(完整)2018年高二理科排列组合专题

合集下载

考点26 排列与组合、二项式定理-2018届高考数学理30个

考点26 排列与组合、二项式定理-2018届高考数学理30个

2018届高考30个黄金考点精析精训考点26 排列与组合、二项式定理(理)【考点剖析】1.最新考试说明:1.分类加法计数原理、分步乘法计数原理 (1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式. (3)能解决简单的实际问题. 3.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题. 2.命题方向预测:以实际问题为背景考查排列、组合的应用,同时考查分类讨论的思想.以选择题或填空题的形式考查,或在解答题中和概率相结合进行考查. 二项展开式中的特定项、特定项的系数、二项式系数等是高考的热点.常以选择题、填空题的形式考查,近几年试题难度呈降低趋势. 3.名师二级结论: 一个区别排列与组合,排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合. 两个公式(1)排列数公式n !A ()!mn n m =-(2)组合数公式n !C !()!m n m n m =-,利用这两个公式可计算排列问题中的排列数和组合问题中的组合数.①解决排列组合问题可遵循“先组合后排列”的原则,区分排列组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”.②要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果. 四字口诀求解排列组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.” 一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C rn ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性; (2)增减性;(3)各项二项式系数的和;以上性质可通过观察杨辉三角进行归纳总结. 4.考点交汇展示: (1)与基本不等式相结合若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 .【答案】2(2)与定积分相结合已知11(1a dx -=⎰,则61()2a x x π⎡⎤--⎢⎥⎣⎦展开式中的常数项为 。

2018届高考理科数学通用版三维二轮专题复习课件排列与组合、二项式定理

2018届高考理科数学通用版三维二轮专题复习课件排列与组合、二项式定理

10b-a ab
a x+ n 3.(2018 届高三· 西安八校联考)已知关于 x 的二项式 3 x 的展开式的二项式系数之和为 32,常数项为 80,则实数 a
a a 5 x + x + n 解析:依题意得 2n=32,n=5,二项式 = 3 3 x x
位自然数中“凹数”共有 100+36+9+1=146 个. 答案:D
解析:中国领导人站在前排正中间位置,美、俄两国领导 人站前排并与中国领导人相邻,有 A2 2种站法;其他 18 国 领导人可以任意站,因此有 A18 18种站法.根据分步计数原
18 理,共有 A2 A 2 18种站法.
答案:D
4.(2017· 浙江高考)从 6 男 2 女共 8 名学生中选出队长 1 人,副 队长 1 人,普通队员 2 人组成 4 人服务队,要求服务队中至 少有 1 名女生,共有________种不同的选法.(用数字作答)
解析:法一:分两步,第一步,选出 4 人,由于至少 1 名女生,
4 故有 C4 8-C6=55 种不同的选法;第二步,从 4 人中选出队长、
副队长各 1 人,有 A2 4=12 种不同的选法.根据分步乘法计数原 理知共有 55×12=660 种不同的选法.
2 法二:不考虑限制条件,共有 A2 8C6种不同的选法, 2 而没有女生的选法有 A2 6C4种, 2 2 2 故至少有 1 名女生的选法有 A2 8C6-A6C4=840-180=660(种).
不同的住宿安排共有 90-18=72 种.
答案:72
[准解·快解·悟通]
快 1.看到“在”与“不在”的排列问题,想到特殊优先原则. 审 2.看到相邻问题,想到捆绑法;看到不相邻问题,想到插空法. 题 3.看到“至少”“最多”的问题,想到用直接法或间接法. 1.明确排列、组合问题求解的 4 个角度 解答排列组合应用题要从“分析”“分辨”“分类”“分 步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”, 准 哪些是“位置”; 解 (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有 题 无限制等; (3)“分类”就是对于较复杂的应用题中的元素往往分成互 相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都 是简单的排列、组合问题,然后逐步解决.

2018年高考数学总温习专题11排列组合二项式定理分项练习理

2018年高考数学总温习专题11排列组合二项式定理分项练习理

专题11 排列组合、二项式定理1. 【2005高考北京理第7题】北京《财富》全世界论坛期间,某高校有14名志愿者参加接待工作,若天天早、中、晚三班,每4人,每人天天最多值一班,则揭幕式当天不同的排班种数为 ( )A .484121214C C C B .484121214A A CC .33484121214A C C C D .33484121214A C C C【答案】A考点:排列组合。

2. 【2006高考北京理第3题】在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,列位数字之和为奇数的共有( ) (A )36个 (B )24个 (C )18个(D )6个【答案】B【解析】依题意,所选的三位数字有两种情形:(1)3个数字都是奇数,有33A 种方式(2)3个数字中有一个是奇数,有1333C A ,故共有33A +1333C A =24种方式,故选B3. 【2007高考北京理第5题】记者要为5名志愿者和他们帮忙的2位老人拍照,要求排成一排,2位老人相邻但不排在两头,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种【答案】B 【解析】试题分析:5名志愿者先排成一排,有种方式,2位老人作一组插入其中,且两位老人有左右顺序,共有种不同的排法,选B.【考点】有限制条件的排列,相邻问题的排列4. 【2009高考北京理第6题】若5(12)2(,a a b =+为有理数),则a b += ( )A .45B .55C .70D .80【答案】C 【解析】 试题分析: ∵()()()()()()()5123451234555555512222222C C C C C C +=+++++15220202204241292=+++++=+, 由已知,得412922a b +=+,∴412970a b +=+=.故选C. 考点:二项式定理及其展开式.5. 【2009高考北京理第7题】用0到9这10个数字,能够组成没有重复数字的三位偶数的个数为 ( )A .324B .328C .360D .648 【答案】B考点:排列组合知识和分类计数原理和分步计数原理知识.6. 【2010高考北京理第4题】8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( ) A .8289A A B .8289A C C .8287A A D .8287A C 【答案】A 【解析】试题分析:运用插空法,先排8名学生,有88A 种排法,8名学生间共有9个间隙(加上边上间隙),然后把老师排在9个间隙中,有29A 种排法,因此共有88A 29A 种排法.考点:排列组合.7. 【2012高考北京理第6题】从0,2被选一个数字.从1.3.5被选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6 【答案】B考点:排列组合.8. 【2005高考北京理第11题】6)1(xx -的展开式中的常数项是 . (用数字作答) 【答案】15 【解析】试题分析: 关于13(6)6422166(1)()(1)r r rrr r T C xx C x---+=-=-当4r =时第5项为常数项,即4456(1)15T C =-=.考点:二项式定理。

2018届高考数学(理)一轮复习人教版课件:第56讲 排列与组合

2018届高考数学(理)一轮复习人教版课件:第56讲   排列与组合

课堂考点探究
考点一 排列问题
例 1 (1)A,B,C,D,E,F 六人围坐在一张圆桌周围 开会, A 是会议的中心发言人, 必须坐最北面的椅子, B,C 两人必须坐相邻的两把椅子,其余三人坐剩余 的三把椅子,则不同的座次有( ) A.60 种 B.48 种 C.30 种 D.24 种 (2)[2016· 广州一调] 将除颜色外完全相同的一个白 球、一个黄球、两个红球分给三个小朋友,且每个小 朋友至少分得一个球的分法有( ) A.15 种 B.21 种 C.18 种 D.24 种
2 3 4 C7+C7+C7=
课前双基巩固
5.甲、乙两人进行乒乓球比赛,先赢 3 局 者获胜(无平局),决出胜负为止,则所有可 能出现的情形(各人输赢局次不同视为不同 情形)共有________种.
[答案] 20
[解析] 易知两人比赛局数为 3,4 或 5.当局数为 3 时,甲或乙连赢 3 局, 共 2 种;当局数为 4 时,若甲胜,则 甲第 4 局胜,且前 3 局胜 2 局,有 2 C3=3(种)情况, 同理乙胜也有 3 种情 况,共 6 种;当局数为 5 时,前 4 局 甲、 乙各胜 2 局, 第 5 局赢的人获胜, 2 有 2C4=12(种)情况.故共有 20 种情 况.
m (1)An =n(n-1)(n-2)…(n-m+1)=
公式
性质
用加 、________ 有序 3.解决排列组合计数问题,最常见的原理和方法为“分步用乘、分类________ 排列、无序组合”.
课前双基巩固
对点演练
1.判断下列结论的正误.(正确的打“√”,错误的打 “×”) 2 (1)从 3 个不同元素中任取 2 个元素,共有 A3种不同取 法.( ) (2) 将 4 本新的相同的课本发给 4 个不同的同学,每人 4 一本,共有 A4种不同分法.( ) 2 (3) 从 3,5,7,11 中任取两个数相加,共有 A4种不同 结果.( )

2018年高考数学分类汇编:专题排列组合、程序框图、二项展开式试题及答案详解

2018年高考数学分类汇编:专题排列组合、程序框图、二项展开式试题及答案详解

2018年高考数学分类汇编----排列组合1、(2018年高考全国卷1理科第15题)(5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:162、(2018年高考全国卷II文科第5题)(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3【解答】解:从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,故选:D.3、(2018年高考上海卷第9题)(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.4、(2018年高考浙江卷第16题)(4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260个没有重复数字的四位数.(用数字作答)【解答】解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.2018年高考数学分类汇编----程序框图1、(2018年高考全国卷II文科第8题)(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.2、(2018年高考全国卷II理科第14题)(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.3、(2018年高考北京卷文科第3题)(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.【解答】解:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.4、(2018年高考北京卷理科第3题)(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.【解答】解:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.5、(2018年高考江苏卷第4题)(5分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.6、(2018年高考天津卷文科第4题)(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.7、(2018年高考天津卷理科第3题)(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.2018年高考数学分类汇编----二项展开式1、(2018年高考全国卷III理科第5题)(5分)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.80【解答】解:由二项式定理得(x2+)5的展开式的通项为:T r+1=(x2)5﹣r()r=,由10﹣3r=4,解得r=2,∴(x2+)5的展开式中x4的系数为=40.故选:C.2、(2018年高考上海卷第3题)(4分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.3、(2018年高考天津卷理科第10题)(5分)在(x﹣)5的展开式中,x2的系数为.【解答】解:(x﹣)5的二项展开式的通项为=.由,得r=2.∴x2的系数为.故答案为:.4、(2018年高考浙江卷第14题)(4分)二项式(+)8的展开式的常数项是7.【解答】解:由=.令=0,得r=2.∴二项式(+)8的展开式的常数项是.故答案为:7.。

2018届高考数学二轮复习排列与组合学案含答案(全国通用)

2018届高考数学二轮复习排列与组合学案含答案(全国通用)

2018届⾼考数学⼆轮复习排列与组合学案含答案(全国通⽤)排列与组合【考点梳理】1.排列与组合的概念(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n 个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质考点⼀、排列问题【例1】(1)六个⼈从左⾄右排成⼀⾏,最左端只能排甲或⼄,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种(2)把5件不同产品摆成⼀排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.[答案] (1)B(2)36[解析] (1)第⼀类:甲在最左端,有A55=5×4×3×2×1=120(种)⽅法;第⼆类:⼄在最左端,有4A44=4×4×3×2×1=96(种)⽅法.所以共有120+96=216(种)⽅法.(2)记其余两种产品为D,E,A,B相邻视为⼀个元素,先与D,E排列,有A22A33种⽅法;再将C插⼊,仅有3个空位可选,共有A22A33C13=2×6×3=36种不同的摆法.【类题通法】1. 第(1)题求解的关键是按特殊元素甲、⼄的位置进⾏分类.注意特殊元素(位置)的优先原则,即先排有限制条件的元素或有限制条件的位置.对于分类过多的问题,可利⽤间接法.2.对相邻问题采⽤捆绑法、不相邻问题采⽤插空法、定序问题采⽤倍缩法等常⽤的解题⽅法.【对点训练】1.7⼈站成两排队列,前排3⼈,后排4⼈,现将甲、⼄、丙三⼈加⼊队列,前排加⼀⼈,后排加两⼈,其他⼈保持相对位置不变,则不同的加⼊⽅法种数为( )A.120B.240C.360D.480[解析] 第⼀步,从甲、⼄、丙三⼈选⼀个加到前排,有3种,第⼆步,前排3⼈形成了4个空,任选⼀个空加⼀⼈,有4种,第三步,后排4⼈形成了5个空,任选⼀个空加⼀⼈有5种,此时形成6个空,任选⼀个空加⼀⼈,有6种,根据分步计数原理有3×4×5×6=360种⽅法.2.某班准备从甲、⼄等七⼈中选派四⼈发⾔,要求甲⼄两⼈⾄少有⼀⼈参加,那么不同的发⾔顺序有( )A.30B.600C.720D.840[答案] C[解析]若只有甲⼄其中⼀⼈参加,有C12C35A44=480种⽅法;若甲⼄两⼈都参加,有C22C25A44=240种⽅法,则共有480+240=720种⽅法,故选C.考点⼆、组合问题【例2】某市⼯商局对35种商品进⾏抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某⼀种假货必须在内,不同的取法有多少种?(2)其中某⼀种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)⾄少有2种假货在内,不同的取法有多少种?(5)⾄多有2种假货在内,不同的取法有多少种?[解析] (1)从余下的34种商品中,选取2种有C234=561种,∴某⼀种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种.∴某⼀种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100种.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3件假货有C315种,共有选取⽅式C120C215+C315=2 100+455=2 555种.∴⾄少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数为C335,因此共有选取⽅式C335-C315=6 545-455=6 090种.∴⾄多有2种假货在内的不同的取法有6 090种.【类题通法】组合问题常有以下两类题型变化:1.“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补⾜;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.2.“⾄少”或“⾄多”含有⼏个元素的组合题型:解这类题必须⼗分重视“⾄少”与“⾄多”这两个关键词的含义,谨防重复与漏解.⽤直接法和间接法都可以求解,通常⽤直接法分类复杂时,考虑逆向思维,⽤间接法处理.【对点训练】1.现有6个不同的⽩球,4个不同的⿊球,任取4个球,则⾄少有两个⿊球的取法种数是()B.115C.210D.385[答案] B[解析] 分三类,取2个⿊球有C24C26=90种,取3个⿊球有C34C16=24种,取4个⿊球有C44=1种,故共有90+24+1=115种取法,选B.2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种[答案] D[解析]共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,∴共有不同的取法有C45+C44+C25C24=66(种).考点三、排列、组合的综合应⽤【例3】4个不同的球,4个不同的盒⼦,把球全部放⼊盒内.(1)恰有1个盒不放球,共有⼏种放法?(2)恰有1个盒内有2个球,共有⼏种放法?(3)恰有2个盒不放球,共有⼏种放法?[解析] (1)为保证“恰有1个盒不放球”,先从4个盒⼦中任意取出去⼀个,问题转化为“4个球,3个盒⼦,每个盒⼦都要放⼊球,共有⼏种放法?”即把4个球分成2,1,1的三组,然后再从3个盒⼦中选1个放2个球,其余2个球放在另外2个盒⼦内,由分步乘法计数原理,共有C14C24C13×A22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒⼦放2个球,每个盒⼦⾄多放1个球,也即另外3个盒⼦中恰有⼀个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同⼀件事,所以共有144种放法.(3)确定2个空盒有C24种⽅法.4个球放进2个盒⼦可分成(3,1)、(2,2)两类,第⼀类有序不均匀分组有C34C11A22种⽅法;第⼆类有序均匀分组有C24C22A22·A22种⽅法.故共有C24(C34C11A22+C24C22A22·A22)=84(种). 【类题通法】1. 解排列组合问题常以元素(或位置)为主体,即先满⾜特殊元素(或位置),再考虑其他元素(或位置).对于排列组合的综合题⽬,⼀般是将符合要求的元素取出或进⾏分组,再对取出的元素或分好的组进⾏排列.2.不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组⽅法的差异.其次对于相同元素的“分配”问题,常⽤的⽅法是采⽤“隔板法”.【对点训练】1.某校⾼⼆年级共有6个班级,现从外地转⼊4名⽣,要安排到该年级的两个班级且每班安排2名,则不同的安排⽅案种数为( )A.A 26C 24B.12A 26C 24C.A 26A 24D.2A 26 [答案] B[解析] 法⼀将4⼈平均分成两组有12C 24种⽅法,将此两组分配到6个班级中的2个班有A 26(种).所以不同的安排⽅法有12C 24A 26(种).法⼆先从6个班级中选2个班级有C 26种不同⽅法,然后安排⽣有C 24C 22种,故有C 26C 24C 22=12A 26C 24(种). 2.在8张奖券中有⼀、⼆、三等奖各1张,其余5张⽆奖.将这8张奖券分配给4个⼈,每⼈2张,不同的获奖情况有________种(⽤数字作答).[答案] 60[解析] 把8张奖券分4组有两种分法,⼀种是分(⼀等奖,⽆奖)、(⼆等奖,⽆奖)、(三等奖,⽆奖)、(⽆奖,⽆奖)四组,分给4⼈有A 44种分法;另⼀种是⼀组两个奖,⼀组只有⼀个奖,另两组⽆奖,共有C 23种分法,再分给4⼈有C 23A 24种分法,所以不同获奖情况种数为A 44+C 23A 24=24+36=60.。

2018届高考理科数学二轮专题复习 排列、组合、二项式定理

2018届高考理科数学二轮专题复习  排列、组合、二项式定理

解析
人,
因为5位大学毕业生分配到3家单位,每家单位至少录用1
2 C1 C 5 4 所以共有两种方法: 一, 一个单位 1 名, 其他两个单位各 2 名, 有 A 2 ×A 3 3 2
=90(种)分配方法;
3 二,一个单位 3 名,其他两个单位各 1 名,有 C3 × A 5 3=60(种)分配方法,
解析 ① 当组成四位数的数字中有一个偶数时,四位数的个数为
1 4 C3 · C A4=960. 5 4·
②当组成四位数的数字中不含偶数时,四位数的个数为 A4 5=120.
故符合题意的四位数一共有960+120=1 080(个).
思维升华
解析
答案
跟踪演练2
(1)(2017· 兰州模拟)某国际会议结束后,中、美、
俄等21国领导人合影留念,他们站成两排,前排11人,后排10 人,中国领导人站在前排正中间位置,美、俄两国领导人也站 前排并与中国领导人相邻,如果对其他国家领导人所站位置不 做要求,那么不同的站法共有
A.A18 18种
3 10 C.A2 A 3 18A10种
B.A20 20种
2 18 D.A √ 2A18种
街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要 求相邻两块牌的底色不都为蓝色,则不同的配色方案共有
A.20种

B.21种
D.24种
C.22种
解析
答案
(2)(2016· 全国Ⅱ)如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到 老年公寓可以选择的最短路径条数为
D.35
k 解析 因为(1+x)6 的通项为 Ck x 6 ,
1 1 44 6 2 2 2 所以1+x2(1+x) 的展开式中含 x 的项为 1· C6x 和x2· C6x .

2018高考数学理二轮复习课件:1-6-2 排列、组合与二项式定理 精品

2018高考数学理二轮复习课件:1-6-2 排列、组合与二项式定理 精品

(2)[2015·郑州统考一]某人根据自己的爱好,希望从{W,X,Y,Z}中选 2 个不同的字母,从{0,2,6,8}中 选 3 个不同的数字编拟车牌号,要求前 3 位是数字,后 2 位是字母,且数字 2 不能排在首位,字母 Z 和数 字 2 不能相邻,则满足要求的车牌号的个数为( )
A.198 B.180 C.216 D.234
(2)[2015·湖北四校联考]有 5 名优秀毕业生到母校的 3 个班去做学习经验交流,则每个班至少去一名的
不同分派方法种数为( )
A.150
B.180
C.200
D.280
[解析] 分两类,一类 3 个班分派的毕业生人数分别为 2,2,1,则有CA52C22 23·A33=90 种分派方法;另一 类 3 个班分派的毕业生人数分别为 1,1,3,则有 C35·A33=60 种分派方法,所以不同分派方法种数为 90+ 60=150,故选 A.
(n,m∈N*,且 m≤n);
(2)Cmn+1= Cmn +Cmn -1
(n,m∈N*,且 m≤n);
(3)C0n=1.
2.二项式定理
(a+b)n= C0nan+C1nan-1b1+C2nan-2b2+…+Cknan-k·bk+…+Cnnbn ,其中通项 Tr+1= Crnan-rbr .
3.二项式系数的性质
建模规范答题
课题 21 分类讨论思想解答排列组合应用题
[2015·四川高考]用数字 0,1,2,3,4,5 组成没有重复数字的五位数,其中比 40000 大的偶数共有
()
A.144 个
B.120 个
C.96 个
D.72 个
[规范解答] 当五位数的万位为 4 时,个位可以是 0,2,此时满足条件的偶数共有 C12A34=48(个);当 五位数的万位为 5 时,个位可以是 0,2,4,此时满足条件的偶数共有 C13A34=72(个),所以比 40000 大的 偶数共有 48+72=120(个),选 B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高二理科辅导专题
排列组合综合应用题
1. 分类加法原理、分步乘法原理。

模型1:①四人住3家旅店问题,方法几何?
②涂色问题.
2. 在不在、邻不邻问题。

在不在问题从特殊处(特殊元素、特殊位置)入手;相邻问题捆绑法;不
相邻问题插空法。

模型2:7个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头;
(2)甲不排头,也不排尾;
(3)甲、乙、丙三人必须在一起;
(4)甲、乙之间有且只有两人;
(5)甲、乙、丙三人两两不相邻;
(6)甲在乙的左边(不一定相邻);
(7)甲、乙、丙三人按从高到矮,自左向右的顺序排;
(8)甲不排头,乙不排正中间.
3. 排列组合问题,先取后排法.
模型3:四张卡片,正反面分别为1和2,3和4,5和6,7和8。

用这四张卡片,能排成多少个不同的四位数?
4. “纵向”求和法.
模型4:①用1,2,3,4四个数字可以组成不同的四位数,求这些四位数字的和.
②集合{1,2,3,4,5,6,7,8,9,0}的所有子集中元素和的总和是?
5. “查字典法”。

模型5:用1,2,3,4,5排成四位数,把这些四位数按从小到大的顺序排成一列,问5341是第几个数?
6.不定方程的非负整数解、正整数解问题
模型6: 方程x1+x2+x3+x4=7
①非负整数解的个数是多少?
②正整数解的个数是多少?
③(应用与转化)甲乙两队打擂台比赛,每方各7人,如果甲方获胜,共有多少种不同的结
果?
④【2016高考新课标2理】如图,小明从街道的E处出发,先到F处与小红会合,再一起到
位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
()
(A)24 (B)18 (C)12 (D)9
⑤变式:如上图示,变成菱形,每个顶点是一个字呢?
⑥若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ).
A .11
B .33
C .55
D .66
7. 分组问题.
模型7: 有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?
(1)分成1本、2本、3本三组;
(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;
(3)分成每组都是2本的三组;
(4)分给甲、乙、丙三人,每人2本.
⑸按1、1、4分成3组,共有多少种方法?
8. 树图法。

个数较少问题的一种处理方法。

模型8:四个同学各做了一张卡片,打乱顺序后各自拿了一张,都不拿自己的情况有多少种?
规律与方法总结:
(1) 相邻问题捆绑法, (2) 不相邻问题插空法,
(3) 多排问题单排法, (4) 定序问题倍缩法,
(5) 定位问题优先法, (6) 有序分配问题分步法,
(7) 多元问题分类法, (8) 交叉问题集合法,
(9) 至少(多)问题间接法, (10) 选排问题先取后排法,
(11) 局部与整体问题排除法, (12) 复杂问题转化法.
练习:设计方案,套用模型
1. (2014·辽宁高考)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A. 144
B. 120
C. 72 D . 24
2. 马路上有编号为1,2,3,4,5,6,7,8,9的9只路灯,现要关掉其中的3只,但不能关掉相

的2只或3只,也不能关掉两端的2只,求满足条件的关灯方法有多少种?(10)
近年高考题
1.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,
则不同的安排方式共有( )
A .12种
B .18种
C .24种
D .36种 2.【2012全国,理2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活 动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A .12种
B .10种
C .9种
D .8种
3. 【2011全国,理7】某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋 友,每位朋友1本,则不同的赠送方法共有( )
A .4种
B .10种
C .18种
D .20种
4. 【2009全国卷Ⅰ,理5】甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学.若从甲、
乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )
A.150种
B.180种
C.300种
D.345种
5.【2006全国,理15】安排7位工作人员在5月1日至5月7日值勤班,每人值班一天,其中甲乙
二人都不安排在5月1日和2日。

不同的安排方法共有___种。

(用数字作答)(2400)
6. 【2008全国1,理12】如图,一环形花坛分成A
B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )
A .96
B .84
C .60
D .48
7. 【2005全国1,理11】过三棱柱任意两个顶点的直线共15条,其中异面直线有( )
A .18对
B .24对
C .30对
D .36
8. 【2014课标Ⅰ,理5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都
有同学参加公益活动的概率为( )
A .81
B .83
C .85
D .8
7 9. 【2011全国新课标,理4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
A .13
B .12
C .23
D .34
10.【2017浙江,16】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有____中不同的选法.(用数字作答)
11.【2017天津,理14】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)。

相关文档
最新文档