电力系统故障分析 11FA故障录波图的阅读与分析共30页文档
电力系统故障分析 11FA故障录波图的阅读与分析

平均刻度 值法
利用图中统一定义了单位幅值量的刻度格来充当标尺,通 过阅读波形所占格数来阅读幅值量。
标尺定义为以标准纸打印输出后的实际单位长度作为比例标尺刻度, 例如1kV/mm、100A/mm等
故障录波图的基本知识(3)
图A-1
通道注解部分
对所录波形的内容进行定义,标明当前通道中所录波 形的对象名称。
一种是在各录波通道附近对应位置注解,该种模式多 见于专用故障录波器。
一种是在录波图中对各录波通道进行编号,然后集中 对各通道进行注解定义,该种模式多见于保护装置打 印输出波形。
故障录波图的基本知识(4)
图A-1
时间刻度部分
以s(秒)或ms(毫秒)作为刻度单位
以0时刻为故障突变时刻,要求误差不超过1ms。
比例标尺 部分
通道注解 部分
时间刻度 部分
录波波形 部分
故障录波图的基本知识(1)
图A-1
文字信息部分
主要描述故障录波设备安装地点,被录波的相关设备的名称, 以及故障发生时录波启动的绝对时间等
有的故障录波图的文字信息部分相当于一份简单的故障报告
包括故障相别、故障电流、故障电压、故障测距等
可以简单地对故障的总体情况做一个了解。 但是不能作为最后对故障的定性分析结果。
电力系统故障分析

此时短路电流为:
t
i idza idfa Im cost Ime Ta
i T 0.01s T2
iim
i
LX
Ta R R
idfa
2II
e
2IIt源自idzati idza idfa Im cost Ime Ta
可见:无穷大系统发生三相短路时,周期分量不衰减,非 周期分量呈指数规律衰减。
x6*d
x7*d
取U4为基本
级
(2)变压器T1电抗标幺值的计算
% 2
2
%
S U U U U S U S
x x U S U U U S 2*d
2
d 2
4 av
k1
100
2 av T1 N
3av 2 av
4 av 3av
d 2
4 av
k1
100
d T1N
可见,变压器电抗标幺值的计算与基本级的选择无关。
五、短路计算的目的
短路电流计算结果 •是选择电气设备(断路器、互感器、瓷瓶、母线、电缆等) 的依据; •是电力系统继电保护设计和整定的基础; •是比较和选择发电厂和电力系统电气主接线图的依据,根 据它可以确定限制短路电流的措施。 •是以下分析和计算的依据: 中性点接地方式的选择、变压器接地点的位置和台数 对邻近的通讯系统是否会产生较大的干扰 接地装置的跨步电压、接触电压的计算 电力系统稳定性的计算等。
d 2
x1 L
d 2
4 av
2 av
可见,输电线路电抗标幺值的计算与基本级的选择无关。
GⅠ
T1
Ⅱ
T2
RⅢ
T3 Ⅳ
有名值 x1
电力系统故障波形图中关键点识别及分析

关键点分析:在电力系统故障波形图中,谐波干扰的分析是关键。通过对波形图的观察和分析, 可以确定谐波干扰的来源、传播途径和影响范围,为后续的治理提供依据。
PART FOUR
故障定位:通 过关键点识别, 快速准确地定 位电力系统中 的故障位置。
故障类型识别: 根据关键点的 特征,识别出 故障的类型, 如短路、断线
等。
保护装置动作 评估:利用关 键点识别技术, 评估保护装置 的动作行为是
否正确。
故障恢复与预防: 通过对关键点的 分析,制定针对 性的故障恢复和 预防措施,提高 电力系统的稳定
性和可靠性。
故障发生背景:某地区电力系统出现故障,导致大面积停电 关键点识别:通过故障波形图识别出故障发生的原因 案例分析:分析故障发生的原因,如设备老化、人为操作失误等 解决方案:提出相应的解决方案,如更换设备、加强人员培训等
分析方法:通过观察 曲线的变化趋势和特 征,结合实际运行经 验,对故障进行定位 和定性分析
短路故障波形 图
断相故障波形 图
接地故障波形 图
谐振故障波形 图
电压幅值:表示故障发生时电压的大小 波形畸变:表示电压波形是否正常 频率:表示电压的频率是否正常 相位差:表示不同相位的电压之间的角度差是否正常
远程监控技术:实 时监测电力系统的 运行状态,及时发 现故障并进行处理
智能运维:利用大数 据、人工智能等技术 对电力系统进行智能 化管理,提高运维效 率
发展趋势:随着物联 网、5G等技术的发展 ,远程监控与智能运 维将更加普及和智能 化
展望:未来电力系统 将实现全面远程监控 与智能运维,提高电 力系统的安全性和稳 定性
怎样分析电力系统故障录波图

本章主要介绍了电力系统故障录波图的基本概念、作用、分类及组成等,为后续的录波图分析提 供了基础知识。
书中的关键点和引人入胜的内容俯拾皆是。例如,书中对于故障录波图的生成原理及其与电力系 统运行参数的关系进行了深入讲解。同时,作者还通过对比不同国家和地区的电力系统以及不同 设备的故障录波图,展示了故障录波图的多样性和差异性。这些内容不仅增加了读者对于故障录 波图的理解,还拓宽了读者的视野,使其能够更好地理解和评估电力系统的性能。
阅读感受
阅读感受
《怎样分析电力系统故障录波图》是一本引人入胜的读物,它带领读者深入电力系统的内部,通 过故障录波图这一独特视角,洞察电力系统的运行状况和潜在问题。作者深厚的专业知识、生动 的行文风格以及独到的见解,都让这本书成为了一部值得一读的佳作。
在书中,作者详细评价了故障录波图对于电力系统的重要性。故障录波图不仅可以帮助我们更好 地理解电力系统的运行机制,还能够发现和预测潜在的问题,为维护和升级电力系统提供了有价 值的参考。作者还通过大量的实例和案例,向读者展示了如何通过分析故障录波图来解决实际问 题,这种实用性使得这本书对于从事电力系统相关工作的人来说非常有价值。
目录分析
时序分析是根据电气量随时间变化的情况,确定故障发生的时间、地点和类型;频域分析则是将 电气量信号从时域转换到频域进行分析,以便更好地提取特征;时频分析则是将电气量信号从时 域转换到时频域进行分析,以便更好地揭示信号的局部特征。在实际应用中,需要根据具体情况 选择合适的分析方法。 为了使读者更好地理解和掌握录波图在实际中的应用,本书中列举了一些经典案例进行分析。这 些案例包括不同类型短路故障、断线故障等,每个案例都进行了详细的分析,并给出了相应的处 理措施。通过这些案例的学习,读者可以更加深入地了解录波图在实际中的应用情况及重要性。 结...
电力系统故障录波数据分析

电力系统故障录波数据分析发表时间:2018-09-12T08:57:53.180Z 来源:《河南电力》2018年7期作者:鄢园[导读] 电力系统故障录波系统是电力系统发生故障及振荡时能自动记录的一种系统或一种装置鄢园(国网福建省电力公司厦门供电公司 361000)摘要:电力系统故障录波系统是电力系统发生故障及振荡时能自动记录的一种系统或一种装置。
近年来,不同类型的故障录波器已在电力系统中得到广泛应用,所记录的各种故障录波数据为电力系统故障分析及各种保护动作行为的分析和评价提供了数据来源和依据。
目前,电网调度端已能通过专用网或电话网将电网故障录波数据集中到一起,但如何有效管理和利用这些信息进行必要的故障分析、保护动作行为评价及故障测距等并没有统一的标准,因此,本文针对电力系统故障录波数据进行了分析。
关键词:电力故系统故障分析;故障录波数据;双端测距一、电力故障录波器目前,在各个电压等级的变电站中,故障录波器的应用非常普遍。
故障录波器的系统运行原理是基于三相制(三相电压和三相电流)的电力系统进行运作的。
以单相为例,电力系统的电压经由滤波器将低频漂移信号和高频干扰信号过滤,再由霍尔电压传感器变为电流信号,调理电路则将电流信号转变为等比例电压信号,并将该信号传递给模数转换芯片转换成数字信号,通过相关的计算方法对这些数据进行分析,可以得到关于电压的各项参数,包括电压峰值、有效值、最大值、THD等,监控中心获得这些参数后,则可根据分析结果向电力系统故障录波器发送如检测电压、电流以及调整故障记录限值的相关控制指令,并以此促使电力系统始终处于正常的工作状态中。
由此可见,故障录波器是对电力系统故障进行动态记录的主要设备,其负责对电力系统中高速故障及其动态过程的全程记录工作。
(1)对高速故障的记录是针对新型高速断电保护以及安全自动装置进行检测的主要手段,包括对电力系统的短路及通过线路分布参数与电流和电压的系统操作错误的暂态过程进行记录。
电力系统故障波形图中关键点识别及分析

电力系统故障波形图中关键点识别及分析IB:I=[(总格×电流标度I)/(2×√2)] ×变比=[(3.8×4)/(2×√2)] ×1200/1=6450AI0的计算方法与IB相同,需要说明的是I0实际指的是3I0。
电压计算方法:先以UB通道上存在的故障电压波形两边的最低波峰为基准点画出一条刻度标尺垂直线,同样如图3所示,最后在刻度标尺上计算出两边最低波峰之间存在的间隔有几格标尺,计算出来总标尺格除以2得到电压具体存在标尺格,在图中显示的U:45V/格(说明:不同故障波形该值是不相同),在除以√2得到二次电压有效值,最后再乘以本间隔母线PT的变比,即得到一次电压有效值。
假设本间隔PT变比为1100/1。
UB:U=[(总格×电流标度I)/(2×√2)] ×变比=[(2×45)/(2×√2)] ×1100/1=35kVU0的计算方法与UB相同,需要说明的是U0实际指的是3U0。
3. 故障波形图中读取电流、电压相位判断某次故障的相位是否正确不能凭借报告一些简单信息判断,为了准确分析清楚故障的相位必须借助波形图。
故障电流、电压相位读取:可以利用故障波形图中的电流、电压波测量故障期间电流、电压的相位,分析故障时的测量阻抗角。
测量方法为通过测量电流、电压波形过零的时间差来计算相位,若电流过零时间在电压过零时间之后则为滞后相位,否则为超前相位。
电流过零变负滞后电压过零变负约4ms,,相当于滞后18°×4=72°,因此也可以判断故障发生在正方向,阻抗角接近线路阻抗角为金属性接地故障。
若实测电流超前电压110°左右则说明是反向发生故障,如图4所示。
再由图4可以看出,B相发生故障后,B相相电压明显降低,非故障A、C相电压相位基本没有变,因此可以画出它们的相量图,如图5所示。
电力系统故障分析
电力系统故障分析电力系统是现代社会的重要基础设施之一,但由于各种原因,电力系统故障时有发生。
电力系统故障会导致停电、电器设备损坏甚至火灾等严重后果,因此对电力系统故障进行及时准确的分析和处理显得非常重要。
电力系统故障包括线路故障、设备故障和供电故障等多种类型。
线路故障是指电力线路出现短路、断线或接地等问题,通常由于外力作用造成,如闪电、风灾等。
设备故障指输电设备如变压器、断路器、电缆等出现故障,通常由于设备老化、负荷过重等原因引起。
供电故障是指供电部门或电力公司外部问题导致的停电,如输电线路断裂、变电站故障等。
分析电力系统故障可采用以下步骤:首先,确定故障现象。
当电力系统出现故障时,应通过观察和听取用户反映等方式确定故障现象,如停电、设备过热、线路短路等。
可以通过与用户的沟通和实地勘察来获取更准确的故障描述。
其次,分析可能的故障原因。
根据故障现象,结合电力系统的特点和运行情况,分析可能的故障原因。
例如,当出现停电时,可能是由于输电线路短路、变压器故障或供电部门问题引起的。
通过排除法和专业知识可以缩小故障原因的范围。
接下来,进行具体的故障诊断。
针对可能的故障原因,进行具体的故障诊断。
可以利用各种技术手段和工具,如红外热像仪、电力设备检测仪、故障录波仪等进行检测和测试,找出故障点并确定具体故障原因。
对电力系统故障进行分析的关键是要快速准确地找出故障点和故障原因,以便尽快采取有效措施进行处理和修复。
同时,应建立健全的电力系统故障监测和预警机制,通过实时监测和故障预测,提前发现和预防可能的故障,减少故障对电力系统运行的影响。
总之,电力系统故障是不可避免的,但通过科学的故障分析和处理,可以最大程度地减少故障对电力系统运行的影响。
只有从故障中总结经验、不断完善电力系统的设计和运行,才能提高电力系统的可靠性和稳定性,确保供电的安全和正常运行。
故障录波图分析
故障录波图分析 Prepared on 24 November 2020在我们的日常生产中经常需要通过录波图来分析电力系统到底发生了什么样的故障保护装置的动作行为是否正确二次回路接线是否正确CT、PT 极性是否正确等等问题。
接下来分享一下分析录波图的基本方法:1、当我们拿到一张录波图后,首先要大致判断系统发生了什么故障,故障持续了多长时间。
2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序负荷角为多少度3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。
(注意:选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。
一、单相接地短路故障录波图分析:分析单相接地故障录波图的要点:1、一相电流增大,一相电压降低;出现零序电流、零序电压。
2、电流增大、电压降低为同一相别。
3、零序电流相位与故障相电流同向,零序电压与故障相电压反向。
4、故障相电压超前故障相电流约 80 度左右;零序电流超前零序电压约 110 度左右。
当我们看到符合第 1 条的一张录波图时,基本上可以确定系统发生了单相接地短路故障;若符合第 2 条可以确定电压、电流相别没有接错;符合第 3 条、第 4 条可以确定保护装置、二次回路整体均没有问题(不考虑电压、电流同时接错的问题,对于同时接错的问题需要综合考虑,比如说你可以收集同一系统上下级变电所的录波图,对于同一个系统故障各个变电所录波图反映的情况应该是相同的,那么与其他站反映的故障相别不同的变电站就需要进行现场测试)。
若单相接地短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。
这里需要特别说明一下南瑞公司的 900 系列线路保护装置,该系列保护在计算零序保护时加入了一个 78 度的补偿阻抗,其录波图上反映的是零序电流超前零序电压 180 度左右。
电力系统故障分析
电力系统故障分析1. 引言电力系统作为现代社会的重要根底设施之一,一旦发生故障将会对社会生活、经济开展和国家平安产生重要影响。
因此,对电力系统故障的及时分析和解决显得尤为重要。
本文将从故障的定义、故障分类以及故障分析方法等方面进行探讨。
2. 故障的定义在电力系统中,故障是指任何导致系统不正常运行、系统能力下降或运行中断的事件。
故障可能来源于设备故障、外界因素、操作错误等多种原因。
3. 故障分类根据故障的性质和原因,电力系统的故障可以分为如下几类:短路故障是指电路中两个或多个不相邻的导体之间发生异常接触,导致电流迅速增大的现象。
短路故障可能由电线短路、设备内部故障等原因引起。
3.2. 开路故障开路故障是指电路中出现断开的情况,导致电流无法顺利流通。
开路故障可能由电线折断、设备断路等原因引起。
3.3. 过载故障过载故障是指电路中的负载超过了设备的额定电流,导致设备过载损坏或烧毁的现象。
过载故障可能由负载过大、短路等原因引起。
接地故障是指电路中的导体接地或与地之间发生异常接触,导致电流通过地返回电源的现象。
接地故障可能由设备绝缘损坏、接线错误等原因引起。
4. 故障分析方法为了快速准确地分析电力系统的故障,并采取相应的措施进行修复,以下是几种常用的故障分析方法:4.1. 电力系统监测技术通过使用电力系统监测技术,可以实时监测电力系统的运行状态,包括电流、电压、频率等参数的监测。
当系统出现故障时,可以通过监测数据来判断故障的发生位置和类型。
4.2. 故障记录和数据分析电力系统故障记录的收集和分析是故障分析的重要手段。
通过故障记录,可以了解故障的发生频率、时刻、持续时间等信息,进而分析故障的原因和影响。
4.3. 模拟仿真分析通过使用电力系统模拟仿真软件,可以对电力系统进行虚拟仿真实验,模拟各种故障情况,并通过分析仿真结果来分析故障原因和解决方案。
4.4. 经验和专家知识电力系统的故障分析也离不开经验和专家知识的支持。
故障录波录波图分析word版
故障录波录波图分析各类故障情形下的波行特点:单相接地故障,故障相电流和零序电流大小相等且同相位,故障相电压有必然程度减小,同时有零序电压显现。
两相之间故障,两个故障相的电流大小相等,方向相反,没有零序电流。
两相接地故障,两个故障相的电流突变增大,但两个电流之间的相位有角度差,转变范围随过渡电阻的不同在60°-180°之间转变,但有零序电流显现。
三相接地故障或不接地故障,三相电流同步增大,没有零序电流和零序电压。
故障进程中的波形特点:➢故障相电流有明显突变增大,电压有必然程度减小,同时有零序电压和零序电流显现➢在故障切除后,电流通道变成一根直线。
若是是线路PT,在线路两头故障均切除后故障相电压变成0,零序电流变得很小或为0,但有专门大的零序电压。
重合成功。
三相电流恢复正常负荷电流,三相电压恢复对称。
依照故障录波图能够取得的信息1、发生故障的电气元件和故障类型2、爱惜动作时刻和故障切除时刻3、故障电流和故障电压4、重合时刻和是不是重合成功5、详细的爱惜动作情形6、完成附属功能(测距、阻抗轨迹、相量和谐波分析等)7、直流是不是正常,是不是接地、短路8、高频是不是发信在咱们的日常生产中常常需要通过录波图来分析电力系统到底发生了什么样的故障?爱惜装置的动作行为是不是正确?二次回路接线是不是正确?CT、PT 极性是不是正确等等问题。
接下来我就先讲一下分析录波图的大体方式:一、当咱们拿到一张录波图后,第一要通过前面所学的知识大致判定系统发生了什么故障,故障持续了多长时刻。
二、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是不是正确,是不是为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确信故障态各相电流电压的相位关系。
(注意选取相位基准时应躲开故障初始及故障终止部份,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。