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1. 即b 29-n b n +1=b 28-n b n +2=…=b 14b 16=1.∴b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *).故选A.12.解析:根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行第n 列交叉点上的数应该是2n -1. 答案:A二、填空题:13.解析:由平面图形到空间图形的类比过程中,边长→面积,面积→体积. 答案:13R (S 1+S 2+S 3+S 4)14.解析:答案不唯一.因为a +(b *c )=a +b +c 2=2a +b +c 2,又(a +b )*(a +c )=(a +b )+(a +c )2=2a +b +c2,因此答案成立.同时:(a *b )+c =(a *c )+(b *c );a *(b +c )=(a +b )*c =(b +c )*a =(a +c )*b ;(a *b )+c =(b *a )+c 也符合题意. 答案:a +(b *c )=(a +b )*(a +c )15.解析:前面103个括号中共用了256个数,第104个括号有4个数分别是515,517,519,521,其和为2072. 答案:207216.解析:P n (x 0)=a 0x n -10+…+a n -2x 20+a n -1x 0+a n ,共需n 次加法运算,每个小因式中所需乘法运算依次为n ,n -1,…,1.故共需计算次数为n +n (n +1)2=12n (n +3).第二种运算中,P 0(x 0)=a 0,不需要运算,P 1(x 0)=x 0P 0(x 0)+a 1,需2次运算.P 2(x 0)=x 0P 1(x 0)+a 2,需2+2次运算,依次往下,P n (x 0)需2n 次运算. 答案:12n (n +3) 2n三、解答题:17.证明:(分析法)要证x 4+y 4≥12xy (x +y )2,只需证明2(x 4+y 4)≥xy (x +y )2, 即证2(x 4+y 4)≥x 3y +xy 3+2x 2y 2.只需x 4+y 4≥x 3y +xy 3与x 4+y 4≥2x 2y 2同时成立即可. 又知x 4+y 4-2x 2y 2=(x 2-y 2)2≥0,即x 4+y 4≥2x 2y 2成立, 只需再有x 4+y 4≥x 3y +xy 3成立即可. 由于x 4+y 4-x 3y -xy 3=(x -y )(x 3-y 3), ∵x -y 与x 3-y 3同号,∴(x -y )(x 3-y 3)≥0,即x 4+y 4≥x 3y +xy 3成立.∴对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2成立.18.证明:(1)因为E 、F 分别是A 1B 、A 1C 的中点,所以EF ∥BC ,EF ⊄面ABC ,BC ⊂面ABC .所以EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以BB 1⊥面A 1B 1C 1,BB 1⊥A 1D , 又A 1D ⊥B 1C ,所以A 1D ⊥平面BB 1C 1C , 又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C .19.证明:假设三条抛物线均与x 轴无两交点,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0,∴a 2+b 2+c 2-ab -ac -bc ≤0,即12[(a -b )2+(b -c )2+(c -a )2]≤0,∴a =b =c ,与a ,b ,c 是互不相等的实数矛盾.故三条抛物线中,至少有一条与x 轴有两个交点.20.解:(1)∵f (2)=f (2×1)=f (2)·f (1),又f (2)=2,∴f (1)=1.又∵f (4)=f (2·2)=f (2)·f (2)=4,2=f (2)<f (3)<f (4)=4,且f (3)∈N *.∴f (3)=3.(2)由f (1)=1,f (2)=2,f (3)=3,猜想f (n )=n (n ∈N *).(3)用数学归纳法证明:(ⅰ)当n =1时,f (1)=1,函数解析式成立. (ⅱ)假设n =k 时,f (k )=k ,函数解析式成立.①若k +1=2m (m ∈N *),f (k +1)=f (2m )=f (2)·f (m )=2m =k +1. ②若k +1=2m +1(m ∈N *),f (2m +2)=f [2(m +1)]=f (2)·f (m +1)=2(m +1)=2m +2,2m =f (2m )<f (2m +1)<f (2m +2)=2m +2. ∴f (2m +1)=2m +1=k +1.即当n =k +1时,函数解析式成立. 综合(ⅰ)(ⅱ)可知,f (n )=n (n ∈N *)成立. 21.解:(1)a 10=10,a 20=10+10d =40, ∴d =3.(2)a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), a 30=10[(d +12)2+34],当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞);(3)所给数列可推广为无穷数列{a n },其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n +1,…,a 10(n +1)是公差为d n 的等差数列.研究的问题可以是:试写出a 10(n +1)关于d 的关系式,并求a 10(n +1)的取值范围 研究的结论可以是:由a 40=a 30+10d 3=10(1+d +d 2+d 3), 依次类推可得a 10(n +1)=10(1+d +…+d n ) =⎩⎪⎨⎪⎧10×1-d n +11-d ,d ≠1,10(n +1),d =1.当d >0时,a 10(n +1)的取值范围为(10,+∞). 22.解:(1)依题意有x 2+a bx -c=x ,化简为(1-b )x 2+cx +a =0,由根与系数的关系得⎩⎪⎨⎪⎧2+0=-c 1-b,2·0=a 1-b,解得⎩⎪⎨⎪⎧a =0,b =1+c 2,代入表达式得f (x )=x 2(1+c 2)x -c ,由f (-2)=-21+c <-12,得c <3.又因为c ∈N ,b ∈N ,若c =0,b =1,f (x )=x 不止有两个不动点,若c =1,b =32,则f (x )=x只有一个不动点,所以c =2,b =2,故f (x )=x 22(x -1)(x ≠1).(2)由题设得4S n ·(1a n)22(1a n-1)=1,得2S n =a n -a 2n ,(*) 且a n ≠1,把n -1代入得2S n -1=a n -1-a 2n -1.(**)由(*)与(**)两式相减得2a n =(a n -a n -1)-(a 2n -a 2n -1),即(a n +a n -1)(a n -a n -1+1)=0,所以a n =-a n -1或a n -a n -1=-1,把n =1代入(*)得2a 1=a 1-a 21,解得a 1=0(舍去)或a 1=-1.由a 1=-1,a n =-a n -1,得a 2=1,这与a n ≠1矛盾,所以a n -a n -1=-1,即{a n }是以-1为首项,-1为公差的等差数列,所以a n =-n .(3)证明:(采用反证法)假设a n ≥3(n ≥2),则由(1)知a n +1=f (a n )=a 2n2a n -2,所以a n +1a n =a n 2(a n -1)=12·(1+1a n -1)≤12(1+12)=34<1,即a n +1<a n (n ≥2,n ∈N ),有a n <a n -1<…<a 2,而当n =2时,a 2=a 212a 1-2=168-2=83<3,所以a 2<3.这与假设矛盾,故假设不成立,所以a n <3.第三章 综合能力检测答案一、选择题:1.解析:由复数的概念可知x +y 仍是虚数. 答案:B2. 解析:4+3i 1+2i =(4+3i)(1-2i)1+22=(4+6)+(3-8)i5=2-i. 答案:B3.解析:m -2i 1+2i =(m -2i)(1-2i)(1+2i)(1-2i)=(m -4)-2(m +1)i5,对于m 的值,不存在m 使m -4>0且m+1<0,故对应的点不可能在第一象限. 答案:A4.解析:∵z =(a +3i)(1-2i)(1+2i)(1-2i)=a +65+(3-2a )i 5.若z 为纯虚数,则⎩⎪⎨⎪⎧a +6=0,3-2a ≠0⇒⎩⎪⎨⎪⎧a =-6,a ≠32.答案:C5.解析:由于实系数一元二次方程的虚根成对出现,是互为共轭复数的,故另一根为3-2i ,则(3+2i)·(3-2i)=q2=13.故选A.6.解析:∵P 2P 1→=OP 1→-OP 2→,∴P 2P 1→对应的复数为z 1-z 2=(2-5i)-(-3+i)=5-6i. 答案:B7.解析:由m1+i =1+n i 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,∴⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1,∴m +n i =2+i. 答案:C8.解析:设z =x +y i ,则|3x +3y i +1|=|x +y i -i|. ∴(3x +1)2+9y 2=x 2+(y -1)2, 即4x 2+4y 2+3x +y =0.∴复数z 对应点Z 的轨迹为圆.故选C.9.解析:由z =12+32i 可得,z +1z =12+32i +12-32i =1∈R . ∴z =12+32i 是z +1z ∈R 的充分条件.但z +1z ∈R ⇒|z |=1z =12+32i ,所以z =12+32i 是z +1z∈R 的充分非必要条件. 答案:A10.解析:-35+2i 2+35i +(21+i )2008=i(35i +2)2+35i +1i1004=i +1. 答案:B11.解析:f (n )=(1+i 1-i )n +(1-i1+i )n =i n +(-i)n (n ∈N *),根据i n 取值的周期性,给n 赋值发现集合{x |x =f (n )}={0,-2,2},故应选C.12.解析:由|z |=1,得|z |2=1,即z ·z =1,所以x =a -z z z -a z =a -zz (z -a )=-1z=-z ,所以|x |=|-z |=1. 答案:B二、填空题:13.解析:由已知得z =z 0z 0-3=3+2i 2i =1-32i. 答案:1-32i14.解析:设z =x +y i(x ,y ∈R ),由|z +2+2i|=|z |得(x +2)2+(y +2)2=x 2+y 2,即x +y +2=0,点(1,-1)到直线x +y +2=0的距离为d =|1-1+2|2=2,∴|z -1+i|的最小值为 2. 答案: 215.解析:1+7i 2-i =(1+7i)(2+i)4+1=-1+3i由-1+3i =a +b i 得a =-1,b =3 ∴ab =-3 答案:-316.解析:由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 2·(-2)=0, 即(k 1+k 2-2k 3)+(2k 1-k 2)i =0,∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0.∴k 1∶k 2∶k 3=1∶2∶32.(答案不唯一,只需满足1∶2∶32的任何一组都行) 答案:{1,2,32}三、解答题:17.解:(1)z 1z 2=(1+i)(x +2i)=x +2i +x i -2=(x -2)+(2+x )i ,因为z 1z 2是实数,所以x +2=0,所以x =-2.(2)原式=2(4-i)(3-i)+(7-i)(4-3i)=2(12-3i -4i 2)+(28-4i -21i +3i 2)=2(11-7i)+25(1-i)=47-39i.18.解:原方程化简为|z |2+(z +z )i =1-i ,设z =x +y i(x 、y ∈R ),代入上述方程;得x 2+y 2+2x i =1-i ,所以⎩⎪⎨⎪⎧x 2+y 2=1,2x =-1.解得⎩⎨⎧x =-12,y =±32.所以原方程的解是z =-12±32i.19.解:z =2+4i -(1+3i)i =1+i i =-i(1+i)=1-i ,ω=1+(a -1)i ,ωz =1+(a -1)i1-i=[1+(a -1)i](1+i)2=2-a +a i 2,由|ωz |≤2,得(2-a 2)2+(a2)2≤2,解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设z =x +y i(x ,y ∈R ),则z -1z +1=(x -1)+y i (x +1)+y i =x 2+y 2-1+2y i(x +1)2+y 2是纯虚数,∴x2+y 2=1且y ≠0,于是-1<x <1.而|z 2-z +2|=|(x +y i)2-(x +y i)+2|=|(x 2-y 2-x +2)+y (2x -1)i|=(x 2-y 2-x +2)2+y 2(2x -1)2=8x 2-6x +2=8(x -38)2+78,∴当x =38时,|z 2-z +2|取得最小值144. 21.解:(1)设z =x +y i(x ,y ∈R ,且y ≠0),则 (2x +5)2+(2y )2=(x +10)2+y 2. 化简得x 2+y 2=25.∴|z |=5. (2)∵z m +m z =x +y i m +m x +y i=(x m +mx x 2+y 2)+(y m -myx 2+y2)i 为实数,∴y m -myx 2+y 2=0. 又y ≠0,且x 2+y 2=25, ∴1m -m25=0,解得m =±5. (3)(1-2i)z =(1-2i)(x +y i)=(x +2y )+(y -2x )i ,依据题意,得x +2y =y -2x . ∴y =-3x .①又∵|z |=5,即x 2+y 2=25.② 由①、②得⎩⎨⎧x =102,y =-3102或⎩⎨⎧x =-102,y =3102.∴z =102-3102i 或z =-102+3102i. 22.解:(1)解方程x +1x =2,得x =22±22i.当α1=22+22i 时,ω=α2n -11=(α21)nα1=[(22+22i)2]n α1=in α1.由i n 的周期性知,ω有四个值,n =1时,ω=22+22i ;n =2时,ω=-22+22i ;n =3时,ω=-22-22i ;n =4是,ω=22-22i. 当α2=22-22i 时,ω=α2n -12=(α22)n α2=(-i)nα2.当n =1时,ω=22-22i ;n =2时,ω=-22-22i ;n =3时,ω=-22+22i ;n =4时,ω=22+22i.∴不论α=22+22i 还是α=22-22i ,都有 M α={22+22i ,22-22i ,-22+22i ,-22-22i},P =2C 24=13. (2)取α=-12+32i ,则α3=1,α5=-12-32i ,于是M α={α,α3,α5}={-12+32i,1,-12-32i}.(或取α=-12-32i ,则α3=1,α5=-12+32i)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修2-2综合测试题(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数z =(1+i)(-2+3i)(i 为虚数单位),则z 的共轭复数z =( ) A .1+i B .1-iC .-5+iD .-5-i2.已知复数z =1-2i ,那么1z等于( ) A.55+255i B.55-255i C.15+25i D.15-25i 3.证明命题:“f (x )=e x +1e x 在(0,+∞)上是增加的”,现给出的证法如下:因为f (x )=e x +1ex ,所以f ′(x )=e x -1e x .因为x >0,所以e x >1,0<1e x <1,所以e x -1ex >0,即f ′(x )>0,所以f (x )在(0,+∞)上是增加的,使用的证明方法是( )A .综合法B .分析法C .反证法D .以上都不是4.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则第n 个式子是( )A .n +(n +1)+(n +2)+…+(2n -1)=n 2B .n +(n +1)+(n +2)+…+(2n -1)=(2n -1)2C .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)25.函数y =sin(2x +1)的导数为( )A .cos(2x +1)B .2cos(2x +1)C .2cos xD .(2x +1)sin(2x +1)6.函数y =ln x (x >0)的图象与直线y =12x +a 相切,则a 等于( ) A .ln 2-1 B .ln 2+1C .ln 2D .2ln 27.已知函数y =xf ′(x )的图象如下图所示,其中f ′(x )是函数f (x )的导函数,函数y =f (x )的图象大致是图中的( )8.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2S a +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R =( )A.V S 1+S 2+S 3+S 4B.2V S 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4V S 1+S 2+S 3+S 49.f (x )=⎩⎪⎨⎪⎧ x 2,x ∈[0,1],2-x ,x ∈[1,2],则()20f x dx ⎰=( ) A.34 B.45 C.56 D .不存在10.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且(x -1)f ′(x )>0,a =f (0),b =f (12),c =f (3),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .b >a >cD .c >b >a11.若0<x <π2,则2x 与3sin x 的大小关系( ). A .2x >3sin x B .2x <3sin xC .2x =3sin xD .与x 的取值有关12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( ) A .有极大值,无极小值 B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.14.设z =(2-i)2(i 为虚数单位),则复数z 的模为________.15.由曲线y =(x -2)2+1,横坐标轴及直线x =3,x =5围成的图形的面积等于________.16.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答题应写出文字说明,证明过程或演算步骤)17.(10分)设复数z =(1+i )2+3(1-i )2+i,若z 2+ax +b =1+i ,求实数a ,b 的值. 18.(12分)已知数列8·112·32,8·232·52,…,8·n (2n -1)2·(2n +1)2,…,S n 为该数列的前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081. 观察上述结果,推测出S n (n ∈N *),并用数学归纳法加以证明.19.(12分)设F (x )=∫x 0(t 2+2t -8)d t .(1)求F (x )的单调区间;(2)求F (x )在[1,3]上的最值.20.(12分)已知函数f (x )=x 2+ln x .(1)求函数f (x )在[1,e]上的最大值和最小值;(2)求证:当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方. 21.(12分)在四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).(1)求证:P A ⊥底面ABCD ;(2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1.试计算(AB →×AD →)·AP →的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB →×AD →)·AP →的绝对值的几何意义.22.(12分)设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R .(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)设g (x )=f ′(x )e -x ,求函数g (x )的极值.高中数学选修2-2水平测试题一、选择题1.D2.C3.A4.C5.B6.A7.C8.C9.C 10.B 11.D 12.D提示:1.z =(1+i)(-2+3i)=(-2-3)+(-2+3)i =-5+i ,所以z =-5-i.2.1z =11-2i =15+25i. 3.从题设出发,利用导数理论证明函数是增函数,故本例所使用的方法是综合法.4.法一:由已知得第n 个式子左边是2n -1项的和且首项为n ,以后是各项依次加1,设最后一项应为m ,则m -n +1=2n -1,所以m =3n -2.法二:特值验证法.n =2时,2n -1=3,3n -1=5,都不是4,故只有3n -2=4.5.y =sin(2x +1)是由函数y =sin μ和μ=2x +1复合而成的,所以y ′x =y ′μ·μ′x =cos μ·(2x +1)′=2cos μ=2cos(2x +1).6.因为函数y =ln x 的导数y ′=1x ,又函数y =ln x (x >0)的图象与直线y =12x +a 相切,所以1x =12,即x =2,所以切点P (2,ln 2),所以ln 2=1+a ,即a =ln 2-1.7.由y =xf ′(x )的图象可得当x <-1时,f ′(x )>0,所以当x <-1时f (x )为增函数;当-1<x <0时,f ′(x )<0,所以f (x )在(-1,0)上为减函数;当0<x <1时,f ′(x )<0,所以f (x )在(0,1)上减函数;当x >1时,f ′(x )>0,所以f (x )在(1,+∞)上增函数,所以选择C.8.四面体中以内切球的球心为顶点,四面体的各个面为底面,可把四面体分割成四个高均为R的三棱锥,从而有13S 1R +13S 2R +13S 3R +13S 4R =V .即(S 1+S 2+S 3+S 4)R =3V . 所以R =3V S 1+S 2+S 3+S 4. 9.()20f x dx ⎰=()122012x dx x dx +-⎰⎰=⎝⎛⎭⎫13x 3⎪⎪⎪⎪10+⎝⎛⎭⎫2x -12x 221 =13+(4-2)-⎝⎛⎭⎫2-12=56. 10.因为(x -1)f ′(x )>0,所以当x >1,f ′(x )>0,即函数y =f (x )在(1,+∞)上是增函数,又f (x )=f (2-x ),所以a =f (0)=f (2),b =f (12)=f (32),所以c >a >b . 11.令f (x )=2x -3sin x ,则f ′(x )=2-3cos x .当cos x <23时,f ′(x )>0;当cos x =23时,f ′(x )=0;当cos x >23时,f ′(x )<0. 即当0<x <π2时,f (x )先递减再递增, 而f (0)=0,f ⎝⎛⎭⎫π2=π-3>0.故f (x )的值与x 取值有关,即2x 与sin x 的大小关系与x 取值有关.故选D.12.由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x 3.令g (x )=e x -2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e x x =e x ⎝⎛⎭⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g x x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值. 二、填空题13.13+23+33+43+53+63=212 14.5 15.32316.(0,1)∪(2,3) 提示:13.第i 个等式左边为1到i +1的立方和,右边为1+2+3+…+(i +1)的平方,所以第五个等式为13+23+33+43+53+63=212.14. z =(2-i)2=3-4i ,所以|z |=|3-4i|=32+(-4)2=5. 15.S =523[(2)1]x dx -+⎰=523(45)x x dx -+⎰=3253(25)3x x x -+=323. 16.由题意知f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或者t <3<t +1,得0<t <1或者2<t <3.三、解答题17.解:解:z =(1+i )2+3(1-i )2+i =2i +3(1-i )2+i =3-i 2+i =(3-i )(2-i )(2+i )(2-i )=1-i , 将z =1-i 代入z 2+a z +b =1+i ,得(1-i )2+a (1-i )+b =1+i ,即(a +b)-(a +2)i =1+i ,所以⎩⎪⎨⎪⎧ a +b =1,-(a +2)=1.所以⎩⎪⎨⎪⎧ a =-3,b =4. 18.解:推测S n =(2n +1)2-1(2n +1)2(n ∈N *). 用数学归纳法证明如下:(1)当n =1时,S 1=(2+1)2-1(2+1)2=89,等式成立; (2)假设当n =k 时等式成立,即S k =(2k +1)2-1(2k +1)2,那么当n =k +1时, S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=[(2k +1)2-1](2k +3)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +3)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=(2k +3)2-1(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2. 也就是说,当n =k +1时,等式成立.根据(1)和(2),可知对一切n ∈N *,等式均成立.19.解:依题意得F (x )=∫x 0(t 2+2t -8)d t=⎝⎛⎭⎫13t 3+t 2-8t |x 0=13x 3+x 2-8x , 定义域是(0,+∞).(1)F ′(x )=x 2+2x -8,令F ′(x )>0得x >2或x <-4,令F ′(x )<0得-4<x <2,由于定义域是(0,+∞),所以函数的增区间是(2,+∞),减区间是(0,2).(2)令F ′(x )=0,得x =2(x =-4舍去),由于F (1)=-203,F (2)=-283,F (3)=-6, 所以F (x )在[1,3]上的最大值是F (3)=-6,最小值是F (2)=-283. 20.解:(1)因为f (x )=x 2+ln x ,所以f ′(x )=2x +1x. 因为x >1时,f ′(x )>0,所以f (x )在[1,e]上是增函数,所以f (x )的最小值是f (1)=1,最大值是f (e)=1+e 2.(2)证明:令F (x )=f (x )-g (x )=12x 2-23x 3+ln x , 所以F ′(x )=x -2x 2+1x =x 2-2x 3+1x =x 2-x 3-x 3+1x =(1-x )(2x 2+x +1)x. 因为x >1,所以F ′(x )<0,所以F (x )在(1,+∞)上是减函数,所以F (x )<F (1)=12-23=-16<0.所以f (x )<g (x ). 所以当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方. 21.解:(1)因为AP →·AB →=-2-2+4=0,所以AP ⊥AB .又因为AP →·AD →=-4+4+0=0,所以AP ⊥AD .因为A B 、AD 是底面ABCD 上的两条相交直线,所以AP ⊥底面ABCD .(2)设AB →与AD →的夹角为θ,则cos θ=AB →·AD →|AB →|·|AD →|=8-24+1+16·16+4=3105. V =13|AB →|·|AD →|·sin θ·|AP →|=23105·1-9105·1+4+1=16. (3)|(AB →×AD →)·AP →|=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB →×AD →)·AP →|在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).22.解:(1)因为f (x )=x 3+ax 2+bx +1,故f ′(x )=3x 2+2ax +b .令x =1,得f ′(1)=3+2a +b ,由已知f ′(1)=2a ,因此3+2a +b =2a ,解得b =-3.又令x =2,得f ′(2)=12+4a +b ,由已知f ′(2)=-b ,因此12+4a +b =-b ,解得a =-32. 因此f (x )=x 3-32x 2-3x +1,从而f (1)=-52. 又因为f ′(1)=2×(-32)=-3,故曲线y =f (x )在点(1,f (1))处的切线方程为y -(-52)=-3(x -1),即6x +2y -1=0.(2)由(1)知g (x )=(3x 2-3x -3)e -x ,从而有g ′(x )=(-3x 2+9x )e -x .令g ′(x )=0,得-3x 2+9x =0,解得x 1=0,x 2=3.当x ∈(-∞,0)时,g ′(x )<0,故g (x )在(-∞,0)上为减函数;当x ∈(0,3)时,g ′(x )>0,故g (x )在(0,3)上为增函数;当x ∈(3,+∞)时,g ′(x )<0,故g (x )在(3,+∞)上为减函数.从而函数g(x)在x1=0处取得极小值g(0)=-3,在x2=3处取得极大值g(3)=15e-3.。