第二章 多元函数微分法及其应用 第四节 多元函数微分法在几何上的应用

合集下载

数二考多元函数微分学的几何应用

数二考多元函数微分学的几何应用

数二考多元函数微分学的几何应用微分学是数学中的一个重要分支,它研究的是函数的变化规律。

而多元函数微分学则是微分学的一个延伸,研究的是多个变量的函数的变化规律。

在实际应用中,多元函数微分学有着广泛的应用,尤其在几何学中,可以帮助我们揭示图形的性质和变化规律。

我们来看一个简单的例子。

假设有一个平面上的曲线,我们想要研究它的切线方程。

通过多元函数微分学,我们可以求出曲线上任意一点的切线方程。

具体的方法是,首先求出曲线的导数,然后将导数代入切线方程的一般式中,即可得到切线方程。

这样,我们就可以通过切线方程来描述曲线的变化情况了。

接下来,我们来看一个更复杂的例子。

假设有一个三维空间中的曲面,我们想要研究它的切平面方程。

通过多元函数微分学,我们可以求出曲面上任意一点的切平面方程。

具体的方法是,首先求出曲面的偏导数,然后将偏导数代入切平面方程的一般式中,即可得到切平面方程。

这样,我们就可以通过切平面方程来描述曲面的变化情况了。

除了切线方程和切平面方程,多元函数微分学还可以帮助我们研究曲线和曲面的曲率。

曲率是描述曲线弯曲程度的一个重要指标,可以帮助我们了解曲线的形状和性质。

在多元函数微分学中,曲率可以通过求曲线的二阶导数来计算。

具体的方法是,首先求出曲线的一阶导数和二阶导数,然后将导数代入曲率公式中,即可得到曲线的曲率。

通过研究曲线的曲率,我们可以揭示曲线的弯曲情况和变化规律。

同样地,多元函数微分学还可以帮助我们研究曲面的曲率。

曲面的曲率是描述曲面弯曲程度的一个重要指标,可以帮助我们了解曲面的形状和性质。

在多元函数微分学中,曲面的曲率可以通过求曲面的二阶偏导数来计算。

具体的方法是,首先求出曲面的一阶偏导数和二阶偏导数,然后将偏导数代入曲率公式中,即可得到曲面的曲率。

通过研究曲面的曲率,我们可以揭示曲面的弯曲情况和变化规律。

除了切线方程、切平面方程和曲率,多元函数微分学还可以帮助我们研究曲线和曲面的极值。

极值是描述函数在某个区间内取得最大值或最小值的点,可以帮助我们了解函数的最优解。

多元函数微分及其应用

多元函数微分及其应用

1 f1 xyf 2 f1 yzf 2 z x 1 f1 xyf 2
三、
多元函数微分学的应用
空间曲线的切线与法平面 曲面的切平面与法线
(1) 几何应用
(2) 方向导数与梯度 (3) 求极值与最值
例1 设 f ( u ) 可微,证明曲面 上任一点处的切平面都通过原点.
P P0
则称 f ( P ) 在点 P0 处连续.
偏导数定义
定义 设函数 z f ( x , y ) 在点( x 0 , y 0 ) 的某一邻 域内有定义,当 y 固定在 y 0 而 x 在 x 0 处有增量 x 时,相应地函数有偏增量 f ( x0 x , y0 ) f ( x0 , y0 ) , f ( x0 x , y0 ) f ( x 0 , y0 ) 如果 lim 存在,则称 x 0 x 此极限为函数 z f ( x , y ) 在点( x 0 , y 0 ) 处对 x 的 偏导数,记为
2 2
多元函数的全微分的计算方法
(1)微分的计算公式,如
dz z x dx z y dy .
(2)利用微分的形式不变性
不论 u , v 是自变量还是因变量,
dz
du
dv
问题3.如何求复合函数的偏导数?
例 3 设 z arctan( xy ), y e , 求
x
dz dx
设 xy u, 则链式结构如图
xy k kx 2 lim 2 2 lim 2 2 2 x0 x y x0 x k x 1 k2 y 0 y kx
其值随k的不同而变化, 极限不存在.
故函数在(0,0)处不连续.
(2)可偏导性
d f x (0,0) f ( x,0) x0 dx d f y (0,0) f (0, y ) y0 dy

多元函数微分法在几何中的应用

多元函数微分法在几何中的应用


dy z − x , = dx y − z dz x − y = , dx y − z
dy = 0, dx (1, −2 , 1)
dz = −1, dx (1, −2 , 1)
由此得切向量
T = {1, 0,−1},
x −1 y + 2 z −1 = = , 所求切线方程 切线方程为 所求切线方程为 1 0 −1
x = t; 例;求曲线 y = t 2 ;在点(1,1,1)处的切线方程和法平面 方程 . z = t 3;
解:对应与点(1,1,1), t = 1, dx dy = 1, = 2t t =1 = 2, dt dt
dz = 3t 2 t 1 = 3, = dt
dx dy dz ∴T = , , = {1,2,3}, dt dt dt t = 1 在点(1,1,1)处的切线方程为: 处的切线方程为:
x −1 y −1 z −1 , = = 1 2 3 法平面方程为: 法平面方程为:
( x − 1) + 2( y − 1) + 3( z − 1) = 0,
即: x + 2 y + 3 z − 6 = 0
例1
x = te t , y = 2 sin t + cos t , z = 1 + e 3 t 求曲Γ :
的任意一条曲线, 由于曲线是曲面上通过 M 的任意一条曲线, 垂直, 它们在 M 的切线都与同一向量 n 垂直,故曲面上 通过 M 的一切曲线在点 M 的切线都在同一平面 切平面. 上,这个平面称为曲面在点 M 的切平面 切平面方程为
′ ′ Fx ( x0 , y0 , z0 )( x − x0 ) + Fy ( x0 , y0 , z0 )( y − y0 ) + Fz′( x0 , y0 , z0 )(z − z0 ) = 0

多元函数微分法及其应用

多元函数微分法及其应用

第九章多元函数微分法及其应用一、基本要求及重点、难点1. 基本要求(1)理解二元函数的概念,了解多元函数的概念。

(2)了解二元函数的极限、连续性概念,有界闭域上连续函数的性质。

(3)理解偏导数和全微分的概念,熟练掌握偏导数的计算,了解全微分存在的必要条件和充分条件。

(4)了解方向导数与梯度的概念及其计算方法。

(5)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。

(6)会求隐函数(包括由方程组确定的隐函数)的偏导数(主要是一阶)。

(7)了解曲线的切线和法平面及曲面的切平面与法线、并会求出它们的方程。

(8)理解多元函数极值和条件极值的概念,会求二元函数的极值。

了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。

2. 重点及难点(1)重点:多元函数概念,偏导数与全微分概念,偏导数计算,微分在几何上的应用,多元函数的极值的计算。

(2)难点:二重极限的定义与计算,多元函数连续;偏导数存在与可微之间的关系;复合函数的高阶偏导数;方向导数、偏导数、梯度之间的关系。

二、内容概述多元函数微分学是一元函数微分学的推广,因此两者之间有许多相似之处,但是要特别注意它们之间的一些本质差别。

1.多元函数的极限和连续(1)基本概念1)点集和区域。

2)多元函数的定义、定义域。

3)二元函数的极限、连续。

(2)基本定理1)多元初等函数在其定义域内是连续的。

2)多元连续函数在有界闭区域上一定有最大值M、最小值m;且必取到最大值M和最小值m之间的任何值。

2.多元函数微分法(1)基本概念偏导数、全微分、高阶偏导数的定义。

(2) 计算方法1) 偏导数:),(y x f z =在),(00y x 处对x 的偏导数x x xz =∂∂,就是一元函数),(0y x f z =在0x x =处的导数;对y 的偏导数x x xz =∂∂(同理)。

2) `全微分:),(y x f z =的全微分dy yzdx x z dz ∂∂+∂∂=3) 复合函数求导法则:画出函数到自变量的路经,然后利用链式迭加法则:即同条路经的偏导数相乘,不同路经的偏导数相加,求出所要的偏导数。

多元函数微分法及应用

多元函数微分法及应用

开区域连同它的边界一起称为闭区域.
例如,{( x, y ) | 1 x y 4}.
2 2
设 E 是平面上的一个非空点集, P 是 E 的一个点, 如果存在点 P 的一个去心邻域不含点集 E 的 点,则称 P 为 E 的孤立点.
多元函数的基本概念(52)
y
o
x
6
对于点集 E 如果存在正数 K ,使一切点 P E 与某一定点 A 间的距离 AP 不超过 K , 即 AP K 对一切 P E 成立,则称 E 为有界点集,否 则称为无界点集. 例如, y
{( x , y ) | 1 x 2 y 2 4}
有界闭区域;
o
x
{( x , y ) | x y 0}
无界开区域.
多元函数的基本概念(52)
7
聚点: 设 E 是平面上的一个点集,P 是平面上
的一个点,如果点 P 的任何一个邻域内总有无 限多个点属于点集 E,则称 P 为 E 的聚点.
特殊地当 n 1, 2, 3 时,便为数轴、平面、 空间两点间的距离; n维空间中邻域、区域等概念:
邻域: U ( P0 ) U ( P0 , ) P | | PP0 | , P R n
内点、边界点、区域、聚点等概念类似.
多元函数的基本概念(52) 11
二元函数:设 D 是平面上的一个点集,如果对于
如果非空点集 E 的点都是内点, 则称 E 为开集 .
例如,
2 2
P
E1 {( x , y ) 1 x y 4}
即为开集.
多元函数的基本概念(52)
E
4
如果点 P 的任一个邻域内既有属 于 E 的点, 也有不属于 E 的点(点 P 本身可以属于 E ,也 可以不属于 E ),则称 P 为 E 的边界点.

多元函数微分学的几何应用

多元函数微分学的几何应用

多元函数微分学的几何应用一、多元函数微分学多元函数微分学是微积分的一个分支,研究的是多个自变量的函数的导数、微分和全微分等概念。

与一元函数微分学不同的是,多元函数在求导时需要通过偏导数来计算,而全微分可以看做多元函数在某一点上的线性近似。

多元函数微分学在实际生活中有着广泛的应用,尤其是在几何学方面。

二、几何应用1. 向量场和梯度向量场是一个函数与向量的映射关系,在几何学中经常用于描述速度场、磁场等。

其中,梯度是向量场的一个重要概念。

梯度表示在某一点上函数变化增加最快的方向。

例如,在平面上的某一点上,一个函数的梯度表示了函数值增加最快的方向及增加的速率。

2. 方向导数和梯度的应用方向导数表示函数在某一点上沿着某一给定方向上的导数。

在平面几何中,方向导数可以用来求解曲面的切平面方程。

具体来说,可以通过梯度和方向向量的点积计算出方向导数,从而得到曲面上某一点的切平面方程。

3. 曲面积分曲面积分是对曲面上的函数进行积分,类似于线积分。

在计算曲面积分时,需要用到曲面的面积元素,这里面积元素的计算需要用到微积分中的偏微分。

具体来说,可以通过将曲面分成小的面元,计算每个面元的面积和函数值,然后将它们累加起来,从而得到曲面上的积分值。

4. 极值和拐点在多元函数中,类似于一元函数中的极值和拐点的概念。

在平面几何中,可以将这些概念应用于曲线的局部特征的分析中。

通过极值和拐点的计算,可以得到曲线上的最大和最小值,以及拐点的位置和拐点的类型等信息。

总之,多元函数微分学在几何学中有着广泛的应用。

通过对向量场、梯度、方向导数、曲面积分、极值和拐点等概念的研究,可以深入分析曲线、曲面的本质特征和局部特征,从而为实际问题的求解提供了精确的数学工具。

多元函数微分学的几何应用.ppt

多元函数微分学的几何应用.ppt
x1 y 1 z 1 , 123 法平面方程为
(x1)2(y1)3(z1)0ቤተ መጻሕፍቲ ባይዱ 即x2y3z6
首页
上页
返回
下页
结束

曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
讨论:
1 若曲线的方程为y(x), z(x), 则切向量T?
2 若曲线的方程为F(x, y, z)0, G(x, y, z)0, 则切向量T? 提示:
(t0)(xx0)(t0)(yy0)(t0)(zz0)0
首页
上页
返回
下页
结束

曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
例1 求曲线xt, yt2, zt3在点(1, 1, 1)处的切线及法平面 方程
解 点(1, 1, 1)所对应的参数t1 因为 xt1, yt2t, zt3t2, 所以切向量为T(1, 2, 3) 于是, 切线方程为
2dyddyxdzddxz11 dx dx
(x1)0(y2)(z1)0, 即 xz0
首页
上页
返回
下页
结束

二、曲面的切平面与法线
设M0(x0, y0, z0)是曲面: F(x, y, z)0上的一点, 是曲面 上过点M0的任意一条曲线, 其参数方程为
x(t), y(t), z(t),
tt0对应于点M0(x0, y0, z0) 因为曲线在曲面上, 所以有
F[(t),(t),(t)]0
等式的两边在tt0点求全导数得
Fx(x0, y0, z0)(t0)Fy(x0, y0, z0)(t0)Fz(x0, y0, z0)(t0)0

多元函数微分法及其应用

多元函数微分法及其应用

引例: • 圆柱体的体积
r h
• 定量理想气体的压强
定义1. 设非空点集
映射
在 D 上的 n 元函数 , 记作
称为定义
点集 D 称为函数的定义域 ; 数集 u u f ( P ) ,P D
称为函数的值域 . 特别地 , 当 n = 2 时, 有二元函数
当 n = 3 时, 有三元函数
例如, 二元函数 z 1 x2 y2
0
x x0
y y0
• 若当点 P(x, y) 以不同方式趋于P0 (x0 , y0 ) 时, 函数趋于
不同值或有的极限不存在,则可以断定函数极限不存在 .
例1. 讨论函数
f (x, y)
xy x2 y2
在点 (0, 0) 的极限.
解: 设 P(x , y) 沿直线 y = k x 趋于点 (0, 0) , 则有
y
y
闭区域
o
x
o 1 2x
y
o
x
y
o 1 2x
整个平面是最大的开域 , 也是最大的闭域;
点集(x, y) x 1是开集,
y
1o 1 x
但非区域 . • 对区域 D , 若存在正数 K , 使一切点 PD 与某定点
A 的距离 AP K , 则称 D 为有界域 , 否则称为无
界域 .
二、多元函数的概念
内 • 区域
连通的开集
容 • R n 空间
小 2. 多元函数概念
结 n 元函数 u f (P) f (x1, x2, , xn )
PD Rn
二元函数 (图形一般为空间曲面) 常用
三元函数
3. 多元函数的极限
lim f (P) A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


Fz ( x0 , y0 , z0 ) ( t0 ) 0
- 15 -
第四节
多元函数微分在几何上的应用
令 T { ( t0 ) , ( t0 ) , ( t0 )}
第 八 章 切向量 T n 多 元 函 数 微 分 法 及 其 应 用
n { Fx ( x0 , y0 , z0 ) , Fy ( x0 , y0 , z0 ) , Fz ( x0 , y0 , z0 )}
第四节
多元函数微分在几何上的应用
切平面方程
第 八 章
Fx ( x0 , y0 , z0 ) ( x x0 ) Fy ( x0 , y0 , z0 ) ( y y0 )
Fz ( x0 , y0 , z0 )( z z0 ) 0
多 元 通过点 M ( x 0 , y 0 , z 0 ) 而垂直于切平面的直线称为曲 函 数 面在该点的法线.法线方程 微 分 x x0 y y0 z z0 法 Fx ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) 及 其 应 用
第 八 章

解: 由于
M 0 (0 , R , k ) 2 z
多 对应的切向量为 T ( R , 0 , k ) , 故 元 函 yR zk x 2 切线方程 数 微 0 R k 分 法 k x Rz R k 0 2 即 及 其 yR0 应 用 法平面方程 R x k ( z k ) 0 2
- 17 -
第四节
多元函数微分在几何上的应用
垂直于曲面上切平面的向量称为曲面的法向量. 曲面在M 处的法向量即
第 八 章 多 元 函 数 微 分 法 及 其 应 用
n { F x ( x 0 , y 0 , z 0 ), F y ( x 0 , y 0 , z 0 ), F z ( x 0 , y 0 , z 0 )}
第四节
多元函数微分在几何上的应用
第四节 多元函数微分法在几何上的应用
第 八 章 多 元 函 数 微 分 法 及 其 应 用

空间曲线的切线与法平面

曲面的切平面与法线
-1-
第四节
多元函数微分在几何上的应用

第 八 章
空间曲线的切线与法平面
空间光滑曲线在点 M 处的切线为此点处割线的极限 位置. 过点 M 与切线垂直的平面称为曲线在该点的法
- 14 -

第四节
多元函数微分在几何上的应用
切线方程为
第 八 章
x x0 y y0 z z0 ( t0 ) ( t0 ) ( t0 )
下面证明: 上过点 M 的任何曲线在该点的切线都
在同一平面上. 此平面称为 在该点的切平面. 证: 在 上,
方程。 解
x t 2 y t 平行于平面 x 2 y z 4 的切线 例4 求曲线 3 zt
设切点对应的参数为 t 0 , 则切向量为
2 s {1, 2 t 0 , 3 t 0 }
由于所求切线平行于已知平面, 所以 s 和已知平面的 法向量 n {1, 2,1} 垂直,即
r (t) 的矢端曲线, 而在 t0 处的导向量

M
T
r ( t0 ) ( ( t0 ) , ( t0 ) , ( t0 )) 多 元 函就是该点的切向量. 数 微 分 法 及 其 应 用
r (t )
o
-5-
第四节
多元函数微分在几何上的应用
例1. 求圆柱螺旋线
对应点处的切线方程和法平面方程.
x1 1 y1 2
y
2 3 1 9

z1 3
z
1 3 1 27

x 1
1 3


- 13 -
第四节
多元函数微分在几何上的应用

第 八 章
曲面的切平面与法线
设曲面方程 为 F ( x , y , z ) 0, 如果 F x , F y , F z 连续
2 2 2 F x F y F z 0, 则称该曲面为光滑曲面 多且
特殊地:空间曲面方程形为 z f ( x , y ) 令 F ( x, y, z) f ( x, y) z, 曲面在M处的切平面方程为
f x ( x 0 , y 0 )( x x 0 ) f y ( x 0 , y 0 )( y y 0 ) z z 0 ,
曲面在M处的法线方程为
1
1,
由此得切向量 T {1 , 0 , 1 },
所求切线方程为
x1
1 0 1 法平面方程为 ( x 1 ) 0 ( y 2 ) ( z 1 ) 0 ,

y2

z1
,

xz0
- 11 -
第四节
多元函数微分在几何上的应用
第 八 章 多 元 函 数 微 分 法 及 其 应 用
( t0 )( x x0 ) ( t0 ) ( y y0 ) ( t0 )( z z0 ) 0
-4-
第四节
多元函数微分在几何上的应用
说明: 若引进向量函数 r ( t ) ( ( t ) , ( t ) , ( t ) ) , 则
第 八为 章
T
M

多 元 函 F ( ( t ) , ( t ) , ( t ) ) 0 数 微 两边在 t t 处求导, 0 分 法 注意 t t0 对应点M , 及得 Fx ( x0 , y0 , z0 ) ( t0 ) 其 应 Fy ( x0 , y0 , z0 ) (t0 ) 用
F ( x, y, z ) 0 光滑曲线 : G( x, y, z ) 0 当 J ( F , G ) 0 时, 可表示为 ( y, z )
, 且有
1, J (z , x)
,
M
J ( x , y) M
-8-
第四节
多元函数微分在几何上的应用
x x0 f x ( x0 , y0 ) y y0 f y ( x0 , y0 )
2 s n 1 4 t 0 3 t 0 0
即 t0 1 或 t0 1 3 ,
- 12 -
第四节
多元函数微分在几何上的应用
切点为 (1, 1,1)或 ( 1 3 , 1 9 , 1 27 )
第 八 章 多 元 函 数 微 分 法 及 其 应 用
切向量为 {1, 2, 3}或 { 1, 2 3 , 1 3 } 切线方程为
,
x ( 0 ) 1,
x e cos t , y 2 cos t sin t , z 3 e 3 t ,
y ( 0 ) 2 , z ( 0 ) 3 ,
y1 2 z2 3 ,
切线方程 法平面方程
x0 1
x 2( y 1) 3( z 2 ) 0 ,
o

Rxk z k 0 2
2
-6-
x
y
第四节
多元函数微分在几何上的应用
例2 求曲线 : x
第z 1 e 八 章 多 元 函 数 微 分 法 及 其 应 用
3t
0
t
e cos udu ,
u
y 2 sin t cos t ,
在 t 0 处的切线和法平面方程.
解 当 t 0 时, x 0 , y 1, z 2 , , t
z
多 元 函 平面. 数 微 分 法 及 其 应 用


M
T
O M M M
M
M M
y
x
-2-
T
第四节
多元函数微分在几何上的应用
1. 曲线方程为参数方程的情况
第 八 章
x (t ) 设空间曲线 的方程 y ( t ) z (t )
M
(1 )
( y y0 ) ( z z0 ) 0

-9-
第四节
多元函数微分在几何上的应用
法平面方程
第 八 章
( F , G ) ( y, z ) M
( x x0 )
( F , G ) ( z , x ) M ( F , G )
( y y0 ) ( z z0 ) 0
由于曲线 的任意性 , 表明这些切线都在以 为法向量的平面上 , 从而切平面存在 . 曲面 在点 M 的切平面的法向量
n
M

T

n { Fx ( x0 , y0 , z0 ) , Fy ( x0 , y0 , z0 ) , Fz ( x0 , y0 , z0 )}
- 16 -
M
多 切线方程 元 函 数 微 分 ຫໍສະໝຸດ 及 法平面方程 其 应 用
y y0
( F , G ) ( z , x )
M

z z0
( F , G ) ( x , y )
M
( x x0 )
M
( F , G ) ( z , x ) ( F , G ) ( x , y )
M M

第 八 章
(F , G ) T ( y, z )
,
M
(F , G ) (z , x)
M
, ( x , y) M (F , G )
则在点 M ( x0 , y0 , z0 ) 有
x x0
( F , G ) ( y, z ) ( F , G ) ( y, z )
相关文档
最新文档