光伏发电系统用逆变器基本知识

合集下载

逆变器基本原理及参数介绍2015723

逆变器基本原理及参数介绍2015723

单相单路一代机
1kW~4.6kW上市
进行北美机型日本机型 及二代机的研发
单相机产品路线图
© copy right reserved by GoodWe
GoodWe产品简介
10kW 12kW 15kW 17kW 上市
25kW 30kW上市
50kW
2011
2012
2013
2014
2015
65kW 上市
BP系列
即将上市产品
© copy right reserved by GoodWe
GoodWe产品简介
单相双路一代机
3.6kW 4.2kW 4.6kW上市
单相单路二代机
1kW 1.5kW 2kW 2.5kW 3kW上市 开始单相双路二代机研发
2011
2012
2013
2014
2015
单相双路二代机
3kW ~ 5kW上市
4kW 5kW 6kW小三相上市 三相机开始研发 (国内最早推出小三相机厂家) 20kW上市
三相机产品路线图
© copy right reserved by GoodWe
GoodWe产品简介
储能机市场调研工作 规格参数制定工作 储能机3.6kW 4.6kW上市 开始储能一体机及BP机种研发
2012
© copy right reserved by GoodWe
光伏发电系统介绍
1.8
MPP
1.5
阴影遮挡
1.0
0.5
MPP2 MPP1 MPP
0
100 200 300 400 500 600 700
2.0
中午12点时无 遮挡MPP曲线
上午9点时有遮 挡MPP曲线

第6章 逆变器

第6章 逆变器

6.2 光伏逆变器的原理电路
1.三相电压型逆变器 三相电压型逆变器的基本电路如图6-8所示。该电路主要 由6只功率开关器件和6只续流二极管以及带中性点的直流 电源构成。图中负载L和R表示三相负载的各路相电感和相 电阻。
图6-8 三相电压型逆变器电路原理图
6.2 光伏逆变器的原理电路
功率开关器件VTl~VT6在控制电路的作用下,当控制信 号为三相互差120°的脉冲信号时,可以控制每个功率开关 器件导通180或120,相邻两个开关器件的导通时间互差 60°。逆变器三个桥臂中上部和下部开关元件以180°间隔 交替开通和关断,VTl~VT6以60的电位差依次开通和关 断,在逆变器输出端形成a、b、c三相电压。
图6-5 三级逆变器电路原理图
6.2 光伏逆变器的原理电路
逆变器波形变换
图6-6 逆变器波形 变换过程示意图
6.2 光伏逆变器的原理电路
4. 逆变器输出波形 方波:简单、便宜、使用方便,含高次谐波、损耗大, 干扰大、不能上网; 梯形波:高次谐波少,整机效率高;电磁干扰、不能上 网; 正弦波:波形好、性能优、可并网;线路复杂、贵。
6.2 光伏逆变器的原理电路
控制电路输出的开关控制信号:方波、阶梯波、脉宽调 制方波、脉宽调制三角波和锯齿波等;后三种脉宽调制的 波形都是以基础波作为载波,正弦波作为调制波,最后输 出正弦波波形。普通方波和被正弦波调制的方波的区别如 图6-9所示。普通方波信号是连续导通的,而被调制的方波 信号要在正弦波调制的周期内导通和关断N次。
6.2 光伏逆变器的原理电路
6.2.1 单相逆变器电路原理
1.推挽式逆变电路 推挽式逆变电路原理如图6-2所示。该电路由两只共负极 连接的功率开关管和一个初级带有中心抽头的升压变压器 组成。升压变压器的中心抽头接直流电源正极,两只功率 开关管在控制电路的 作用下交替工作,输 出方波或三角波的交 流电力。

光伏逆变器直流分断开关原理-概述说明以及解释

光伏逆变器直流分断开关原理-概述说明以及解释

光伏逆变器直流分断开关原理-概述说明以及解释1.引言1.1 概述概述光伏逆变器是将直流电能转换为交流电能的关键设备,它在光伏发电系统中扮演着重要的角色。

光伏逆变器的工作原理是通过将光伏板产生的直流电流经过电子元件的调控和控制电路的处理,将其转换为交流电流输出。

光伏逆变器中的直流分断开关起到了重要的作用。

这种开关是一种用于断开或连接直流电源电路的设备,能够确保正常光伏逆变器的运行以及快速响应各种电力系统和设备的需求。

直流分断开关在光伏逆变器中的作用主要有两个方面。

首先,它可以实现将光伏板输出的直流电能与逆变器的输入端相连接或断开,以实现电能的输送或停止。

其次,直流分断开关还能够保护逆变器和其他电气设备免受潜在的电压过高或电流过大的损坏。

总之,光伏逆变器的直流分断开关是确保系统正常运行和保护设备安全的重要组成部分。

它的作用不仅仅限于连接或断开电路,更重要的是在关键时刻能够保障整个光伏发电系统的稳定性和安全性。

在接下来的文章中,我们将详细探讨光伏逆变器直流分断开关的原理及其在光伏发电系统中的应用。

1.2 文章结构文章结构的安排对于一篇长文的撰写至关重要。

它有助于读者理解文章的组织结构,并能清晰地了解各个部分的内容。

以下是针对"文章结构"部分的内容:在本文中,将按照以下结构来介绍光伏逆变器直流分断开关的原理。

首先,引言部分将概述本文的主要内容和目的。

在引言中,将对光伏逆变器的基本原理进行简要介绍,并说明直流分断开关的作用以及本文的目的。

接下来,正文部分将重点介绍光伏逆变器的基本原理和直流分断开关的作用。

在2.1节中,将详细阐述光伏逆变器的基本原理,包括光伏效应、光伏电池和逆变器的工作原理等内容。

对于读者来说,这一部分将提供一个对光伏逆变器基本原理的全面理解。

在2.2节中,将着重探讨直流分断开关的作用及其在光伏逆变器中的应用。

解释直流分断开关的工作原理、它对逆变器电路的影响以及它在光伏逆变器中的重要性。

光伏逆变器知识点总结

光伏逆变器知识点总结

光伏逆变器知识点总结一、工作原理光伏逆变器的工作原理可以简单概括为将光伏板产生的直流电通过电子器件转换成交流电。

具体来说,光伏板产生的直流电首先经过光伏组串并联到直流输入端子上,然后进入逆变器内部的整流器模块,将直流电转换成无脉冲的直流电。

接着电压经过变压器升高,进入逆变器模块,将直流电转换成交流电,输出到市电网中。

二、分类根据用途和性能要求的不同,光伏逆变器可以分为独立式逆变器和并网式逆变器。

独立式逆变器一般用于没有电网的场合,比如太阳能灯和太阳能泵等。

并网式逆变器则主要用于将光伏发电系统发出的交流电直接并入市电网中,实现自发自用和余电卖给电力公司。

三、性能指标1. 转换效率光伏逆变器的转换效率是指其将直流电转换为交流电的能力。

转换效率越高,说明逆变器内部能量损失越小,发电系统整体的效率也越高。

目前市面上的光伏逆变器转换效率普遍在90%以上。

2. 最大功率点跟踪(MPPT)最大功率点跟踪技术可以保证光伏板在各种光照条件下都能工作在最佳状态,充分利用光伏板的发电潜力。

逆变器带有MPPT功能的,其输出电压和电流会自动根据光照强度和温度进行调节,从而确保始终在最佳功率点工作。

3. 防护等级光伏逆变器需要能够在户外环境中长期工作,因此具有良好的防护等级水平是非常重要的。

一般而言,逆变器应具有防护等级不低于IP65,能够防水、防尘和防风骤等。

4. 故障诊断良好的逆变器应该具有完善的故障诊断功能,能够通过报警或显示屏等方式提示故障信息,并提供相应的故障诊断报告。

5. 通讯功能逆变器的通讯功能可以方便用户通过手机APP或网络平台监控发电状态和运行数据。

同时还可以实现远程控制、故障诊断和售后服务等功能。

四、选型在选型光伏逆变器时,需要根据具体的场景需求和电网接入条件来选择适合的逆变器。

首先需要确定发电系统的功率,再根据逆变器的转换效率、MPPT功能、防护等级和通讯功能等因素进行综合评估。

此外,还需要考虑逆变器的可靠性、售后服务和性价比等因素。

逆变器培训PPT课件

逆变器培训PPT课件

波形质量要求
对于对输出波形质量有较高要求的负载,应选 择具有较好波形质量的逆变器。
效率与散热
选择高效率、良好散热性能的逆变器,以降低 系统能耗和温升。
案例分析:成功应用案例分享
案例一
某数据中心UPS电源系统,采用高性能逆变器,实现了高效 率、高可靠性供电。
1
案例二
2
某电动汽车充电站,采用模块化逆变器设计,实现了快速充
认识。
03
通过与行业专家的交流和讨论,我了解到逆变器行 业的最新发展动态和未来趋势,对我的职业规划和
发展方向提供了有益的参考。
02
实验环节让我更加熟悉了逆变器的实际操作和 调试过程,对于今后在工作中遇到相关问题能
够迅速解决很有帮助。
04
本次培训不仅让我收获了专业知识,还结识了许多 志同道合的同行和朋友,对于今后的职业发展和人
效率与功率因数校正
效率
逆变器将输入电能转换为输出电能的效率,通常以百分比表示。高效率的逆变器 能够减少能源浪费和降低运行成本。
功率因数校正
逆变器通过采用功率因数校正技术,提高功率因数并降低对电网的谐波污染。功 率因数校正技术能够减少无功功率的消耗,提高能源利用效率。
03
逆变器设计与选型要点
设计考虑因素及步骤
05
逆变器在新能源领域应用前 景
太阳能光伏发电系统中的应用
光伏逆变器的作用
将太阳能光伏板产生的直流电转换为交流电,以供家庭、工业或商业用电设备使用。
最大功率点跟踪(MPPT)
光伏逆变器通过MPPT技术,实时跟踪太阳能光伏板的最大功率点,提高发电效率。
电网接入与孤岛保护
光伏逆变器需具备电网接入功能,同时实现孤岛保护,确保在电网故障时自动切断与电网的连接 ,保障设备和人员安全。

光伏逆变器技术培训

光伏逆变器技术培训

光伏逆变器技术培训一、光伏逆变器的基本原理1. 光伏逆变器的功能光伏逆变器是将光伏电池板输出的直流电转换成交流电的设备,它主要的功能是将直流电转换成符合电网要求的交流电,并且实现最大功率追踪和安全保护功能。

2. 光伏逆变器的工作原理光伏逆变器的工作原理主要包括直流到交流的转换、最大功率追踪和保护功能。

在光照条件下,光伏电池板产生的直流电首先经过光伏逆变器的直流输入端,然后经过光伏逆变器内部的电子元件将直流电转换成交流电,最终输出到电网中。

同时,逆变器会实时追踪光伏电池板的输出功率,保证系统能够在不同天气条件下实现最大发电效率。

此外,逆变器还具有对系统的安全保护功能,如过压、欠压、过载等情况时,逆变器可以自动切断电流,保护系统和设备的安全。

二、光伏逆变器的技术特点1. 高效率光伏逆变器的输出效率对于光伏系统的总体效率有着至关重要的影响。

目前市面上的光伏逆变器一般可以达到较高的效率,尤其是在部分光伏逆变器采用了全桥拓扑结构和电子器件的质量更好时,其效率可以达到较高水平。

高效率的光伏逆变器有助于降低光伏系统的总体成本,提高发电效率。

2. 高可靠性光伏逆变器作为光伏系统的核心设备,其可靠性很大程度上决定了系统的运行稳定性。

因此,光伏逆变器的高可靠性是其重要的技术特点之一。

优秀的产品制造工艺和材料选择能够大大提高逆变器的可靠性。

此外,逆变器的智能化控制和监测系统也可以及时发现和排除故障,确保系统的长期稳定运行。

3. 多功能性现代光伏逆变器不仅仅是单一的电能转换设备,还具备了很多其他功能,如数据监测、远程控制、智能诊断等多种功能。

这些功能的实现,可以大大提升光伏系统的智能化水平,方便用户进行监测和管理。

三、光伏逆变器的应用场景1. 分布式光伏发电分布式光伏发电系统是指将光伏电池板安装在建筑物或者设施上,通过逆变器将直流电转换成交流电,然后接入当地的电网进行供电。

这种光伏系统常见于大型商业综合体、公共建筑和工厂企业等场所。

光伏逆变器技术培训(PPT49页)

光伏逆变器技术培训(PPT49页)
电能质量
总电流谐波畸变 率THD=1.08% (满功率时)
电能质量
总电流谐波畸 变率THD=4.55% (四分之一功率时)
机柜
采用四柜体结构直流柜逆变柜控制柜交流输出柜 1 2 3 4
辅助电源
交流电源直流开关电源 UPS电源(或电容储能供电)现场的交流电源取电方式
散Hale Waihona Puke 和风机额定功率下(常温)IGBT模块的总体热功耗约3.6kW电抗器热功耗 (三相电抗器总功耗2.5kW, 115℃,满载) 其他(电容,熔断器,风机等)约1.4KW柜内总热功耗: 约7.5KW(环境温度升高时, 总功耗也增加) 高原应用中,要考虑极端环境温度和散热效率等问题
直流支撑电容
支撑薄膜电容规格 420µF/1100V 42A electronicon (60) 100000h, (t ≤ 70℃) 高频吸收电容 1.5~2uF/1200V/IGBT AVX
逆变桥部分
控制和保护
大功率逆变器的控制部分—跟踪电网 跟踪电网(软件锁相环技术(PLL))
控制和保护
大功率逆变器的控制部分要完成的任务—直流到交流的转换 直流到交流的变换原理 单相逆变原理 三相逆变原理
控制和保护
单相逆变原理:
控制和保护
控制和保护
视在功率、有功功率和无功功率:
控制和保护
大功率逆变器的控制部分—跟踪电池板跟踪电池板(MPPT: 最大功率跟踪) 使逆变器始终工作在太阳能电池板阵列的最大输出功率点(附近),以充分发挥电池板 潜力。
控制和保护
大功率逆变器的控制部分要完成的任务—跟踪电池板跟踪电池板(MPPT: 最大功率跟踪) 薄膜电池板与晶硅电池板
机柜
采用四柜体结构直流柜逆变柜控制柜交流输出柜 1 2 3 4

光伏并网逆变器的分类及原理ppt课件

光伏并网逆变器的分类及原理ppt课件
5
二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后 升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以 下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工 作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时 间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。 (二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起,稳 定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。
21
3.2故障现象:逆变器不并网 故障分析:逆变器和电网没有连接, 可能原因: (1)交流开关没有合上。 (2)逆变器交流输出端子没有接上。 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或 者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是 否断开。 3.3逆变器硬件故障:分为可恢复故障和不可恢复故障 故障分析:逆变器电路板,检测电路,功率回路,通讯回路等电路有故障。 解决办法:逆变器出现上述硬件故障,请把直流端和交流端全部断开,让逆变器停电30分钟以 上,如果自己能恢复就继续使用,如果不能恢复,就联系售后技术工程师。
直流侧断路器 PV+
PV-
直流支撑 逆变单元 电容
直流
EMI 滤波器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏发电系统用逆变器基本知识逆变器的概念通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。

与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。

现代逆变技术是研究逆变电路理论和应用的一门科学技术。

它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制PWM技术等学科基础之上的一门实用技术。

它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。

逆变器的分类逆变器的种类很多,可按照不同的方法进行分类。

1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。

工频逆变器的频率为50~60HZ的逆变器;中频逆变器的频率一般为400HZ到十几KHZ;高频逆变器的频率一般为十几KHZ到MHZ。

2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。

3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。

凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。

4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。

5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。

又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。

前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。

6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。

前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。

7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。

8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。

9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。

10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。

逆变器的基本结构逆变器的直接功能是将直流电能变换成为交流电能逆变装置的核心,是逆变开关电路,简称为逆变电路。

该电路通过电力电子开关的导通与关断,来完成逆变的功能。

电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。

产生和调节脉冲的电路。

通常称为控制电路或控制回路。

逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。

逆变器的工作原理1.全控型逆变器工作原理:图3所示,为通常使用的单相输出的全桥逆变主电路,图中,交流元件采用IGBT管Q11、Q12、Q13、Q14。

并由PWM脉宽调制控制IGBT管的导通或截止。

当逆变器电路接上直流电源后,先由Q11、Q14导通,Q1、Q13截止,则电流由直流电源正极输出,经Q11、L或感、变压器初级线圈图1-2,到Q14回到电源负极。

当Q11、Q14截止后,Q12、Q13导通,电流从电源正极经Q13、变压器初级线圈2-1电感到Q12回到电源负极。

此时,在变压器初级线圈上,已形成正负交变方波,利用高频PWM控制,两对IGBT管交替重复,在变压器上产生交流电压。

由于LC交流滤波器作用,使输出端形成正弦波交流电压。

当Q11、Q14关断时,为了释放储存能量,在IGBT处并联二级管D11、D12,使能量返回到直流电源中去。

2.半控型逆变器工作原理:半控型逆变器采用晶闸管元件。

改进型并联逆变器的主电路如图4所示。

图中,Th1、Th2为交替工作的晶闸管,设Th1先触发导通,则电流通过变压器流经Th1,同时由于变压器的感应作用,换向电容器C被充电到大的2倍的电源电压。

按着Th2被触发导通,因Th2的阳极加反向偏压,Th1截止,返回阻断状态。

这样,Th1与Th2换流,然后电容器C又反极性充电。

如此交替触发晶闸管,电流交替流向变压器的初级,在变压器的次级得到交流电。

在电路中,电感L可以限制换向电容C的放电电流,延长放电时间,保证电路关断时间大于晶闸管的关断时间,而不需容量很大的电容器。

D1和D2是2只反馈二极管,可将电感L中的能量释放,将换向剩余的能量送回电源,完成能量的反馈作用。

逆变器的主要技术性能及评价选用技术性能表征逆变器性能的基本参数与技术条件内容很多,下面仅就评价时常用的参数做一简要说明。

1.额定输出电压在规定的输入直流电压允许的波动范围内,它表示逆变器应能输出的额定电压值。

对输出额定电压值的稳定准确度一般有如下规定:(1)在稳态运行时,电压波动范围应有一个限定,例如其偏差不超过额定值的±3%或±5%。

(2)在负载突变(额定负载0%→50%→100%)或有其他干扰因素影响的动态情况下,其输出电压偏差不应超过额定值的±8%或±10%。

2.输出电压的不平衡度在正常工作条件下,逆变器输出的三相电压不平衡度(逆序分量对正序分量之比)应不超过一个规定值,一般以%表示,如5%或8%。

3.输出电压的波形失真度当逆变器输出电压为正弦度时,应规定允许的最大波形失真度(或谐波含量)。

通常以输出电压的总波形失真度表示,其值不应超过5%(单相输出允许10%)。

4.额定输出频率逆变器输出交流电压的频率应是一个相对稳定的值,通常为工频50Hz。

正常工作条件下其偏差应在±1%以内。

5.负载功率因数表征逆变器带感性负载或容性负载的能力。

在正弦波条件下,负载功率因数为0.7~0.9(滞后),额定值为0.9。

6.额定输出电流(或额定输出容量)表示在规定的负载功率因数范围内逆变器的额定输出电流。

有些逆变器产品给出的是额定输出容量,其单位以VA或kVA表示。

逆变器的额定容量是当输出功率因数为1(即纯阻性负载)时,额定输出电压为额定输出电流的乘积。

7.额定输出效率逆变器的效率是在规定的工作条件下,其输出功率对输入功率之比,以%表示。

逆变器在额定输出容量下的效率为满负荷效率,在10%额定输出容量的效率为低负荷效率。

8.保护(1)过电压保护:对于没电压稳定措施的逆变器,应有输出过电压防护措施,以使负截免受输出过电压的损害。

(2)过电流保护:逆变器的过电流保护,应能保证在负载发生短路或电流超过允许值时及时动作,使其免受浪涌电流的损伤。

9.起动特性表征逆变器带负载起动的能力和动态工作时的性能。

逆变器应保证在额定负载下可靠起动。

10.噪声电力电子设备中的变压器、滤波电感、电磁开关及风扇等部件均会产生噪声。

逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。

逆变器的主要技术性能及评价选用评价为正确选用光伏发电系统用的逆变器,应对逆变器的技术性能进行评价。

根据逆变器对离网型主要光伏发电系统运行特性的影响和光伏发电系统对逆变器性能的要求,评价内容有如下几项:1.额定输出容量表征逆变器向负载供电的能力。

额定输出容量值高的逆变器可带更多的用电负载。

但当逆变器的负载不是纯阻性时,也就是输出功率小于1时,逆变器的负载能力将小于所给出的额定输出容量值。

2.输出电压稳定度表征逆变器输出电压的稳压能力。

多数逆变器产品给出的是输入直流电压在允许波动范围内该逆变器输出电压的偏差%,通常称为电压调整率。

高性能的逆变器应同时给出当负载由0%→100%变化时,该逆变器输出电压的偏差%,通常称为负载调整率。

性能良好的逆变器的电压调整率应≤±3%,负载调整率应≤±6%。

3.整机效率表征逆变器自身功率损耗的大小,通常以%表示。

容量较大的逆变器还应给出满负荷效率值和低负荷效率值。

kW级以下逆变器的效率应为80%~85%,10kW级逆变器的效率应为85%~90%。

逆变器效率的高低对光伏发电系统提高有效发电量和降低发电成本有重要影响。

4.保护功能过电压、过电流及短路保护是保证逆变器安全运行的最基本措施。

功能完美的正弦波逆变器还具有欠电压保护、缺相保护及温度越限报警等功能。

5.起动性能逆变器应保证在额定负载下可靠起动。

高性能的逆变器可做到连续多次满负荷起动而不损坏功率器件。

小型逆变器为了自身安全,有时采用软起动或限流起动。

对于大功率光伏发电系统和联网型光伏发电系统逆变器的波形失真度和噪声水平等技术性能也十分重要。

在选用离网型光伏发电系统用的逆变器时,除依据上述5项基本评价内容外,还应注意以下几点:(1)应具有足够的额定输出容量和负载能力。

逆变器的选用,首先要考虑具有足够的额定容量,以满足最大负荷下设备对电功率的要求。

对于以单一设备为负载的逆变器,其额定容量的选取较为简单,当用电设备为纯阻性负载或功率因数大于0.9时,选取逆变器的额定容量为电设备容量的1.1~1.15倍即可。

在逆变器以多个设备为负载时,逆变器容量的选取要考虑几个用电设备同时工作的可能性,即“负载同时系数”。

(2)应具有较高的电压稳定性能。

在离网型光伏发电系统中均以蓄电池为储能设备。

当标称电压为12V的蓄电池处于浮充电状态时,端电压可达13.5V,短时间过充电状态可达15V。

蓄电池带负荷放电终了时端电压可降至10.5V或更低。

蓄电池端电压的起伏可达标称电压的30%左右。

这就要求逆变器具有较好的调压性能,才能保证光伏发电系统以稳定的交流电压供电。

(3)在各种负载下具有高效率或较高效率。

整机效率高是光伏发电用逆变器区别于通用型逆变器的一个显著特点。

10kW级的通用型逆变器实际效率只有70%~80%,将其用于光伏发电系统时将带来总发电量20%~30%的电能损耗。

因此光伏发电系统专用逆变器在设计中应特别注意减少自身功率损耗,提高整机效率。

因此这是提高光伏发电系统技术经济指标的一项重要措施。

在整机效率方面对光伏发电专用逆变器的要求是:kW级以下逆变器额定负荷效率≥80%~85%,低负荷效率≥65%~75%;10kW级逆变器额定负荷效率≥85%~90%,低负荷效率≥70%~80%。

(4)应具有良好的过电流保护与短路保护功能。

光伏发电系统正常运行过程中,因负载故障、人员误操作及外界干扰等原因而引起的供电系统过电流或短路,是完全可能的。

逆变器对外电路的过电电流及短路现象最为敏感,是光伏发电系统中的薄弱环节。

因此,在选用逆变器时,必须要求具备有良好的对过电流及短路的自我保护功能。

相关文档
最新文档