深部找矿-概念、技术与实例-修改

合集下载

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究地质勘查是矿产资源勘查的重要环节,而深部找矿技术则是地质勘查中的关键环节之一。

深部找矿技术是指通过对地下深层构造和岩石矿物等特征的研究,利用地球物理、地球化学、遥感等技术手段,在地质勘查中寻找潜在矿产资源的技术。

随着矿产资源的逐渐枯竭,矿产富集程度的降低,深部找矿技术的应用越来越受到重视。

本文将对地质勘查常用的深部找矿技术及其发展进行研究和探讨。

一、深部找矿技术的类型1. 地球物理勘查技术地球物理勘查技术是深部找矿中常用的技术手段之一,主要包括重力勘查、地震勘查、电磁勘查、磁法勘查等。

重力勘查通过测定地球重力场的分布来推断地下岩石构造的变化和岩石密度的差异,从而找出可能的矿产资源富集区。

地震勘查则是通过地震波在地下介质中的传播变化,研究地下构造的性质和矿床的赋存状态。

电磁勘查则是利用地下导电体对地磁场产生的扰动来推断地下电性差异,进而找出潜在的矿产资源。

2. 地球化学勘查技术地球化学勘查技术是通过对地表、地下水和地下气体等地球化学异常的观测和分析,寻找潜在的矿床。

常用的地球化学勘查技术包括土壤化学勘查、水质化学勘查、气体地球化学勘查等。

通过对样品的采集和分析,可以发现地下矿床的异常富集现象,为深部找矿提供重要信息。

3. 遥感技术遥感技术是通过卫星、航空等远距离传感器对地表地质、地形、植被等信息进行观测和获取,来寻找潜在的矿产资源。

遥感技术可以对地下地质构造进行成像,发现地下构造的异常变化,为深部找矿提供重要数据支持。

二、深部找矿技术的发展趋势1. 多技术综合应用随着勘查深度的增加和矿产资源的逐渐枯竭,深部找矿技术的发展趋势是多技术综合应用。

不同的勘查技术各有特点和局限性,通过综合应用可以弥补各自的不足,提高勘查的精度和效率。

可以将地球物理勘查与地球化学勘查、遥感技术相结合,充分发挥各自的优势,提高深部找矿的成功率。

2. 数字化技术的应用随着信息技术的发展,数字化技术在深部找矿中的应用逐渐增多。

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究地质勘查是指通过对地球内部结构、物质成分、地形地貌等特征的观察和分析,以及对地球历史的探究,来获取有利于找矿的地质信息。

深部找矿技术是指利用各种现代科技手段和方法,探测地球深部隐藏的有矿资源,以期在探测中发现有利于矿产资源的分布、规模和类型的地质信息,从而开展找矿勘探和开采工作。

目前,地球浅层的矿产资源已被重复开采和探明,而深层的矿藏依然是人们亟待探索的目标之一。

因此,深部找矿技术的发展对于矿产资源开发与利用具有重要的意义。

本文从三个方面,即物理勘探技术、地球化学勘探技术和生物勘探技术介绍常用的深部找矿技术,并谈谈其发展研究趋势。

一、物理勘探技术物理勘探技术是利用物理现象和物理场探测和识别地下物质的分布规律,并进而推测矿体的位置、性质和规模等。

目前,物理勘探技术主要应用以下几种方法:1. 重力勘探。

重力勘探主要通过对地球重力场进行探测和分析,来获取地下物质的分布情况,并推测矿体的位置和规模等。

重力勘探技术优点是对深部矿体的分布情况具有高分辨率和高灵敏度,缺点是受到地球重力场本身的干扰较大。

2. 电磁勘探。

电磁勘探主要利用地球电磁场的变化来探测地下物质的分布情况,并推测矿体的位置和规模等。

电磁勘探技术优点是对低阻抗矿体的探测效果较好,且在不同介质之间的电磁波反射和折射表现不同,可提供更为丰富的地质信息。

但其缺点是深度探测能力较差,且容易受到存在其他导电物质的影响。

3. 地震勘探。

地震勘探是利用地震波在地球内部传播时的反射、折射、衍射等现象,来获取地下物质的分布情况,并推测矿体的位置和规模等。

地震勘探技术适用于探测深部矿体,且能够在不同岩土体间作出较为清晰的分界,具有较高的可靠性和准确性。

但其局限性是受到合成孔径雷达和地震应变测量等技术的发展,深部地震勘探被越来越多地取代。

4. 雷达勘探。

雷达勘探主要利用电磁波在地下介质中的传播特性,获取地下物质的分布情况,并推测矿体的位置和规模等。

关于地质矿产勘探深部的找矿途径探讨

关于地质矿产勘探深部的找矿途径探讨

关于地质矿产勘探深部的找矿途径探讨地质矿产勘探深部的找矿途径是指通过采用各种地球物理、地球化学、地质学等技术手段,对地球深部进行探查,并从中发现各种矿产资源的方法。

地球深部找矿是矿产资源勘探的重要组成部分,对于提高矿产资源探查的效率和成功率,培养人才和推动矿产资源开发都有着重要的意义。

目前,随着勘探技术的发展,逐渐出现了许多有效的深部找矿途径。

下面,我们将从地球物理、地球化学和智能化技术三个方面,对深部找矿途径进行一一探讨。

一、地球物理勘探地球物理勘探是一种通过对地球表面上的物理场进行测量,来了解地下物质分布情况的勘探方法。

主要包括重力勘探、地震勘探、电磁勘探和磁力勘探等。

这些勘探方法的原理基础是各种物理场与地下物质的相互作用,通过测定这些相互作用的性质和规律,就可以推断出地下物质的类型、分布、空间形态和性质等。

例如,在非同质地层中,由于地下物质的密度和波速的差异,可以产生反射、折射和干涉现象,形成地震波的成像。

地震勘探可通过探测地震波在不同介质中的反射、折射和传播特性,推断出地下物质的类型、分布、空间形态和性质等。

另一方面,地球物理勘探的优势在于能够客观、直观地反映地下深部状况,为深部勘探提供可靠数据和有力支撑。

但也存在一些局限性,例如缺乏地质信息的支持和降低探查深度等难题。

地球化学勘探是指通过采集和分析地下物质的化学成分,探查地下物质的类型、性质、分布和矿化程度的勘探方法。

现代地球化学勘探主要采用了现代科技手段,如光谱技术、等离子体质谱技术、原子吸收光谱技术等,极大地提高了勘探的效率和精度。

例如,在可矿化的含矿区域,矿 rocks 会释放出一些化学物质,例如气体、液体和微量元素等,地球化学勘探可以运用其特定的原理和方法,通过采集和分析这些物质的组成和浓度,来识别地下的矿产资源。

另一方面,地球化学勘探的优势在于能够独立于地下物质的特性,几乎可以探查所有地下物质类型,为深部勘探提供了重要手段。

其劣势在于探查范围相对较窄,有时可能需要更多的辅助数据和技术。

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究地质勘查是指通过对地球表层及其下部岩石、矿床和地下水等各种地质现象及工程勘察资料的系统观察、综合分析和科学评价,对工程、资源的勘查和评价进行全面、准确的判断和预测的技术活动。

在矿产勘查中,深部找矿是一种重要的技术手段,其主要应用于寻找位于地球深部的大型矿床。

本文将对地质勘查常用的深部找矿技术及其发展研究进行分析和探讨。

一、深部找矿技术1. 电法勘探电法勘探是一种利用地球物理现象电性的勘探方法,可以进行大范围、间接而快速的深部找矿。

该技术是利用地球内部的电性差异进行探测,其原理是根据不同岩石的导电性差异,通过测量地下电场大小和方向,推断地下物质的类型和分布情况。

电法勘探技术具有深掘范围广、数据分析简单、操作方便等特点,但受到地表条件、水体干扰等因素的影响。

2. 地震勘探地震勘探是一种基于地震波传播原理的勘探技术,适用于寻找位于地壳深处的各种地质体。

该方法是通过地震波在不同岩石层系中传播和反射,测定地下岩石的性质和构造,进而推断矿床的位置和类型。

地震勘探技术可将地质勘查的深度扩展至100-200千米,具有勘查深度深、范围广、解释结果明确等特点,但受到地震波能量、仪器设备等条件的限制。

3. 重力勘探1. 技术手段提高在深部找矿技术方面,各种技术手段得到了不断的提高和发展。

电法勘探中智能化探测技术、电磁激励技术在深部找矿中得到了广泛应用;地震勘探中地震成像、反演技术与3D/4D勘探技术不断完善和提高;重力勘探中测量仪器精度和误差控制技术加强,在深部勘探中的应用也得到了增强;磁法勘探中磁化率弱信号检测技术、独立成分分析技术以及高精度磁测技术等不断提高磁法勘探的解释能力。

随着深部找矿技术的发展,为了适应地质勘查的需要,不断提高深部勘查的效率和准确性,综合勘探方法越来越受到关注。

综合勘探方法是将多种勘探技术相结合,通过收集处理各类数据,从而综合分析地下岩体构造、化石组合、物理性质等信息,最终确定深部矿床分布的位置等信息。

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究地质勘查是矿产资源勘探的重要环节,其目的是发现矿产资源的存在、规模和品位,并为矿产资源的综合利用提供必要的地质信息。

随着人类对矿产资源需求的不断增加,对深部矿产资源的勘查需求也日益增加。

深部找矿技术是指针对地球深部进行的矿产资源勘查技术,是地质勘查的重要组成部分。

本文将介绍地质勘查常用的深部找矿技术及其发展研究。

一、地球物理勘查技术地球物理勘查技术利用地球物理方法对地下的物理性质进行测量和解释,以寻找矿产资源的存在。

地球物理勘查技术主要包括地震勘探、重力勘探、地电勘探、地磁勘探和电磁法勘探等。

这些勘查方法在深部找矿中发挥着重要的作用。

地震勘探可以通过地震波在地下的传播速度和反射特性,揭示地下构造,帮助找矿定位。

重力勘探可以通过地下岩层的密度差异,对矿体进行精确定位。

电磁法勘探则可以探测矿体的电阻率和导电率,找出潜在的矿产资源。

二、地球化学勘查技术地球化学勘查技术是通过对地表和地下水体、岩石、土壤等物质中元素和化学成分的分析,来推断地下矿体的存在和性质。

地球化学勘查技术包括大地化学勘查、水文地球化学勘查和岩矿地球化学勘查等。

这些技术可以通过采样和化验分析,从地表或井下水体中发现矿产相关元素的异常富集情况,帮助勘查人员确定矿产资源的位置和规模。

三、遥感勘查技术遥感技术是利用航空或卫星等远距离传感器获取地面、地表和地下,地壳等信息的技术。

遥感技术在深部找矿中发挥着越来越重要的作用。

利用遥感技术可以获取地表地貌、植被覆盖、地形地貌、地下水体的信息,通过数据处理和解译,可以识别潜在的矿产资源迹象和找矿标志,对深部找矿提供了有效的手段。

四、地质雷达勘查技术地质雷达勘查技术是利用地质雷达仪器对地下介质中的微小变化进行探测的技术。

地质雷达是一种高频电磁波,可以穿透地下数十米到数百米的深度,对地下岩石、矿体等进行成像探测。

地质雷达勘查技术在地质勘查中具有广阔的应用前景,可以用于深部找矿以及地下水体等资源的勘查。

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究

地质勘查常用的深部找矿技术及发展研究地质勘查是寻找矿产资源的一项重要工作,其中深部找矿技术是一种在较深层次进行勘查的方法,可以有效提高找矿效率。

以下是常用的深部找矿技术及其发展研究内容。

1. 重力方法:利用地球引力场的变化来探测地下的矿体。

重力方法主要通过测量地球表面上的重力场强度来获取地下的重力异常信息,进而寻找矿体。

近年来,重力方法的仪器精度和测量技术得到了极大的提高,如加入全球定位系统(GPS)、惯性测量单元和气压测量等技术手段,使得重力方法在深部找矿中的应用更加准确和可靠。

3. 电磁方法:利用地下的电磁场响应信息来探测地下的矿体。

电磁方法主要通过在地表上施加交流电场或磁场,然后测量地下矿体对交流电磁场的响应来探测目标矿体。

电磁方法通常是在较浅的地下深度进行勘查,但随着电磁测量技术的不断改进,已经逐渐拓展到较深层次的勘查范围。

如瞬变电磁法(TEM)和音频频谱正弦电磁法(AMT)等新颖的电磁方法在深部找矿领域得到了广泛应用。

4. 地震方法:利用地下地震波的传播和反射特性来探测地下的矿体。

地震方法主要通过在地表上发射人工地震波,然后测量地下地震波的传播时间、速度和反射强度等参数来寻找地下的矿体。

地震方法可以提供地下岩层的速度结构和地下构造的分布信息,进而辅助找矿工作。

如地震反射法和地震折射法等传统的地震方法在深部找矿中仍然得到广泛应用。

5. 遥感方法:利用卫星遥感数据获取地表和地下矿体的信息。

遥感方法主要通过卫星、航空器、无人机等平台上获取的遥感影像数据来识别地表和地下的矿体。

遥感方法具有不接触、无侵入、高效率等优点,特别适合在大范围和复杂地质条件下进行深部找矿。

如高光谱遥感法、微波遥感法和激光雷达遥感法等新兴的遥感方法在深部找矿中的应用也越来越重要。

在深部找矿技术的发展研究方面,主要包括以下几个方向:1. 多物理场勘探:将两种或多种物理勘探方法相结合,以获取更全面的地下信息。

多物理场勘探技术可以克服单一物理场方法在探测深层矿体时的不足,提高勘探效果和找矿精度。

金属矿床深部找矿的技术与方法

金属矿床深部找矿的技术与方法

25矿产资源Mineral resources金属矿床深部找矿的技术与方法黄 键(河北省煤田地质局第二地质队,河北 邢台 054001)摘 要:随着时间的推移,中国对矿产资源的需求日益增长,由于开采矿产资源是一个风险高、生产效率高的项目,大多数金属矿床所在的区域结构极为复杂。

在没有新矿床的情况下,深部探矿的研究和实践在各个领域都引起了极大的关注。

深部采矿工作应遵守经济和安全的双重原则,并根据地质特征进行作业,由此产生了从不同角度深入分析矿产资源的深层找矿技术与方法,以供参考。

关键词:金属矿床;深部找矿;地质中图分类号:P631 文献标识码:A 文章编号:11-5004(2020)16-0025-2收稿日期:2020-08作者简介:黄键,生于1985年,男,汉族,河北邢台人,本科,工程师,研究方向:地质。

中国目前正处于能源需求日益增长的经济繁荣时代,将矿产资源作为重要金属来源使用受到特别关注,特别是金属研究。

研究工作由于过去查明的资源开发回收不足而开始深入矿床的深部,造成矿产的大量浪费和日益枯竭。

近年来,随着表层矿物的开采,中国的表层矿物逐渐减少,勘探难度加大。

深部找矿已成为国内外共识。

深部找矿具有很大的不确定性和风险,但也具有巨大的商业利益。

为了有效规避未来深部找矿过程中的风险和不确定性,我们不仅应依靠新概念,新战略和新理论,而且还应依靠新技术的开发和应用。

1 金属深部矿床长期以来,地质领域对金属矿床没有明确的定义和统一的标准。

一般来说,深度大于500m 的矿产资源通常称为深部矿藏,其矿床称为深部矿床。

深部金属矿床主要由岩浆热液或岩浆活动形成,通常存在于火山岩中。

深金属矿床的规模不确定,产量不确定,分布分散,给探矿和生产带来一定困难。

与一般金属矿床勘探不同,深金属矿床勘探难度更大。

这是因为埋藏深度越深,金属矿床的复杂性越高,并且深部和地表之间的地质条件不同,就必须调整采矿思路。

金属矿床的深部找矿成本高,一般将大型,高品位矿床作为勘探目标。

深部找矿的技术以及前景

深部找矿的技术以及前景

深部找矿的技术以及前景一、深部找矿的技术由于深部矿床的隐蔽性、复杂性,找矿要想有突破,很大程度上依赖于勘查技术的进步。

因此必须以新的成矿理论为基础,以大的成矿区带、成矿有利的岩体(含隐伏岩体)、深大断裂等为研究对象,采用中大比例尺地质测量、中大比例尺物化探测量等新技术、新方法,大致查明勘查区地质矿产及物化探特征,对勘查区隐伏矿体作出推断,才能对有利成矿地段进行深部钻探验证,同时兼顾已知矿床、矿(化)点深边部找矿,力求寻找新的找矿靶区,发现一批新的矿田、矿床。

(一)高光谱遥感技术高光谱遥感技术在地质找矿中因为其高空间分辨率的高光谱遥感技术给遥感地质找矿添加新的血液。

高光谱遥感技术绘制的图谱能够有效地区分矿与非成矿断裂、蚀变岩体、地层和非蚀变岩体、地层,能够精准地找到新的矿产蕴藏靶区。

高光谱成像系统从理论和技术方面都能对地质找矿做出贡献。

遥感系统技术地质勘查系统正在有条不紊地构建。

该系统能够把航天、航空、陆地、海洋、地下的遥感数据进行有效收集处理,构建出一套三维地质勘查遥感系统。

立体式的地质侦测技术系统利用航空遥感技术、航空物探技术、地面地下物探测技术、地球化学技术等等先进的地质勘测技术,构建出了从地面到天空再到太空的立体式地质勘查技术系统。

(二)钻探技术1、金刚石绳索取心技术绳索取心(WL)钻探技术自20世纪70年代中期我国开始推广应用,但在应用广度和深度上与国外发达国家相比存在较大差距,利用绳索取心钻探技术完成的岩心钻探工作量仍不足全部固体矿产岩心钻探工作量的3O%。

国产绳索取心钻具存在材质不佳、加工质量差、易折断和脱扣等问题,不能满足1000m深钻孔的需要。

而深部找矿一般采用的替代方案是使用内径可以通过绳索取心钻具内管的普通钻杆来完成钻孔取心作业,这就在完成取心作业的同时增大了钻孔工作量。

2、反循环连续取样(心)钻探技术反循环连续取样(心)钻探技术被称为钻探技术第二次革命。

它采用压缩空气作为循环介质,利用双壁钻杆以冲击回转全面碎岩和连续岩屑作为地质样品的方式钻探施工,随着钻进的不断进行,岩屑被高速气流连续地经双壁钻杆的中心携带至地表,并按照顺序将岩屑收集起来作为地质化验分析的地质样品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

覆盖区的新区找矿,也有人建议将300m以下(奥林匹 克坝350m以下)定为深部矿。

2008年1月,国土资源部发布了“关于促进深部找矿 工作指导意见”。该意见明确了深部找矿的战略目标, 提出了开展主要成矿区带地下500m至2000m的深部资源 潜力评价,重要固体矿产工业矿体勘查深度推进到1500
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
我国过去固体矿产(特别是金属矿产)的勘查 深度一般<600m,多为300-500m。而目前的采矿 深度已至少可达1000m。因此,从500-1000m的可 采深度范围内存在着二次找矿空间,或称之为深 部找矿空间。
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
第一部分:深部矿的概念、分类和深部找矿的一些基本问题

1996)。 研究和了解成矿系统的发育完整程度,可帮助我们 建立起对研究区成矿过程和矿床类型的整体认识,在 深部找矿中可起到由已知到未知、由此及彼、由浅入 深、举一反三的作用。对区域成矿系统及所产生的矿 床系列(组合)有了基本认识,有助于在深部找矿中 寻找新类型和新矿种,从而提高找矿的成效。例如, 安徽321地质队和江西赣西北地质队依据对长江中下游 成矿带矿床组合“多位一体”的认识进行深部找矿, 分别发现了狮子山矿田深部的冬瓜山铜矿和城门山矿 床的深部层控矿体。 一个成矿系统发育完整需要多种有利因素的耦合。 例如,一个热液成矿系统要发育完整,形成大型矿床, 需要有超常规的热能和流体。Barnes(2002)指
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
一、深部矿的概念:
深部矿是指现阶段定位于深部的矿床,不光指在深 部形成的矿床。包括(1) 原来形成于深部或很深部, 现仍在深部保存的矿床(如多数岩浆矿床和高温热液 矿床等);(2)原来形成于浅部,现埋藏于深部的矿 床,如沉积变质矿床和埋藏于深部的热水沉积矿床等。
二、深部矿的分类:
基于上面深部矿的概念,根据矿体与上覆围岩的关 系,可将深部矿分为深掩埋矿和深定位矿两类: (1)深掩埋矿:矿体与上覆围岩没有直接的成因联 系,上覆盖层是后成的,如厚层的沉积盖层和火山岩
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
盖层下的深掩埋矿或外来推覆体掩埋下的矿床等。该 类矿床浅表没有矿化-蚀变显示,找矿难度大。 (2)深定位矿:矿床的形成与周围的地质环境密切 相关,成矿与围岩同时或晚于围岩,在围岩中留下了 大量的矿化蚀变信息,该类深部矿特别是生产矿山附 近的深部矿,应是目前的勘查重点。

第一部分:深部矿的概念、分类和深部找矿的一些基本问题
近年来,我国固体矿产的深部找矿工作取得明显进展: 锡铁山铅锌矿:新增300多万t的铅锌金属量; 铜陵冬瓜山特大型铜矿床:产出深度在1000m以上,而 近年在-880m中段发现了斑岩型铜矿床,铜品位可达 0.6%-1.5%; 凡口铅锌矿:在600m以下找到160万t的可采金属量; 会泽铅锌矿:深部新增金属量>200万t; 胶东新城、台上、阜山等金矿:新增金属量>300t,大 部分是在500m以下的深部找矿空间获得的; 危机矿山找矿专项 :红透山铜矿深部新增铜锌金属资 源量10.9万t;大冶铁矿深部新增铁矿石资源量2304万t, 伴生铜金属资源量10.3万t;广西南丹县铜坑锡矿区深 部新增锌金属量93.7万t、铜4.3万t、银542t 。
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
出,反复侵入的复式岩体能提供足够的热能以维持对 流的热液系统。因此,在热液活动区中复式岩体的存 在是找矿的关键性标志。国外很多重要岩浆—热液矿 床就是产在这种环境中的。 (2)成矿系统发育的深度 不同的成矿系统形成在不同的构造环境和地壳的不 同深度。研究掌握各种成矿系统的发育深度(空间), 有助于从宏观上把握矿床的空间分布规律,包括在垂 向上的分布特征。这对于在一个区域中进行深部找矿 有直接的指导作用。 根据已有的大量探矿、采矿资料,已知变质、受变 质矿床多发育在中下地壳中,与幔源基性—超基性岩 浆有关的成矿系统形成也较深,可在中下地壳中发生。 与花岗岩类有关的成矿系统多发育在上地壳或距

4、深部找矿的地质科学问题
深部找矿的地质科学问题是深部找矿的关键,就是 要深入研究区域和矿区的成矿规律,重点是成矿环境、 成矿系统和成矿演化,以便全面认识矿床之所以产在 某一深度空间的原因及其制约因素,运用适当手
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
段,发现深部矿床。主要包括以下四个方面: (1)成矿系统发育的完整程度 成矿系统是指在一定时空域中,由成矿要素、源— 运—储成矿过程、成矿产物及成矿后变化等诸因素构 成的成矿整体(翟裕生,1999)。一个发育完整的成 矿系统,具有一定的时—空边界,包括三维网络空间, 常能包括多个矿种和多种矿床类型。如长江中下游成 矿带,其中的燕山期与岩浆热液有关的成矿系统发育 就比较完整,体现了成矿的多样性和复杂性,既有Cu、 Fe、Au、Ag、Pb、Zn、Co、V、Ti、P等多个矿种, 又有矽卡岩型、斑岩型、脉型、角砾岩型、层控型等 多种矿床类型,其形成时间自170 Ma到90 Ma,又分布 在自武汉到上海的沿江广阔空间(翟裕生等,
从采矿深度看:

南非:已超过4800m(南非兰德金矿采
矿深度在4100m以上、巴伯顿金矿采矿深 度达3800m以上、Western Deep Level金 矿已开采到4800m,不久可达5000m );俄罗
斯:已超过1000m(1500-2000m); 加拿大: 达2500m(Sudbury铜、镍矿达2000m、 Abitibi 金矿采矿深度达2500m);美国:在 3000m以上;印度:Kolar太古宙绿岩型金矿采 深也达3200m。




—概念、技术方法与实例
何明勤 2008、5
提 纲
第一部分:深部矿的概念、分类和深 部找矿的一些基本问题 第二部分:隐伏矿床的概念和分类 第三部分:深部找矿(包括隐伏矿) 的特点和勘查或找寻方法概述 第四部分:主要技术方法 第五部分:方法实例
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
三、深部找矿的一些基本问题:
1、深部找矿的涵义:
深部找矿是指与寻找深部矿有关的矿产勘查工作的 统称,是相对于露头矿和浅部找矿而言的,是一个相 对的、动态的和变化的概念,主要取决于当时的采矿 深度。
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
2、深部找矿的深度
关于深部矿和深部找矿的深度问题:一直以来,没 有一个统一的定量标准。翟裕生院士(2004)根据现 行的矿产勘查和矿山开采技术水平,将我国大部分地 区深部找矿的深度定为500m以下的深度,并认为老矿 业基地,此深度可考虑延深到800-1000 m。该定义对 我国目前的矿山深部找矿应该说是合适的。 而对于厚
m。要创新具有中国特色的深部成矿和找矿理论,推动 矿床学和勘查学学科的发展。建立深部找矿方法与技 术体系,地质、物探、化探、遥感综合找矿与钻探技 术取得明显进步;矿产预测的理论和方法技术水平明 显提升。建立有利于促进深部找矿工作的勘查开采技 术经济政策体系。 因此,目前,将深部矿和深部找矿的深度定义为5002000m较为合适。但从开采的角度来看,500-1000m较佳, 条件较好的老矿山可延深至1500m,条件特别优越时,经济 价值特别高时可深至2000m。但要考虑各自的开采水平。

国内外无数找矿实践已经证明,现有矿区深部的 找矿潜力巨大。经对我国目前10618个主要金属 矿山的统计结果,除个别矿山开采深度>1000m (如红透山、冬瓜山等)外,绝大多数金属矿山 的采矿深度和原来的勘查深度不到500m,而国外 同类矿山开采深度超过千米的深井矿山至少在80 座以上。
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
第一部分:深部矿的概念、分类和深部找矿的一些基本问题
地表5-15 km的范围内,而与陆上或海底的火山—次火 山活动有关的浅表热液矿床也可延伸至地下3km左右 (图1-1)。 海陆盆地中的沉积矿床一般是近水平、延伸大的矿 层,当其受到区域构造作用时可下降到地壳深处并受 到明显的热动力变质改造。 (3)成矿系统网络的三维结构与矿床分带 矿床分带性指矿床的物质组成、矿石组构、矿化强 度(品位)、矿化类型及岩石、构造等在区域和矿床 内的空间变化规律。研究阐明矿床分带特征,尤其是 矿床垂直分带特征,对找寻深部矿床有重要意义。 从成矿系统的观点看,成矿系统的网络性表现为系 统内部各成员(矿床,矿点、围岩、构造、流体及各 类矿化异常)间的有序分布和相互关联,表现为共生

第一部分:深部矿的概念、分类和深部找矿的一些基本问题
江西银山铜、铅、锌、金、银矿在800m深度左右 主为金和铜。12个深度>1000m 的钻井、在3孔深 1500m的钻井均发现富有Cu、Pu、Zn的矿床。 福建紫金山金、铜矿床距地表的深度已达19002000m左右。 新疆阿尔泰阿舍勒铜、 金、锌特富矿床深达 1800m 左右。 俄罗斯科拉半岛科学超深钻井在6-12km深处发现 了硫化物矿化细脉,在10km上下发现了在变质基 性岩中有Cu-Ni硫化物和基性岩中的Fe-Ti矿化, 在9.5-l1km 处发现了含大量银的自然金。
图1-2
矿床的主要垂向变化模式
(据翟裕生等,2004)
第一部分:深部矿的概念、分类和深部找矿的一些基本问题

段的叠加分带。要强调指出的是,每个矿床都有其形 态产状特征,如再经过后来的构造变动,将更加难以 辨认和测定。因此,要作详细的调研和缜密的思考判 断,包括采用大比例尺立体图等精细方法,而不宜套 用某种现有模式。 如何根据已知的浅表矿床信息推断其向下延伸的方 向,涉及因素很多,目前尚无成熟的经验,可参考如 下几点: ①充分利用矿床模型或勘查模型的完整性。一个完 整的矿床模型,应能清楚地显示出矿床的顶部特征和 根部特征(蚀变的、构造的、元素组合晕等)及整个 矿床的蚀变矿化结构,作为预测深部矿体的重要标志。 如斑岩铜矿模型(以矿化蚀变分带为主体)可以作为 帮助深部找矿的依据,如Kalamazoo矿床找矿成功的实 例(Guilbert et a1.,1986);又如金矿脉的地
相关文档
最新文档