线性代数必须知道的结论

线性代数必须知道的结论
线性代数必须知道的结论

1、行列式

1. n 行列式共有2

n 个元素,展开后有!n 项,可分解为2n

行列式; 2. 代数余子式的性质: ①、ij A 和ij

a 的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j

i j

ij

ij

ij

ij

M A A M ++=-=- 4. 设n 行列式D :

将D 上、下翻转或左右翻转,所得行列式为1

D ,则(1)2

1

(1)

n n D D -=-; 将D 顺时针或逆时针旋转90

,所得行列式为2D ,则(1)2

2

(1)

n n D

D -=-;

将D 主对角线翻转后(转置),所得行列式为3D ,则3

D

D =;

将D 主副角线翻转后,所得行列式为4

D ,则4

D

D =;

5. 行列式的重要公式:

①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2

(1)

n n -? -;

③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2

(1)

n n -? -;

⑤、拉普拉斯展开式:A

O A C A B C

B O B ==、(1)m n C

A O A A

B B

O B C

==-

⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;

6. 对于n 阶行列式A ,恒有:1(1)

n

n

k

n k

k k E A S λλλ-=-=+-∑,其中k

S 为k 阶主子式;

7. 证明0A =的方法: ①、A A =-; ②、反证法;

③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

2、矩阵

1.

A 是n 阶可逆矩阵:

?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵)

?A 的行(列)向量组线性无关;

?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价;

?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为

0;

?T A A 是正定矩阵;

?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;

2. 对于n 阶矩阵A :*

*

AA A A A E == 无条件恒成立;

3. 1*

*1

11**()()

()()()()T

T T

T A A A A A A ----=== *

*

*

1

1

1

()()()T

T

T

AB B A AB B A AB B A ---===

4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;

5. 关于分块矩阵的重要结论,其中均A 、B 可逆:

若12

s A A A A ??

?

?= ? ??

?

,则: Ⅰ、12s

A A A A =

Ⅱ、1

111

2

1s A A A A ----?? ?

?= ? ? ??

?

; ②、1

11A O A O O B O B ---??

??

=

? ?????

;(主对角分块) ③、1

11O A O

B B O A O ---??

??= ? ?

????

;(副对角分块) ④、11111A C A A CB O B O

B -----??

-??

=

? ?????

;(拉普拉斯) ⑤、1111

1A O A O C B B CA

B -----??

??

= ? ?-????

;(拉普拉斯) 3、矩阵的初等变换与线性方程组

1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:

r

m n

E O

F O O ???

= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;

对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;

③、每行首个非0元素所在列的其他元素必须为0;

3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、 若(,)(,)r

A E E X ,则A 可逆,且1

X A -=;

②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1

A B -,即:

1(,)(,)c

A B E A B - ~ ;

③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)r

A b E x ,则A 可逆,且1

x A b -=;

4. 初等矩阵和对角矩阵的概念:

①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;

②、12

n ??

?

?Λ= ? ??

?

λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素;

③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1

111111-????

? ?

= ? ? ? ?????

; ④、倍乘某行或某列,符号

(())

E i k ,且

11

(())(())

E i k E i k

-=,例如:

1111(0)11k k k

-???? ?

? ?=≠ ? ? ? ???

?

?

; ⑤、倍加某行或某列,符号

(())

E ij k ,且

1(())(())

E ij k E ij k -=-,如:

1

11

11(0)11k k k --???? ? ?

=≠ ? ? ? ?????

5. 矩阵秩的基本性质: ①、0()min(,)m n

r A m n ?≤≤;

②、()()T

r A

r A =;

③、若A B ,则()()r A r B =;

④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)

⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);

Ⅱ、()()r A r B n +≤

⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;

6. 三种特殊矩阵的方幂:

①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;

②、型如101001a c b ??

?

? ???

的矩阵:利用二项展开式; 二项展开式:0

111

1110

()

n

n

n

n m n m

m

n n n n

m m n m

n

n

n

n

n

n m a b C a C a b C a

b C

a b

C b C a b -----=+=++++++=∑ ;

注:Ⅰ、()n

a b +展开后有1n +项;

Ⅱ、0(1)(1)!

1123!()!

--+=

=

==- m n n

n n n n n m n C

C C m m n m

Ⅲ、组合的性质:11

1

1

2---+-===+==∑n

m

n m

m m m r n

r r n

n

n n n

n

n n r C

C

C

C C

C

rC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:

①、伴随矩阵的秩:*

()()1

()10()1

n

r A n r A r A n r A n =

??==-??<-?

; ②、伴随矩阵的特征值:*1*(,)A

A

AX X A A A A X X λλ

λ

- == ? =

③、*

1A

A A -=、1

*n A A

-=

8. 关于A 矩阵秩的描述:

①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)

②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;

9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:

①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:

①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;

11. 由n 个未知数m 个方程的方程组构成n 元线性方程:

①、1111221121122222

1122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ??+++= ??

??+++=? ; ②、111211121

222221

2

n n m m mn m m a a a x b a a a x b Ax b a a a x b ??????

??? ?

??? ?

=?= ??? ?

??? ?

??????

(向量方程,A 为m n ?矩阵,m 个方程,

n 个未知数)

③、()121

2

n n x x

a

a a x β

?? ? ?= ? ???

(全部按列分块,其中12n b b b β?? ? ?

= ?

???

); ④、11

22n n a x

a x a x β

+++= (线性表出)

⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性

1.

m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ?矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T T

m βββ 构成m n ?矩阵12T T T m B βββ?? ? ?= ?

? ???

; 含有有限个向量的有序向量组与矩阵一一对应;

2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组) ②、向量的线性表出 Ax b ?=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)

3. 矩阵m n

A ?与l n

B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)

4. ()()T

r A A r A =;(101P 例15)

5. n 维向量线性相关的几何意义: ①、α线性相关 ?0α=;

②、,αβ线性相关

?,αβ

坐标成比例或共线(平行);

③、,,αβγ线性相关 ?,,αβγ共面;

6. 线性相关与无关的两套定理:

若1

2

,,,s

ααα 线性相关,则1

2

1

,,,,s

s αααα+ 必线性相关;

若1

2

,,,s αα

α 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,

二者为对偶)

若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B : 若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)

简言之:无关组延长后仍无关,反之,不确定;

7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);

向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示

AX B ?=有解;

()(,)r A r A B ?=(85P 定理2)

向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论) 8. 方阵A 可逆?存在有限个初等矩阵1

2

,,,l

P P P ,使1

2

l

A P P P = ;

①、矩阵行等价:~r

A B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解 ②、矩阵列等价:~c

A B AQ B ?=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9. 对于矩阵m n A ?与l n

B ?:

①、若A 与B 行等价,则A 与B 的行秩相等;

②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;

③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n

A B C ???=,则:

①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;

②、C 的行向量组能由B 的行向量组线性表示,T

A 为系数矩阵;(转置) 11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,

而无需证明;

①、0ABx = 只有零解0Bx ? =只有零解; ②、0Bx = 有非零解0ABx ? =一定存在非零解;

12. 设向量组1

2

:,,,n r

r

B b b b ? 可由向量组1

2

:,,,n s

s

A a a a ? 线性表示为:(110P 题19结论)

1

2

1

2

(,,,)(,,,)r

s

b b b a a a K = (B AK =)

其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性)

(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)

注:当r s =时,K 为方阵,可当作定理使用;

13. ①、对矩阵m n

A ?,存在n m

Q ?,m

AQ E = ()r A m ?=、Q 的列向量线性无关;(87P ) ②、对矩阵m n

A ?,存在n m

P ?,n

PA E = ()r A n ?=、P 的行向量线性无关; 14. 1

2

,,,s

ααα 线性相关

?存在一组不全为0的数1

2

,,,s

k k k ,使得11

2

2

0s

s

k k k ααα+++= 成立;(定义)

?1212(,,,)0s s x x

x ααα?? ? ?= ?

???

有非零解,即0Ax =有非零解; ?12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;

15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:

()r S n r =-;

16. 若*

η为Ax b =的一个解,1

2

,,,n r

ξξξ- 为0Ax =的一个基础解系,则*

12,,,,n r

ηξξξ- 线性无关;(111P 题33结论)

5、相似矩阵和二次型

1. 正交矩阵T

A

A E

?=或1

T A

A -=(定义),性质:

①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0

T i

j i j

a

a i j n i j

=?==?

≠? ; ②、若A 为正交矩阵,则1

T

A A -=也为正交阵,且1A =±;

③、若A 、B 正交阵,则AB 也是正交阵;

注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:1

2

(,,,)r

a a a

1

1

b a =;

1222111[,]

[,]

b a b a b b b =-

121121112211[,][,][,]

[,][,][,]

r r r r r r r r r b a b a b a b a b b b b b b b b b ----=-

--- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交;

4. ①、A 与B 等价 ?A 经过初等变换得到B ;

?=PAQ B

,P 、Q 可逆;

()()?=r A r B ,A 、B 同型;

②、A 与B 合同 ?=T

C AC B ,其中可逆;

?T

x Ax 与T

x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1

-?=P AP B ; 5. 相似一定合同、合同未必相似;

若C 为正交矩阵,则T

C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格);

6. A 为对称阵,则A 为二次型矩阵;

7. n 元二次型T

x Ax 为正定:

A ?的正惯性指数为n ;

A ?与E 合同,即存在可逆矩阵C ,使T

C AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0; 0,0ii

a A ?>>;(必要条件)

线性代数选择题(考试用题)

线性代数选择题道(含答案) 1.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 2.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 3.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 4.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则 必有() A. k≤3 B. k<3 C. k=3 D. k>3 5.下列矩阵中是正定矩阵的为() A. 23 34 ? ? ? ? ? B. 34 26 ? ? ? ? ? C. 100 023 035 - - ? ? ? ? ? ? ? D. 111 120 102 ? ? ? ? ? ? ? 6.下列矩阵中,()不是初等矩阵。 A. 001 010 100 ?? ?? ?? ?? ?? B. 100 000 010 ?? ?? ?? ?? ?? C. 100 020 001 ?? ?? ?? ?? ?? D. 100 012 001 ?? ?? - ?? ?? ??

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数必须熟记的结论

1、行列式 1. n 行列式共有n 2 个元素,展开后有 n!项,可分解为2n 行列式; 2. 代数余子式的性质: ① 、Aq 和aq 的大小无关; 行列式的重要公式: 主对角行列式:主对角元素的乘积; 拉普拉斯展开式: 范德蒙行列式:大指标减小指标的连乘积; 特征值; 证明A 0的方法: ① 、A A ; ② 、反证法; ③ 、构造齐次方程组 Ax 0,证明其有非零解; ④ 、利用秩,证明r (A ) n ; ⑤ 、证明0是其特征值; 矩阵 1. A 是n 阶可逆矩阵: A 0 (是非奇异矩阵); r (A ) n (是满秩矩阵) A 的行(列)向量组线性无关; 齐次方程组Ax 0有非零解; b R n , Ax b 总有唯一解; A 与E 等价; A 可表示成若干个初等矩阵的乘积; A 的特征值全不为 0; A T A 是正定矩阵; 6. 对于n 阶行列式A ,恒有: E A 1)k S k k ,其中 S k 为k 阶主子式; 3. 4. ② 、某行(列)的元素乘以其它行(列)元素的代数余子式为 ③ 、某行(列)的元素乘以该行(列)元素的代数余子式为 代数余子式和余子式的关系: M j ( 1; j A, 设n 行列式D : Aq 0; A ; (1)i j M, 将D 上、下翻转或左右翻转,所得行列式为 D ,则 D i 将D 顺时针或逆时针旋转 90°,所得行列式为 将D 主对角线翻转后(转置),所得行列式为 D 2,则 D 2 D 3,则 D a n (n 1) 1L D ; n (n 1) (1) 将D 主副角线翻转后,所得行列式为 D 4,则 D 4 D ; 5. 副对角行列式:副对角元素的乘积 上、下三角行列式( n (n 1) (1L ; 主对角元素的乘积; ④、 匚和丄:副对角元素的乘积 n (n 1) 厂; (1严 A B 7.

线性代数真题987-203选择题

二、选择题 1.(1987—Ⅰ,Ⅱ)设 A 为n 阶方阵,且A 的行列式0A a =≠,而*A 是A 的伴随矩阵,则* A 等于 ( C ) (A)a . (B) 1a . (C)1n a -. (D)n a . 【考点】伴随矩阵的性质. 解 1 *n A A -=. 2.(1987—Ⅳ,Ⅴ)假设 A 是n 阶方阵,其秩r n <,那么在A 的n 个行向量中( ) (A) 必有r 个行向量线性无关. (B) 任意r 个行向量线性无关. (C) 任意r 个行向量都构成最大线性无关向量组. (D) 任何一个行向量都可以由其他r 个行向量线性表出. 【考点】矩阵的秩,向量组的线性相关性及向量组的最大无关组. 解 ()R A r n A =

线性代数重要结论大全.

线性代数必考知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵; ?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

同济大学线性代数第五版课后习题答案

1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a

bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1

(4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个)

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数学习心得体会doc

线性代数学习心得体会 篇一:学习线性代数的心得体会 学习线性代数的心得体会 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,

想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自 己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以 问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只

线性代数选择 填空 计算题

(一)单项选择题 1.设A ,B 为n 阶方阵,且()E AB =2 ,则下列各式中可能不成立的是( ) (A )1-=B A (B)1-=B ABA (C)1 -=A BAB (D)E BA =2)( 2.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 3.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B =-1 (D ) 不一定 4.设A 为n ×n 阶矩阵,如果r(A)

《线性代数》的主要知识点

《线性代数》的主要知识点 第一部分 行列式 概念: 1. n 阶行列式展开式的特点:①共有n!项,正负各半; ②每项有n 个元素相乘,且覆盖所有的行与列; ③每一项的符号为(列) 行)ττ+-() 1( 2. 元素的余子式以及代数余子式 ij j i ij M )1(A +-= 3. 行列式的性质 计算方法: 1. 对角线法则 2. 行列式的按行(列)展开 (另有异乘变零定理) 第二部分 矩阵 1. 矩阵的乘积 注意:①不满足交换率(一般情况下B A A B ≠) ②不满足消去率 (由AB=AC 不能得出B=C ) ③由AB=0不能得出A=0或B=0 ④若AB=BA ,则称A 与B 是可换矩阵 2.矩阵的转置 满足的法则:T T T B A )B A (+=+,T T T T T A B AB kA kA ==)(,)( 3.矩阵的多项式 设n n x a x a a x +++=Λ10)(?,A 为n 阶方阵,则 n n A a A a E a A +++=Λ10)(?称为A 的n 次多项式。 对与对角矩阵有关的多项式有结论如下: (1)如果 1 -Λ=P P A ,则n n A a A a E a A +++=Λ10)(? 11110---Λ++Λ+=P Pa P Pa EP Pa n n Λ= 1)(-ΛP P ?

(2)若),,(21n a a a diag Λ=Λ,则))(),(),(()(21n a a a diag ????Λ=Λ 4.逆矩阵:n 阶矩阵A,B ,若E BA AB ==,则A,B 互为逆矩阵。 n 阶矩阵A 可逆0A ≠?; n A r =?)( (或表示为n A R =)()即A 为满秩矩阵; ?A 与E 等价; ?A 可以表示成若干个初等矩阵的乘积; ?A 的列(行)向量组线性无关; ?A 的所有的特征值均不等于零 求法:①伴随矩阵法:*1 1 A A A ?= - ②初等变换法:()() 1,,-???→?A E E A 初等行变换或??? ? ?????→????? ??-1A E E A 初等列变换 , E 是单位矩阵 性质:(1)矩阵A 可逆,则A 的逆矩阵是唯一的 (2)设A 是n 阶矩阵,则有下列结论 ①若A 可逆,则1 -A 也可逆,且A A =--1 1)( ②若A 可逆,则T A 也可逆,且T T A A )() (11 --= ③若A 可逆,数0≠k ,则kA 可逆,且111)(--= A k kA ④若B A .为同阶矩阵且均可逆,则B A .也可逆,且111 )(---=A B AB 5.方阵A 的行列式: 满足下述运算规律(设B A ,为n 阶方阵,λ为数) ①A A T = ②A A n λλ= ③B A AB = 6.伴随矩阵:行列式A 的各个元素的代数余子式ij A 所构成的如下的矩阵 ???? ?? ? ??=nn n n n n A A A A A A A A A A Λ M M M ΛΛ212221212111* ,称为矩阵A 的伴随矩阵(注意行与列的标记的不同) 伴随矩阵具有性质:E A A A AA ==* *

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

《线性代数》题库及答案

《线性代数》题库及答案 一、选择题 1.如果D=33 32 31232221 131211 a a a a a a a a a ,则行列式33 32 31 232221 13 1211 96364232a a a a a a a a a 的值应为: A . 6D B .12D C .24D D .36D 2.设A 为n 阶方阵,R (A )=r

线性代数超强的总结(不看你会后悔的)

线性代数超强总结 ()0A r A n A Ax A A οο??

√ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则(1)mn A A A A B B B B A A B B οο οοο *===** =- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -????→ 初等行变换 ③11a b d b c d c a ad bc --????=????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 1121n a a n a a a a -????????????=???????? ????? ? 2 1 1 1 121 1n a a n a a a a -???? ???? ? ???=???? ??????????

线性代数超强总结

√ 关于12,,,n e e e ???: ①称为 n 的标准基, n 中的自然基,单位坐标向量; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr()=E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. √ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -???? →初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ??????????

⑤1 1111 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=???? ???? ?????? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοο ο ?? ?? ? ??? ? ???==???????????? √ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时, √ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断12,, ,s ηηη是0Ax =的基础解系的条件:

相关文档
最新文档