第三章气体分子热运动速率和能量的统计分布律
第三节 气体分子的速率分布

v v+ dv
v
示速率分布在v~v+ dv 中的
分子数与总分子数的比率 f
(v )dv
dN
N
(4)在v1~v2 区间内,曲线下的面积
f(v)
T
表示速率分布在v1~v2 之间的
分子数与总分子数的比率
v2 f (v)dv N
v1
N
O
v1 v2
v
( 速率分布曲线 )
(5)曲线下面的总面积, 等于分布在整个速率范围内所有各个速率
气体分子的速率分布
一、 速率分布函数
速率分布的概念 热运动中的分子的速率通过碰撞不断地改变,不可能逐个加
以描述, 要进行研究,就需要把分子的速率按大小划分成很多 个区间,然后确定各速率区间的分子数占总分子数的比例, 并研究随着速率区间的变化所引起的分子数相对比例的变 化.
速率
v1 ~ v2 v2 ~ v3 …
解: (1)由归一化条件,
0 f (v)dv 1
Nf(v) a
v0 a vdv 2v0 a dv
0 Nv0
N v0
O
a Nv0
v02 2
a N
v0
3 2
av0 N
1
a 2N 3v0
v0 2v0 v
(2) f (v) dNv Ndv
N dN 3v0 / 2
v0 / 2~3v0 / 2
0
0
2kT
8kT 1.59 RT
π
M
方均根速率
N
iv
2 i
v2 i
N
N
iv
2 i
v2 i
N
dNv f (v )dv N
v 2
热学-统计物理3 第3章 气体分子热运动速率和能量的统计分布律

v v pv v 2
讨论
麦克斯韦速率分布中最概然速率 vp 的概念
下面哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp 是速率最大的速度值. (C) vp 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比 率最大.
例1 计算在 27 C 时,氢气和氧气分子的方均
M
3.方均根速率 v2
v2
N
0
v2dN N
0
v2Nf N
(v)dv
o
v
v2 v2 f (v)dv 4 ( m )3 2 e mv2 2kT v4dv
0
2 kT
0
v4ev2 dv 3
0
8 5
v2 3kT m
v2 3kT 3RT
2kT
v
麦克斯韦速率分布函数的物理意义: f (v) dNv
Nd v
既反映理想气体在热动平衡条件下,分布在速率 v 附近单
位速率区间内的分子数占总分子数的百分比,又表示任意
一分子的速率出现在 v附近单位速率区间内的概率。
如果以速率为横坐标轴,速率分布函数为纵坐标轴,画 出的一条表示f(v) —v之间关系的曲线,称为气体分子的麦 克斯韦速率分布曲线。 ,它形象地描绘出气体分子按速率 分布的情况。
大量分子的速率的算术平均值叫做分子的平均速率.
v
vNf (v)dv
0
vf (v)dv
v 4 (
m
)3 e2 mv2 2kT v2dv
N
0
0
第三章 气体分子热运动速率和能量的统计分布规律

Ndv
2kT
1.麦克斯韦速率分布函数f()的物理意义
由 dN f (υ)dυ N
f (υ) dN Ndυ
f()表示:在速率附近的单位速率区间内的分子数占总 分子数的百分比。或分子速率出现在附近的单位速率区间内
的概率概率密度。
f (υ)dυ dN
N
—在速率区间 ~ +d 内的分子数占
例 (1) n f()d 的物理意义是什么?(n是分子的数密度)
(2) 写出速率不大于最可几速率p的分子数占总分子数
的百分比。
解 nf (υ)dυ Nf (υ)dυ dN
V
V
n f()d —表示单位体积中,速率在 ~+d 内的分子数。
(2) 写出速率不大于最可几速率p的分子数占总分子数的
dN v y N
g(y )dy
dNvz N
g(z )dz
(2)由独立概率相乘原理,粒子出现在x ~x+dx,y ~y+dy,z ~z+dz的
概率为:
dNv N
g(x )g(y )g(z )dxdydz
F • dxdydz
F就是速度分布函数
(3)由于粒子在任何方向上运动的概率相等,所以F应该与速度的方向 无关,应该是速度的大小的函数。
dNv N
1
3 3
e dv dv dv (vx2 vy2 vz2 ) / 2 xyz
转化成球坐标:
dvxdvydvz v2 sin dddv
vx2
v
2 y
vz2
v2
麦克斯韦速度分布:dNv 1 v2ev2 / 2 sin dddv N 3 3
分子热运动的速度和速率统计分布规律

f (v )
C
o
vo
v
解:
0
f (v)dv Cdv Cvo 1
0
vo
1 C vo
v vf (v)dv
0
vo
0
vo 1 v vo 2 2
2 o
2 vo Cvdv C 2
v v f (v)dv
2 2 0
voΒιβλιοθήκη 01 2 Cv dv vo 3
S1
Ag
例:利用麦克斯韦速率分布求:V
m 3 2 ) e 解: f (V ) 4π( 2πkT m 2 V 2 kT
p
V2 V
V2
kT 1.41 m
1.60 kT m
df (V ) 0 dV
2kT 2 RT Vp m M
8kT 8RT V πm πM
V V 2 f (V )dV
5
P 1.013 10 25 -3 N n 2.7 10 m -23 kT 1.38 10 273.15
M 28 10 kg mol
-3
-3
-1
M 28 10 -26 m 4.65 10 kg 23 N A 6.022 10
2 m N N e 2πkT
2 y
) g (v
2 z
)
2
+ v
2 y
g (v ) e
2 -av x
F (V ,V ,V ) Ae -aV
x y z
2
常数的确定:
---
F(v ,v ,v )dvdv dv 1
x y z x y z
热力学-3.气体分子动理论速率与能量

1.59 RT M
一般用于计算分子运动的平均距离;
同理,方均根速率
v2 v2 f (v)dv
3kT
3RT 1.73 RT
0
m
M
M
方均根速率用来计算分子平均动能。
最概然速率
2kT 2RT
RT
vp
m
1.41
M
M
最概然速率用在讨论分子速率分布。
f(v)
O
vp v v2
•在气体动理论方面,他提出气体分子按 速率分布的统计规律。
1。由于分子受到频繁的碰撞,每个分子热运动的速率是变化的, 要某一分子具有多大的运动速率没有意义,所以只能估计在某 个速率间隔内出现的概率;
2。哪怕是相同的速率间隔,但是不同的速率附近,其概率是不 等的。
速率接近为0的可能性很小,速率非常大的可能性也很小, 而居中速率的可能性则较大。
f (v) dN Ndv
速率分布函数
理解分布函数的几个要点: 1.条件:一定温度(平衡态)和确定的气体系统,T和m是一定的;
2.范围:(速率v附近的)单位速率间隔,所以要除以dv; 3.数学形式:(分子数的)比例,局域分子数与总分子数之比。
f (v)dv dN N
N v1 v2
v2
f (v)dv
第三章 气体分子热运动 速率和能量的统计分布律
内容回顾
第一章 平衡态和温度 第二章 压强和温度的微观本质
平均效果
气体分子按速率分布的统计规律最早是由麦克斯韦于
1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统 计力学中导出,1920年斯特恩从实验中证实了麦克斯韦分子 按速率分布的统计规律。
热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律
![热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律](https://img.taocdn.com/s3/m/581192a543323968001c927e.png)
第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式 △N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p=)代入计算得:△N=×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
热学-第三章气体分子热运动速率和能量分布

等概率性
在平衡态下,系统从任意一个微观状态转移到另一个 微观状态的概率相等。
宏观态与微观态等概率性的意义
平衡态是系统内部最混乱的状态,即系统内部各个分 子运动状态的分布最均匀,没有明显的有序性。
热力学概率与宏观态的等概率性
热力学概率
宏观态等概率性与热力学概 率的关系
在平衡态下,系统处于各个宏观态的概率相等,即 热力学概率相等。
了解气体分子的能量分布和速度分布有助于深入理解热力学的基本原理,如温度 、内能、熵等概念。
03 气体分子的碰撞和动量传 递
气体分子间的碰撞频率
总结词
气体分子间的碰撞频率与气体分子的速度分布和分子间的距离有关,是气体分子热运动的重要参数。
详细描述
气体分子间的碰撞频率是指在单位时间内,两个分子相互碰撞的次数。由于气体分子的速度分布和分 子间的距离不同,碰撞频率也会有所差异。在理想气体中,碰撞频率可以用公式计算,它与气体分子 的平均自由程和分子速度有关。
定义
气体分子在热运动中具有的 平均能量是指所有气体分子 的总能量除以分子总数。
计算公式
平均能量 = (总能量) / (分子 总数)
影响因素
温度和物质的种类会影响气 体分子的平均能量。
气体分子的最可几能量
01
定义
气体分子在热运动中具有的最可 几能量是指一定温度下,占据一 定数量的分子的主要能量的值。
熵与自然过程的不可逆性
熵与自然过程的不可逆性密切相关,因为高熵状态对应于无序程度较高的状态,低熵状态对应于有序 程度较高的状态。
在自然过程中,由于熵增加原理的作用,系统总是向着高熵状态发展,即从有序向无序发展。因此,许 多自然过程都是不可逆的。
例如,物体受热会膨胀,但自发地收缩;化学反应会进行到底,但自发地逆向反应很困难;生物体衰老 和死亡后不能自发地恢复青春等。这些都是由于系统内部熵增加导致的不可逆过程。
第3章 气体分子热运动速率和能量的统计分布

v vxi vy j vzk
速度空间体积元
速率分布是速度矢量大小被限制在一定区间
满足此条件的速度矢量其端点位于半径为 v,厚度为dv的球壳内
球壳体积为
17
用球壳体积
代替
并注意 v2 vx2 v2y vz2 得麦克斯韦速率分布
dN 4π(
n n 1 n
•分子数∆n 越大,涨落的百分数就越小,涨落现象越不显著。
• 麦克斯韦速率分布律只对大量分子组成的体系才成立。 9
三、用麦克斯韦速率分布函数求平均值
平均速率(算术平均值)
离散型
v v1N1 v2N2 viNi vnNn i viNi
N
N
连续型
N
v 0 vdN 0 vNf (v)dv
•当R 以一定的角速度转动,铋分子由S3到达G需用一段时间。 • 这段时间内R己转过一角度,铋分子不再沉积在板上P处。 • 不同速率的分子将沉积在不同的地方.速率大的分子由S3到G所需
的时间短,沉积在距P较近的地方,速率小的分子沉积在距P较远 的地方。
34
•设速率为 v的分子沉积在P’处以s 表示弧PP’的长度。 表示R的
N1, N2,…, Ni, …
小球在槽内的分配情况,称为一种分布。
总数足够大,槽内的小球的数目与小球总数之比
..........
.. . .
.......
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. .
. . .
.
. . .
.
. . .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (v)
表示速率在 v → v + dv 区间的分子数占总分子数的 百分比 .
∫0
N
dN = ∞ f ( v )dv = 1 N ∫0
速率位于 v → v + dv 内分子数
∆S
dN = Nf (v)dv
o
v1 v2
v
热学
4
速率位于 v1 → v2 区间的分子数
∆N = ∫ N f ( v )dv
∆N 1 ∆N 1 dN 分布函数 f ( v) = lim = lim = ∆v→0 N∆v N ∆v→0 ∆v N dv
f (v)
dS
o
v v + dv
v
物理意义 表示在温度为 T 的平衡 状态下, 状态下,速率在 v 附近单位 速率区间 的分子数占总数的 百分比 .
热学
3
dN = f ( v)dv = dS N
热学
14
讨论 麦克斯韦速率分布中最概然速率 vp 的概念 下面哪种表述正确? 下面哪种表述正确? 是气体分子中大部分分子所具有的速率. (A) vp 是气体分子中大部分分子所具有的速率 ) 是速率最大的速度值. (B) vp 是速率最大的速度值 ) 是麦克斯韦速率分布函数的最大值. (C) vp 是麦克斯韦速率分布函数的最大值 ) (D) 速率大小与最概然速率相近的气体分子的比 ) 率最大. 率最大
热学
7
∫ v=
N 0
vdN N
∫ =
∞ 0
v Nf ( v )dv N
v=∫
∞ 0
8kT v f ( v )dv = πm
kT RT v ≈ 1.60 = 1.60 m M
f (v)
3)方均根速率 )
N
v2
∞
o
v
2 = ∫0 v
v 2 dN N
∫0 =
v2 Nf (v)dv N
3kT v = m
v1
v2
速率位于 v1 → v2 区间的分子数占总数的百分比
∆N (v1 → v2 ) v2 ∆S = = ∫ f (v)dv v1 N
二、麦克斯韦速率分布函数 麦氏分布函数 麦氏分布函数
− mv )3 2 e 2kT v2
2
f (v) = 4π( m 2πkT
mv 2 − 2 kT
dN m 32 = 4π( ) e 2πkT N
vp
v
6
根据分布函数求得
M = mN A , R = N A k
2kT kT vp = ≈ 1.41 m m
RT ∴ vp ≈ 1.41 M
物理意义
气体在一定温度下分布在最概然 速率 v p 附近单位速率间隔内的相对 分子数最多 .
2)平均速率 )
v
v1dN1 + v2dN2 +⋅⋅⋅+ vidNi +⋅⋅⋅+ vndNn v= N
v rms = 483m ⋅ s − 1
热学
16
例 已知分子数 N ,分子质量 m ,分布函数
f (v) 求 1) 速率在 vp ~v 间的分子数; 2)速率 间的分子数; ) )
热学
12
麦克斯韦( 麦克斯韦(James Clerk Maxwell 1831-1879) 1831-1879)
凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文: 凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文: 《论法拉第的力线》(1855年12 月至1856年2月);《论物理的力线》 论法拉第的力线》 1855年 月至1856 1856年 );《论物理的力线》 (1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前 1861至1862年);《电磁场的动力学理论》 1864年12月 )。对前 人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数 人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、 学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克 学形式表示出来,经后人整理和改写, 斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波, 斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波, 年他预言了电磁波的存在 并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种 并计算了电磁波的传播速度等于光速,同时得出结论: 形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用 形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用 实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著《电磁理 实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著《 1873年出版了科学名著 论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学 系统、全面、完美地阐述了电磁场理论。 的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献, 的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献, 他是气体动理论的创始人之一。1859年他首次用统计规律 年他首次用统计规律— 他是气体动理论的创始人之一。1859年他首次用统计规律—麦克斯韦速度 分布律,从而找到了由微观两求统计平均值的更确切的途径。1866年他给 分布律,从而找到了由微观两求统计平均值的更确切的途径。1866年他给 出了分子按速度的分布函数的新推导方法,这种方法是以分析正向和反向 出了分子按速度的分布函数的新推导方法, 碰撞为基础的。 碰撞为基础的。
o
vp1 vp2
v
o
vp0 vpH
v
N2 分子在不同温 度下的速率分布
同一温度下不同 气体的速率分布
热学
10
麦克斯韦( 麦克斯韦(James Clerk Maxwell 1831-1879) 1831-1879)
麦克斯韦是19世纪伟大的英国物理学家、 麦克斯韦是19世纪伟大的英国物理学家、数 19世纪伟大的英国物理学家 学家。1831年11月13日生于苏格兰的爱丁堡 日生于苏格兰的爱丁堡, 学家。1831年11月13日生于苏格兰的爱丁堡,自 幼聪颖,父亲是个知识渊博的律师,使麦克斯韦 幼聪颖,父亲是个知识渊博的律师, 从小受到良好的教育。10岁时进入爱丁堡中学学 从小受到良好的教育。10岁时进入爱丁堡中学学 14岁就在爱丁堡皇家学会会刊上发表了一篇 习,14岁就在爱丁堡皇家学会会刊上发表了一篇 关于二次曲线作图问题的论文, 关于二次曲线作图问题的论文,已显露出出众的 才华。1847年进入爱丁堡大学学习数学和物理 年进入爱丁堡大学学习数学和物理。 才华。1847年进入爱丁堡大学学习数学和物理。 1850年转入剑桥大学三一学院数学系学习, 1850年转入剑桥大学三一学院数学系学习,1854 年转入剑桥大学三一学院数学系学习 年以第二名的成绩获史密斯奖学金, 年以第二名的成绩获史密斯奖学金,毕业留校任 职两年。1856年在苏格兰阿伯丁的马里沙耳任自 职两年。1856年在苏格兰阿伯丁的马里沙耳任自 然哲学教授。1860年到伦敦国王学院任自然哲学 然哲学教授。1860年到伦敦国王学院任自然哲学 和天文学教授。 和天文学教授。
热学
13
麦克斯韦( 麦克斯韦(James Clerk Maxwell 1831-1879) 1831-1879)
他引入了迟豫时间的概念,发展了一般形式的输运理论, 他引入了迟豫时间的概念,发展了一般形式的输运理论,并把它应 用于扩散、热传导和气体内摩擦过程。1867年引入了 统计力学” 年引入了“ 用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学” 这个术语。 这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科 学思想的大师,他非常重视实验, 学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实 验室,在他和以后几位主任的领导下, 验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中 心之一。他善于从实验出发,经过敏锐的观察思考, 心之一。他善于从实验出发,经过敏锐的观察思考,应用娴熟的数 学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设, 学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设,建 立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善, 立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善, 形成系统、完整的理论。特别是汤姆孙W 形成系统、完整的理论。特别是汤姆孙W卓有成效地运用类比的方法 使麦克斯韦深受启示, 使麦克斯韦深受启示,使他成为建立各种模型来类比研究不同物理 现象的能手。 现象的能手。在他的电磁场理论的三篇论文中多次使用了类比研究 方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。 方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。 麦克斯韦严谨的科学态度和科学研究方法是人类极其宝贵的精 神财富。 神财富。
热学
15
例 计算在 27 C 时,氢气和氧气分子的方均 根速率 vrms .
M H = 0.002kg ⋅ mol −1
R = 8.31J ⋅ K −1 ⋅ mol−1
T = 300K
M O = 0.032kg ⋅ mol −1
vrms = 3RT M
氢气分子 氧气分子
v rm s = 1 .9 3 × 1 0 3 m ⋅ s − 1
热学
v 2 dv
5
反映理想气体在热动 平衡条件下, 平衡条件下,各速率区间 分子数占总分子数的百分 比的规律 .
f (v)
dN f ( v) = Nd v
o
三、用麦克斯韦速率分布函数求平均值 (1)最概然速率 vp )
三种统计速率
v
f (v)
f max
df ( v ) =0 dv v=v
p
热学