第三章气体分子热运动速率和能量的统计分布律
热学第三章气体分子速率和能量统计分布律

v0 2v0 3v0 4v0 5v0 v
i
1 9
v0 2
2 9
3v0 2
3 9
5v0 2
2 9
7v0 2
1 9v0 92
5v0 2
2021/4/24
15
例4:讨论下列各式的物理意义
1. f (v)dv
平衡态下,分子速率分布在v → v+dv区间内的分子数 占总分子数的比率。
2. Nf (v)dv
求:1) 速率在 vp ~ v 间的分子数;2)速率在 vp ~
间所有分子动能之和 . 3)速率在 1 ~ 2 区间的分子
平均速率。
解: 速率在 v v dv 间的分子数 dN Nf (v)dv
1)
v v Nf ( )dv
vp
2)
vp
1 2
mv2 Nf
(v)dv
3)
2 Nf ()d
1~2
f (v) 4π(
m
)3
2
mv 2
e 2kT
v2
2πkT
dN 4π(
m
)3
2
mv 2
e 2kT
v2dv
N
2πkT
反映理想气体在热动平衡
波尔兹曼常量
f (v) dN Ndv
f (v)
条件下,气体分子按速率
分布的规律 .
o
v
三 三种统计速率
1)最概然速率 v p
f (v)
f max
df (v) 0 dv vvp
v1
v1
平衡态下,分子速率分布在v1 → v2区间内的分子数。
例 5已知f v为 N 个(N 很大)分子组成的系统的速率分
第三章气体分子热运动速率

C
0
2021/3/31
v v 0崎山苑工作室
28
(2)常数 C 由归一化条件求得
0v0 f (v)dv 1
0v0 Cdv 1
C v0 1
C
1 v0
(3)平均速率:
v
2021/3/31
0
1
v0
vf (v)dv
v02 2
1 2
v0
崎山苑工作室
0v0
v
1 dv v0
29
例3. 由麦氏分布律导出理想气体分子按平动动能的分布律,并找
f vx ,vy ,vz
m e 2
m
vx2
v
2 y
vz2
2kT
2kT
2021/3/31
dvx、dvy、dvz为速度空间的一个体积元
崎山苑工作室
32
*速度空间(velocity space)的概念 v 表示分子的速度
以其分量vx、 vy、 vz为轴可构成一直角坐标系,
由此坐标系所确定的空间为速度空间。
崎山苑工作室
15
气体的三种统计速率
(1)最可几速率: 速率分布函数 f (v)中的极大值对应
的分子速率 v p 。
d f (v)
极值条件
0
f
(v)
4
dv
m
2kT
3
2
e
mv2 2kT
v
2
vp
2kT
m
2RT
1.41
RT
温度超高,vp越大;分子的质量越大, vp越小
2021/3/31
崎山苑工作室
h
dN(h) Nf (h)dh
h
第 三 章 气体分子热运动速率和能量的统计分布律

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTmN V KTm ∆⋅⋅⋅-22232)2(4ππ∵ V p2=2KTm,代入上式 △N=VV V pP peV V V N ∆--⋅⋅222214π因500到501相差很小,故在该速率区间取分子速率V =500m/s ,又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s(vv p =1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
第 三 章 气体分子热运动速率和能量的统计分布律

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式△N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p =1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
热学-统计物理3 第3章 气体分子热运动速率和能量的统计分布律

v v pv v 2
讨论
麦克斯韦速率分布中最概然速率 vp 的概念
下面哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp 是速率最大的速度值. (C) vp 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比 率最大.
例1 计算在 27 C 时,氢气和氧气分子的方均
M
3.方均根速率 v2
v2
N
0
v2dN N
0
v2Nf N
(v)dv
o
v
v2 v2 f (v)dv 4 ( m )3 2 e mv2 2kT v4dv
0
2 kT
0
v4ev2 dv 3
0
8 5
v2 3kT m
v2 3kT 3RT
2kT
v
麦克斯韦速率分布函数的物理意义: f (v) dNv
Nd v
既反映理想气体在热动平衡条件下,分布在速率 v 附近单
位速率区间内的分子数占总分子数的百分比,又表示任意
一分子的速率出现在 v附近单位速率区间内的概率。
如果以速率为横坐标轴,速率分布函数为纵坐标轴,画 出的一条表示f(v) —v之间关系的曲线,称为气体分子的麦 克斯韦速率分布曲线。 ,它形象地描绘出气体分子按速率 分布的情况。
大量分子的速率的算术平均值叫做分子的平均速率.
v
vNf (v)dv
0
vf (v)dv
v 4 (
m
)3 e2 mv2 2kT v2dv
N
0
0
第三章 气体分子热运动速率和能量的统计分布规律

Ndv
2kT
1.麦克斯韦速率分布函数f()的物理意义
由 dN f (υ)dυ N
f (υ) dN Ndυ
f()表示:在速率附近的单位速率区间内的分子数占总 分子数的百分比。或分子速率出现在附近的单位速率区间内
的概率概率密度。
f (υ)dυ dN
N
—在速率区间 ~ +d 内的分子数占
例 (1) n f()d 的物理意义是什么?(n是分子的数密度)
(2) 写出速率不大于最可几速率p的分子数占总分子数
的百分比。
解 nf (υ)dυ Nf (υ)dυ dN
V
V
n f()d —表示单位体积中,速率在 ~+d 内的分子数。
(2) 写出速率不大于最可几速率p的分子数占总分子数的
dN v y N
g(y )dy
dNvz N
g(z )dz
(2)由独立概率相乘原理,粒子出现在x ~x+dx,y ~y+dy,z ~z+dz的
概率为:
dNv N
g(x )g(y )g(z )dxdydz
F • dxdydz
F就是速度分布函数
(3)由于粒子在任何方向上运动的概率相等,所以F应该与速度的方向 无关,应该是速度的大小的函数。
dNv N
1
3 3
e dv dv dv (vx2 vy2 vz2 ) / 2 xyz
转化成球坐标:
dvxdvydvz v2 sin dddv
vx2
v
2 y
vz2
v2
麦克斯韦速度分布:dNv 1 v2ev2 / 2 sin dddv N 3 3
热力学-3.气体分子动理论速率与能量

1.59 RT M
一般用于计算分子运动的平均距离;
同理,方均根速率
v2 v2 f (v)dv
3kT
3RT 1.73 RT
0
m
M
M
方均根速率用来计算分子平均动能。
最概然速率
2kT 2RT
RT
vp
m
1.41
M
M
最概然速率用在讨论分子速率分布。
f(v)
O
vp v v2
•在气体动理论方面,他提出气体分子按 速率分布的统计规律。
1。由于分子受到频繁的碰撞,每个分子热运动的速率是变化的, 要某一分子具有多大的运动速率没有意义,所以只能估计在某 个速率间隔内出现的概率;
2。哪怕是相同的速率间隔,但是不同的速率附近,其概率是不 等的。
速率接近为0的可能性很小,速率非常大的可能性也很小, 而居中速率的可能性则较大。
f (v) dN Ndv
速率分布函数
理解分布函数的几个要点: 1.条件:一定温度(平衡态)和确定的气体系统,T和m是一定的;
2.范围:(速率v附近的)单位速率间隔,所以要除以dv; 3.数学形式:(分子数的)比例,局域分子数与总分子数之比。
f (v)dv dN N
N v1 v2
v2
f (v)dv
第三章 气体分子热运动 速率和能量的统计分布律
内容回顾
第一章 平衡态和温度 第二章 压强和温度的微观本质
平均效果
气体分子按速率分布的统计规律最早是由麦克斯韦于
1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统 计力学中导出,1920年斯特恩从实验中证实了麦克斯韦分子 按速率分布的统计规律。
热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律
![热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律](https://img.taocdn.com/s3/m/581192a543323968001c927e.png)
第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式 △N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p=)代入计算得:△N=×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第 关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着 真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望, 决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前 人成就的基础上,对整个电磁现象作了系统、全面的研究,
dNNf(v)dv
v
速率位于 v1v2 区间的分子数
N v2 Nf (v)dv v1
速率位于 v1v2 区间的分子数占总数的百分比
S N (v N 1 v2)v v 1 2f(v)dv
二、麦克斯韦速率分布函数
麦氏分布函数
f(v)4π(2πm kT)32em 2kvT 2v2
dN4π( m )32em 2kvT2v2dv N 2πkT
§1. 气体分子的速率分布律
一、速率分布函数
分子速率分布图
N/(Nv分)子速率分布图
N :分子总数
S
o
vvv v
N 为速率在 v vv 区间的分子数.
S NN
表示速率在 v vv区间的分
子数占总数的百分比 .
分布函数 f(v )li m N 1li m N 1d N v 0 N vN v 0 vN d v
麦克斯韦(James Clerk
Maxwell 1831-1879)
凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文: 《论法拉第的力线》(1855年12 月至1856年2月);《论物理的力线》 (1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对 前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美 数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦 克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是 横波,并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波 的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学 家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著 《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经 典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了 重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律— 麦克斯韦速度分布律,从而找到了由微观两求统计平均值的更确切的途径。 1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分 析正向和反向碰撞为基础的。
O2
H2
o v p1 vp2
v
N2 分子在不同温 度下的速率分布
o v p 0 v pH
v
同一温度下不同 气体的速率分布
麦克斯韦(James Clerk Maxwell 1831-1879)
麦克斯韦是19世纪伟大的英国物理学家、数 学家。1831年11月13日生于苏格兰的爱丁堡, 自幼聪颖,父亲是个知识渊博的律师,使麦克斯 韦从小受到良好的教育。10岁时进入爱丁堡中学 学习,14岁就在爱丁堡皇家学会会刊上发表了一 篇关于二次曲线作图问题的论文,已显露出出众 的才华。1847年进入爱丁堡大学学习数学和物 理。1850年转入剑桥大学三一学院数学系学习, 1854年以第二名的成绩获史密斯奖学金,毕业 留校任职两年。1856年在苏格兰阿伯丁的马里 沙耳任自然哲学教授。1860年到伦敦国王学院 任自然哲学和天文学教授。
f (v)
m
M
3)方均根速率 v 2
o
v
v20NvN 2dN0v2N N f(v)dv
v2
3kT m
vrms
v2
3kT m
3RT M
vp v v2
v1.60 kT 1.60 RT
m
M
vp
2kT m
vp
2kT m
2RT M
v
8kT πm
v2 3kT m
f (v)
f (v)
T130K0
T2120K0
麦克斯韦(James Clerk
Maxwell 1831-1879)
他引入了迟豫时间的概念,发展了一般形式的输运理论,并把它应 用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学” 这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科 学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实 验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中 心之一。他善于从实验出发,经过敏锐的观察思考,应用娴熟的数 学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设,建 立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善, 形成系统、完整的理论。特别是汤姆孙W卓有成效地运用类比的方 法使麦克斯韦深受启示,使他成为建立各种模型来类比研究不同物 理现象的能手。在他的电磁场理论的三篇论文中多次使用了类比研 究方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。
f (v)
dS
o vvdv
物理意义
表示在温度为 T 的平衡
状态下,速率在 v 附近单位
速率区间 的分子数占总数的
v 百分比 .
dNf(v)dvdS N
表示速率在 v vdv
区间的分子数占总分子数的 百分比 .
归一化条件
0NdN N0f(v)dv1
f (v)
S
o
v 1 v2
速率位于 v vdv内分子数
反映理想气体在热动 平衡条件下,各速率区间 分子数占总分子数的百分
f (v) dN Ndv
f (v)
比的规律 .
o
v
三、用麦克斯韦速率分布函数求平均值
三种统计速率
(1)最概然速率v p
f (v)
f max
df (v dv
)
vvp
0
o vp
v
根据分布函数求得
vp
2kT 1.4克斯韦(James Clerk
Maxwell 1831-1879)
1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统 地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著 《论电和磁》,并于1873年出版,1871年受聘为剑桥大学新设立 的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室, 1874年建成后担任这个实验室的第一任主任,直到1879年11月5 日在剑桥逝世。
vp
1.41
RT M
物理意义
气体在一定温度下分布在最概然
速率 v p 附近单位速率间隔内的相对
分子数最多 .
2)平均速率 v
v v 1 d N 1 v 2 d N 2 N v id N i v n d N n
N
v0 vdN0 vNf(v)dv
N
N
v
vf (v)dv
8kT
0
πm
v1.60kT1.60RT