逆变器的基本知识
《逆变器基础知识》课件

正常工作阶段
逆变器开始工作,将直流 电转换为交流电,输出稳 定的电压和频率。
停机阶段
控制电路检测到异常或停 机信号时,逆变器停止工 作。
逆变器的波形生成
方波
逆变器输出电压波形为矩形波或接近矩形波 ,具有较高的谐波成分。
正弦波
逆变器输出电压波形为正弦波,具有较低的 谐波成分,更接近理想的交流电源。
可靠性及寿命
01
总结词
逆变器的耐用程度和稳定性
02
详细描述
可靠性及寿命是评估逆变器性 能的重要指标,它关系到逆变 器的使用效果和使用寿命。高 可靠性的逆变器能够在各种恶 劣环境下稳定运行,减少故障 发生的概率。
03
总结词
影响逆变器可靠性和寿命的因 素
04
详细描述
影响逆变器可靠性和寿命的因 素包括元器件的品质、生产工 艺、散热设计、环境条件等。 优质的元器件、先进的生产工 艺和良好的散热设计能够提高 逆变器的可靠性和寿命。
效率与损耗
总结词
逆变器的能效表现
详细描述
提高逆变器效率的方法
总结词
效率与损耗是衡量逆变器能效表现的关键指 标,直接影响到逆变器的运行成本和可靠性 。高效的逆变器能够在较短时间内将直流电 能转化为交流电能,降低能源损失。
详细描述
提高逆变器效率的方法包括优化电路设计、 采用先进的控制算法、降低开关损耗等。同 时,合理匹配逆变器与负载,减少不必要的 能源损耗也是重要的措施。
总结词
衡量逆变器性能的重要指标
总结词
影响输出电压稳定性的因素
详细描述
输出电压的稳定性是评估逆变器性能的重要参数,它反映 了逆变器输出电压在负载变化、环境温度变化以及长时间 运行过程中的稳定性。
逆变器基础知识培训

如有需要,可以更换逆变器中的轴承、齿轮等机械部件,保证其正常运 转。
06
安全注意事项
操作安全
确保逆变器周围环境安全
在操作逆变器之前,应检查周围环境是否安全,包括是否 存在易燃、易爆物品,以及是否有可能导致触电的设备或 线路。
遵循操作规程
操作逆变器时应遵循制造商提供的安全操作规程,不要尝 试自行拆卸、修理或改造逆变器。
输出电路是逆变器的能源输出部 分,负责将逆变器内部的直流电 转换为交流电,供给负载使用。
它通常包括输出滤波器、电压传 感器、电流传感器等元件,用于 监测和控制输出电压和电流的波
形、相位和幅值。
输出电路的设计需确保逆变器能 够提供高质量的交流电,满足各
种不同类型负载的需求。
控制电路
控制电路是逆变器的核心部分 ,负责控制逆变器的开关状态 ,调节输出电压和电流的波形 、相位和幅值。
02
逆变器的主要部件
输入电路
输入电路是逆变器的能源输入部分,负责接收来自电网或电池等能源源的电能。
它通常包括输入滤波器、保险丝、EMI滤波器等元件,用于滤除电网中的谐波和噪 声,保护逆变器免受过电流等异常情况的影响。
输入电路的设计需确保逆变器能够安全、稳定地从各种不同的能源源中获取电能。
输出电路
效率
总结词
效率是评估逆变器性能的重要参数。
详细描述
逆变器的效率决定了其在转换电能过程中的损失程度。高效率的逆变器能够减少能源损失,提高能源 利用效率。
功率因数
总结词
功率因数是评估逆变器性能的重要参数之一。
详细描述
功率因数反映了逆变器对输入功率的利用程度。高功率因数 的逆变器能够更有效地利用输入电源的功率,减少能源浪费 。
逆变器选型知识手册

逆变器选型知识手册一、逆变器基础知识目前逆变器主要采用 PWM 技术:控制器在单脉冲周期内快速投切直流,保证直流的积分值等于同时刻下交流正弦波的采样值,这样经滤波器输出后,即可得到超过 96%的正弦波输出。
输出电压被脉冲调制的自励逆变器为脉冲逆变器。
这种逆变器通过增加周期内脉冲的切换次数,来降低电压,电流的脉冲次数;只能通过增加逆变器的整流支数来实现。
交流侧的等效电感决定了电流谐波的含量。
因此,为了满足并网接入要求,应保证光伏发电系统的等效电感值小。
逆变器后接低通滤波器和隔离变压器,将滤除 N-1 阶以下的谐波,其中 N 为交流电流周期的触发脉冲数。
增加切换频率,则电力电子设备的功率损耗将增加;但低切换频率下,低通滤波器的损耗将增加。
如果希望并入单相交流电网的电流倍频,则调制光伏发电机直流输出的交流控制信号频率也要加倍。
二、逆变器的概念通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。
与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。
现代逆变技术是研究逆变电路理论和应用的一门科学技术。
它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。
它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。
三、逆变器的分类逆变器的种类很多,可按照不同的方法进行分类。
1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。
工频逆变器工频逆变器的频率为50~60Hz的逆变器,图1 示出采用工频变压器升压的逆变电路。
它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz 的交流电供负载使用。
它的优点是结构简单,各种保护功能均可在较低电压下实现。
新能源知识:光伏逆变器的分类

新能源知识:光伏逆变器的分类
光伏逆变器是应用在太阳能光伏发电领域的专用逆变器。
它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。
是光伏系统中不可缺少的核心部件。
逆变装置的核心是逆变开关电路,简称为逆变电路。
该电路通过电力电子开关的导通与关断,来完成逆变的功能。
有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为电晶体逆变器、晶闸管逆变器及可关断晶闸管逆变器等。
根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。
根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。
下面以逆变器适用场合的不同进行分类:集中型逆变器:集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模组,功率较小的使用场效应电晶体,同时使用DSP转换控制器来改善所产出电能的品质,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。
组串逆变器:组串逆变器是基于模组化概念基础上的,每个光伏组串(1-5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。
许多大型光伏电厂使用组串逆变器。
微型逆变器:在微型逆变器的光伏系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作时,则只有这一块都会受到影响,而其他光伏电池板都将在最佳工作状态运行,使得系统总体效率更高、发电量更大。
逆变器知识

逆变器通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。
它由逆变桥、控制逻辑和滤波电路组成.利用TL494组成的400W大功率稳压逆变器电路。
它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。
如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。
TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。
反相输入端2脚输入5V基准电压(由14脚输出)。
当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。
正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。
此时输出AC电压为235V(方波电压)。
第4脚外接R6、R4、C2设定死区时间。
正常电压值为0.01V。
第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。
正常时5脚电压值为1.75V,6脚电压值为3.73V。
第7脚为共地。
第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。
当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。
S1接通时,此三脚电压值为蓄电池的正极电压。
第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。
正常时电压值为1.8V。
第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。
第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。
此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。
逆变器的基础知识

逆变器的基础知识随着现代科技的进步,逆变器的出现为大家的生活提供了不小的便利,逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波),它由逆变桥、控制逻辑和滤波电路组成,广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等,在国外因汽车的普及率较高外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。
下面为大家介绍一下逆变器的作用、特点、工作原理、分类、使用注意、安装使用方法、常见问题与处理方法。
一、逆变器的作用1、逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。
通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。
它由逆变桥、控制逻辑和滤波电路组成。
2、广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等。
3、简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。
因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。
我们处在一个"移动"的时代,移动办公,移动通讯,移动休闲和娱乐。
在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。
二、逆变器的特点1、转换效率高、启动快;2、安全性能好:产品具备短路、过载、过/欠电压、超温5种保护功能;3、物理性能良好:产品采用全铝质外壳,散热性能好,表面硬氧化处理,耐摩擦性能好,并可抗一定外力的挤压或碰击;4、带负载适应性与稳定性强。
三、逆变器工作原理1、逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程。
转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。
逆变器基础知识

PART 04
逆变器的性能指标
REPORTING
WENKU DESIGN
输出电压范围
输出电压范围
逆变器的输出电压范围决定了其能够适应的负载范围。一般来说, 输出电压范围越宽,逆变器的应用场景就越丰富。
逆变器基础知识
https://
REPORTING
• 逆变器概述 • 逆变器的主要部件 • 逆变器的应用场景 • 逆变器的性能指标 • 逆变器的常见问题与维护 • 逆变器的发展趋势与未来展望
目录
PART 01
逆变器概述
REPORTING
WENKU DESIGN
定义与作用
按输出波形
可分为正弦波逆变器和方 波逆变器。
按应用领域
可分为并网逆变器、离网 逆变器、储能逆变器等。
逆变器的工作原理
01
02
03
04
整流
将输入的直流电通过整流电路 转换为脉动直流电。
滤波
通过滤波电路平滑输出脉动直 流电,得到更加稳定的直流电
。
逆变
将稳定的直流电输入到逆变电 路中,转换为交流电。
调制与控制
噪音与振动
噪音
逆变器运行时的噪音水平是衡量其性能的重要指标之一。低噪音的逆变器能够减少对环境的干扰,提高运行舒适 度。
振动
逆变器运行时的振动水平也是衡量其性能的重要指标之一。高振动的逆变器不仅会影响其自身寿命,还会对周围 设备和人员造成安全隐患。
PART 05
逆变器的常见问题与维护
REPORTING
在UPS中,逆变器起到将直流电转换为交流电的作用,以确保输出电源的质量和 稳定性。UPS对于保障关键设施的可靠性和安全性具有重要作用,而逆变器技术 的发展则有助于提高UPS的性能和能效。
逆变器控制讲义

4 RS-232
5
FAN-SPD 118 SD-FAN 59 ACIN.V 93 ACIN.ZERO 93
BF.RELAY 93
LED 25 26 60
LCD
D0
D1
D2
D3
D4
D5
D6
D7
WR RD
A0
LIG HT
RE ST
29 30 32 133 134 135 136 137 14 13 20 46 47
1
vout
Cs
闭环传函
Vout Vref
s s
LCs 2
[(L /
R)
Kv Ki K pwm Ki K pwmC]s
Kv Ki K pwm
1
二阶
阻尼比
1
(
LC Ki K pwm
LC )
Kv Ki K pwm 2RC
2L
16
• (1)动态特性
• 逆变控制系统是一个典型的二阶系统 :
• a: 开环情况下,滤波电感和电容大小的乘积LC决定了系统的自然频率,提 高自然频率,可使系统的响应速度较快。
2.描述系统的性能 1)动态特性 2)稳态特性
3
自动控制原理的基础知识
1)动态特性 一般认为阶跃输入对系统是最严峻的工作状
态,如果系统在阶跃作用下能满足动态性能的要 求,则在其他输入形式下也能满足其动态性能的 要求。
所以,系统的动态性能指标是在单位阶越函 数作用下测定或计算的
4
自动控制原理的基础知识
Isolation AC-enclosure Basic isolation (Pri-Gnd) 2121Vdc/1min
Isolation AC-DC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈光伏发电系统用逆变器的基本知识逆变器的概念通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。
与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。
现代逆变技术是研究逆变电路理论和应用的一门科学技术。
它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。
它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。
逆变器的分类逆变器的种类很多,可按照不同的方法进行分类。
1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。
工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。
2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。
3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。
凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。
4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。
5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。
又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。
前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。
6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。
前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。
7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。
8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。
9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。
10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。
逆变器的基本结构逆变器的直接功能是将直流电能变换成为交流电能逆变装置的核心,是逆变开关电路,简称为逆变电路。
该电路通过电力电子开关的导通与关断,来完成逆变的功能。
电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。
产生和调节脉冲的电路。
通常称为控制电路或控制回路。
逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。
逆变器的工作原理。
1.全控型逆变器工作原理:图3所示,为通常使用的单相输出的全桥逆变主电路,图中,交流元件采用IGBT管Q11、Q12、Q13、Q14。
并由PWM脉宽调制控制IGBT管的导通或截止。
当逆变器电路接上直流电源后,先由Q11、Q14导通,Q1、Q13截止,则电流由直流电源正极输出,经Q11、L或感、变压器初级线圈图1-2,到Q14回到电源负极。
当Q11、Q14截止后,Q12、Q13导通,电流从电源正极经Q13、变压器初级线圈2-1电感到Q12回到电源负极。
此时,在变压器初级线圈上,已形成正负交变方波,利用高频PWM控制,两对IGBT管交替重复,在变压器上产生交流电压。
由于LC交流滤波器作用,使输出端形成正弦波交流电压。
当Q11、Q14关断时,为了释放储存能量,在IGBT处并联二级管D11、D12,使能量返回到直流电源中去。
2.半控型逆变器工作原理:半控型逆变器采用晶闸管元件。
改进型并联逆变器的主电路如图4所示。
图中,Th1、Th2为交替工作的晶闸管,设Th1先触发导通,则电流通过变压器流经Th1,同时由于变压器的感应作用,换向电容器C被充电到大的2倍的电源电压。
按着Th2被触发导通,因Th2的阳极加反向偏压,Th1截止,返回阻断状态。
这样,Th1与Th2换流,然后电容器C又反极性充电。
如此交替触发晶闸管,电流交替流向变压器的初级,在变压器的次级得到交流电。
在电路中,电感L可以限制换向电容C的放电电流,延长放电时间,保证电路关断时间大于晶闸管的关断时间,而不需容量很大的电容器。
D1和D2是2只反馈二极管,可将电感L中的能量释放,将换向剩余的能量送回电源,完成能量的反馈作用。
逆变器的主要技术性能及评价选用技术性能表征逆变器性能的基本参数与技术条件内容很多,下面仅就评价时常用的参数做一简要说明。
1.额定输出电压在规定的输入直流电压允许的波动范围内,它表示逆变器应能输出的额定电压值。
对输出额定电压值的稳定准确度一般有如下规定:(1)在稳态运行时,电压波动范围应有一个限定,例如其偏差不超过额定值的±3%或±5%。
(2)在负载突变(额定负载0%→50%→100%)或有其他干扰因素影响的动态情况下,其输出电压偏差不应超过额定值的±8%或±10%。
2.输出电压的不平衡度在正常工作条件下,逆变器输出的三相电压不平衡度(逆序分量对正序分量之比)应不超过一个规定值,一般以%表示,如5%或8%。
.输出电压的波形失真度当逆变器输出电压为正弦度时,应规定允许的最大波形失真度(或谐波含量)。
通常以输出电压的总波形失真度表示,其值不应超过5%(单相输出允许10%)。
4.额定输出频率逆变器输出交流电压的频率应是一个相对稳定的值,通常为工频50Hz。
正常工作条件下其偏差应在±1%以内。
5.负载功率因数表征逆变器带感性负载或容性负载的能力。
在正弦波条件下,负载功率因数为0.7~0.9(滞后),额定值为0.9。
6.额定输出电流(或额定输出容量)表示在规定的负载功率因数范围内逆变器的额定输出电流。
有些逆变器产品给出的是额定输出容量,其单位以VA或kVA表示。
逆变器的额定容量是当输出功率因数为1(即纯阻性负载)时,额定输出电压为额定输出电流的乘积。
7.额定输出效率逆变器的效率是在规定的工作条件下,其输出功率对输入功率之比,以%表示。
逆变器在额定输出容量下的效率为满负荷效率,在10%额定输出容量的效率为低负荷效率。
8.保护(1)过电压保护:对于没电压稳定措施的逆变器,应有输出过电压防护措施,以使负截免受输出过电压的损害。
(2)过电流保护:逆变器的过电流保护,应能保证在负载发生短路或电流超过允许值时及时动作,使其免受浪涌电流的损伤。
9.起动特性表征逆变器带负载起动的能力和动态工作时的性能。
逆变器应保证在额定负载下可靠起动。
10.噪声电力电子设备中的变压器、滤波电感、电磁开关及风扇等部件均会产生噪声。
逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。
逆变器的主要技术性能及评价选用评价为正确选用光伏发电系统用的逆变器,应对逆变器的技术性能进行评价。
根据逆变器对离网型主要光伏发电系统运行特性的影响和光伏发电系统对逆变器性能的要求,评价内容有如下几项:1.额定输出容量表征逆变器向负载供电的能力。
额定输出容量值高的逆变器可带更多的用电负载。
但当逆变器的负载不是纯阻性时,也就是输出功率小于1时,逆变器的负载能力将小于所给出的额定输出容量值。
2.输出电压稳定度表征逆变器输出电压的稳压能力。
多数逆变器产品给出的是输入直流电压在允许波动范围内该逆变器输出电压的偏差%,通常称为电压调整率。
高性能的逆变器应同时给出当负载由0%→100%变化时,该逆变器输出电压的偏差%,通常称为负载调整率。
性能良好的逆变器的电压调整率应≤±3%,负载调整率应≤±6%。
3.整机效率表征逆变器自身功率损耗的大小,通常以%表示。
容量较大的逆变器还应给出满负荷效率值和低负荷效率值。
kW级以下逆变器的效率应为80%~85%,10kW级逆变器的效率应为85%~90%。
逆变器效率的高低对光伏发电系统提高有效发电量和降低发电成本有重要影响。
4.保护功能过电压、过电流及短路保护是保证逆变器安全运行的最基本措施。
功能完美的正弦波逆变器还具有欠电压保护、缺相保护及温度越限报警等功能。
5.起动性能逆变器应保证在额定负载下可靠起动。
高性能的逆变器可做到连续多次满负荷起动而不损坏功率器件。
小型逆变器为了自身安全,有时采用软起动或限流起动。
对于大功率光伏发电系统和联网型光伏发电系统逆变器的波形失真度和噪声水平等技术性能也十分重要。
在选用离网型光伏发电系统用的逆变器时,除依据上述5项基本评价内容外,还应注意以下几点:(1)应具有足够的额定输出容量和负载能力。
逆变器的选用,首先要考虑具有足够的额定容量,以满足最大负荷下设备对电功率的要求。
对于以单一设备为负载的逆变器,其额定容量的选取较为简单,当用电设备为纯阻性负载或功率因数大于0.9时,选取逆变器的额定容量为电设备容量的1.1~1.15倍即可。
在逆变器以多个设备为负载时,逆变器容量的选取要考虑几个用电设备同时工作的可能性,即“负载同时系数”。
(2)应具有较高的电压稳定性能。
在离网型光伏发电系统中均以蓄电池为储能设备。
当标称电压为12V的蓄电池处于浮充电状态时,端电压可达13.5V,短时间过充电状态可达15V。
蓄电池带负荷放电终了时端电压可降至10.5V或更低。
蓄电池端电压的起伏可达标称电压的30%左右。
这就要求逆变器具有较好的调压性能,才能保证光伏发电系统以稳定的交流电压供电。
(3)在各种负载下具有高效率或较高效率。
整机效率高是光伏发电用逆变器区别于通用型逆变器的一个显着特点。
10kW级的通用型逆变器实际效率只有70%~80%,将其用于光伏发电系统时将带来总发电量20%~30%的电能损耗。
因此光伏发电系统专用逆变器在设计中应特别注意减少自身功率损耗,提高整机效率。
因此这是提高光伏发电系统技术经济指标的一项重要措施。
在整机效率方面对光伏发电专用逆变器的要求是:kW级以下逆变器额定负荷效率≥80%~85%,低负荷效率≥65%~75%;10kW级逆变器额定负荷效率≥85%~90%,低负荷效率≥70%~80%。
(4)应具有良好的过电流保护与短路保护功能。
光伏发电系统正常运行过程中,因负载故障、人员误操作及外界干扰等原因而引起的供电系统过电流或短路,是完全可能的。
逆变器对外电路的过电电流及短路现象最为敏感,是光伏发电系统中的薄弱环节。
因此,在选用逆变器时,必须要求具备有良好的对过电流及短路的自我保护功能。