实验十二__用三表法测量交流电路等效参数

合集下载

交流参数的测定三表法

交流参数的测定三表法

功率表的读取
pCp 式中,为分格数,Cp为仪表分格常 数(W div-1),P为被测功率(W)。
分格常数为
Cp
Um Im
m
式 中m 为仪表的满偏格数。
调压器使用注意事项
使用调压器时要做到:
① 接通电源前,将调压器处于“0”位。
② 使用调压器时,每次都应该从“0”开

逐渐增加,直到所需的电压值。
③ 使用完毕后,应随手将调压器手柄调回 到“0”位 ,然后断开实验台的电源。
实验注意事项
接线前,先将位于实验台右下方处的调压器手 柄逆时针调到头,即将调压器置于“0”位。 实验电路联接完毕,自检无误后,请指导教师 检查线路,才能合闸通电做实验。 合理选择测试仪表的量程。 每次更换电路钱都应将调压器旋柄调到“0” 位。 站着做实验。
交流参数的测定—三表法、 三电流表法
一、~220V
FU
0.4A
A
V
R W
200Ω
A

r流
GC 电
器B
L线
容 10µF 器

图8-4
二、 三电流表法
实验电路
调压器 ~220V
FU
I1 80V
I2
I3
A
200Ω R

r流
GC 电
器B
L线
容 10µF 器

图8-5
本 实 验 用 到 的 仪 器

交流电路等效参数的测量

交流电路等效参数的测量
厦门电大工学技术航实详图的名称、比例; 2. 详图符号及其编号以及需另画详图的索引符号; 3. 建筑构配件的形状以及详细的构造、 层次,尺 寸; 4. 详细注明各部位和各层次的用料、做法、颜色 以及施工要求等; 5. 必要的定位轴线及其编号; 6. 必要的标高(这里指相对标高).
功能设置 按下ACV/(DCV)键,测量交流/(直流)电压。
同时按下ACV和DCV键,测量AC+DC电压。
一、实验目的
1、掌握用交流数字三表(电压表、电流表和功率表) 测量交流电路的电压、电流和功率;
2、掌握单三相交流可调电源的使用; 3、掌握用交流数字仪表测定交流电路参数的方法; 4、掌握日光灯电路的接线;
厦门电大工学技术航实空验航课天程学团院队
二、原理说明
1、交流三表法测量交流电路元件参数 正弦交流电路中各个元件的参数值,可以用交流
小结
1.了解制图标准; 2.掌握建筑施工图的阅读方法; 3.掌握计算机绘制建筑施工图
的方法和技巧。
厦门电大工学技术航实空验航课天程学团院队
三、实验设备
1、 数字电参数测量仪 8902F1数字电参数测量仪是一种利用单片机技术对信
号进行分析处理的智能型仪表。可以测量电压、电 流、有功功率、频率、功率因数等。
功率、功率因数表
** ~~UU
** ~~II
交 交
UU
550000VV
55AA
流 流 电 电
((或 或VV、 、W W))
源 源
负 负 载 载
输 输
出 出
电 电
路 路
NN
图7-1-1 功率表接线示意图
厦门电大工学技术航实空验航课天程学团院队
三、实验设备 1、数字电参数测量仪 2、三相交流调压输出电源 3、钳形电流表 4、GDM-8341型台式万用表 5、白炽灯、电容器、日光灯、镇流器、启辉器

三表法测电路参数实验报告

三表法测电路参数实验报告

竭诚为您提供优质文档/双击可除三表法测电路参数实验报告篇一:用三表法测量电路等效参数实验报告(含数据处理)实验七用三表法测量电路等效参数一、实验目的1.学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方法。

2.学会功率表的接法和使用。

二、原理说明1.正弦交流信号激励下的元件的阻抗值,可以用交流电压表、交流电流表及功率表分别测量出元件两端的电压u、流过该元件的电流I和它所消耗的功率p,然后通过计算得到元件的参数值,这种方法称为三表法。

计算的基本公式为:up,电路的功率因数cos??IuIp等效电阻R=2=│Z│cosφ,等效电抗x=│Z│sinφI阻抗的模Z?2.阻抗性质的判别方法可用在被测元件两端并联电容的方法来判别,若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。

其原理可通过电压、电流的相量图来表示:图7-1并联电容测量法图7-2相量图(:三表法测电路参数实验报告) 3.本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。

三、实验设备DgJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。

四、实验内容测试线路如图7-3所示,根据以下步骤完成表格7-1。

1.按图7-3接线,将调压器调到表1中的规定值。

2.分别测量15w白炽灯(R)、镇流器(L)和4.7μF电容器(c)的电流和功率以及功率因数。

3.测量L、c串联与并联后的电流和功率以及功率因数。

4.如图7-4,用并联电容法判断以上负载的性质。

Z图7-3图7-4五、实验数据的计算和分析根据表格7-1的测量结果,分别计算每个负载的等效参数。

up=2386.6,cos??=1IuIup镇流器L:Z?=551.7,cos??=0.172IuIup1电容器c:Z?=647.2,cos??=0,??2?f,|Z|?,f=50hz,因此c=4.9?FIuI?cupL和c串联:Z?=180.9,cos??=0.35;并联1?F电容后,电流增大,所以是容IuI白炽灯:Z?性负载L和c并联:Z?性负载由以上数据计算等效电阻R=│Z│cosφ,等效电抗x =│Z│sinφ,填入表7-1中。

用三表法测量电路等效参数

用三表法测量电路等效参数

用三表法测量电路等效参数一、实验目的1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。

2. 学会功率表的接法和使用。

二、原理说明1. 正弦交流信号激励下的元件值或阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法, 是用以测量50Hz 交流电路参数的基本方法。

计算的基本公式为:阻抗的模I U Z =, 电路的功率因数 cos φ=UI P等效电阻 R = 2IP=│Z │cos φ, 等效电抗 X =│Z │sin φ或 X =X L =2πfL , X =Xc =fCπ212. 阻抗性质的判别方法:在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下:(1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。

图16-1 并联电容测量法图16-1(a)中,Z 为待测定的元件,C'为试验电容器。

(b)图是(a)的等效电路,图中G 、B 为待测阻抗Z 的电导和电纳,B'为并联电容C' 的电纳。

在端电压有效值不变的条件下,按下面两种情况进行分析:① 设B +B'=B",若B'增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。

② 设B +B'=B",若B'增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图16-2所示,则可判断B 为感性元件。

由上分析可见,当B 为容性元件时, 对并联电容C'值无特殊要求;而当B 为感 性元件时,B'<│2B │才有判定为感性的意I I ZBBB2,U.U....(a)(b).义。

B'>│2B │时,电流单调上升,与B 为 容性时相同,并不能说明电路是感性的。

用三表法测量电路等效参数实验报告

用三表法测量电路等效参数实验报告

实验七 用三表法测量电路等效参数一、实验目的1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。

2. 学会功率表的接法和使用。

二、原理说明1. 正弦交流信号激励下的元件的阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到元件的参数值,这种方法称为三表法。

计算的基本公式为:阻抗的模I U Z =, 电路的功率因数UI P =ϕcos 等效电阻 R = 2IP=│Z │cos φ, 等效电抗 X =│Z │sin φ2. 阻抗性质的判别方法可用在被测元件两端并联电容的方法来判别, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。

其原理可通过电压、电流的相量图来表示:图7-1 并联电容测量法 图7-2 相量图3. 本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。

三、实验设备DGJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。

四、实验内容测试线路如图7-3所示,根据以下步骤完成表格7-1。

1. 按图7-3接线,将调压器调到表1中的规定值。

2. 分别测量15W 白炽灯(R)、镇流器(L) 和μF 电容器( C)的电流和功率以及功率因数。

3. 测量L 、C 串联与并联后的电流和功率以及功率因数。

4. 如图7-4,用并联电容法判断以上负载的性质。

图7-3 图7-4表 7-1被测阻抗测量值计算值 等效参数Z=R+jX U(V ) I(mA )P (W) cos φ |Z| ()cos φR ()X ()15W 白炽灯R100 1 电感线圈L 40 电容器C 40 0 0 L 与C 串联 40 221 L 与C 并联 40L 与C 串联再并1F 电容 40235∕ ∕L 与C 并联再并1F 电容 40 ∕∕五、实验数据的计算和分析根据表格7-1的测量结果,分别计算每个负载的等效参数。

交流等效参数的测定全解

交流等效参数的测定全解
系即可判定阻抗性质。 试问:1.串入小测试电阻会改变电路的性质吗?说明原因。 2.为何可以小电阻的电压代替电路电流接入示波器? 3.为何用信号发生器输出50Hz正弦波,而不可直接 用调压器 输出一小电压来做激励源?
实验注意事项

1. 本实验采用市电220V交流电源供电, 注意人身安全。 2. 自耦调压器在接通电源或者调节前,应将其手柄置在 零位上, 3. 用示波器判断阻抗性质时,激励源需采用信号发生器, 不可直接市电或交流电。 4.实验所用功率表为智能交流功率表,其电压接线端应与 负载并联,电流接线端应与负载串联。
实验报告


1、根据三表法测得的数据,计算cosφ 。 2、由接入不同测试电容时,总结总电流的变化规律来 判定不同负载下电路的阻抗性质。 3、画出表中某种状态下电路的电流相量图,并根据电 流相量图说明并联不同容量的电容器后电路的性质是 否改变。
思考题




1、单相电路中,功率表测得的是:a.总功率,b无功 功率,c有功功率,d都可以。 2、结合照明电路原理,请问荧光灯照明电路是何种性 质?验证之。 3、结合测试条件,试问感性电路中,如何提高电路的 功率因数? 4、实验中需要监测电流防止过流,交流电路中,结合 电路阻抗变化说明原因。
0~500V 0~5A 单相 0~380V
30W日光灯配用 4.7μ F/500V 15W/220V 50Hz正弦波
1 1 1 1
1 1 3 1 1
实验内容
测试线路如图示,按图接线,先将调压器调至0V,方可接通市电电源。 分别测15W白炽灯(R)、30W日光灯、镇流器(L) 和4.7μF电容器(C)的 等效参数
实验十三 元件交流等效参数的测定
综合性实验

实验十二__用三表法测量交流电路等效参数

实验十二__用三表法测量交流电路等效参数

实验报告一、实验目的1. 学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方法2. 学会功率表的接法和使用二、原理说明1. 正弦交流激励下的元件值或阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U,流过该元件的电流I和它所消耗的功率P,然后通过计算得到所求的各值,这种方法称为三表法,是用以测量50Hz交流电路参数的基本方法。

计算的基本公式为阻抗的模│Z│=电路的功率因数cosφ=等效电阻R=等效电抗X=│Z│sinφ如果被测元件是一个电感线圈,则有:X= XL=│Z│sinφ= 2 f L如果被测元件是一个电容器,则有:X= X C=│Z│sinφ=2. 阻抗性质的判别方法:在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下:(1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。

(a) (b)图12-1 并联电容测量法图12-1(a)中,Z为待测定的元件,C’为试验电容器。

(b)图是(a)的等效电路,图中G、B为待测阻抗Z的电导和电纳,B'为并联电容C’的电纳。

在端电压有效值不变的条件下,按下面两种情况进行分析:①设B+B’=B",若B’增大,B"也增大,则电路中电流I 将单调地上升,故可判断B为容性元件。

②设B+B’=B",若B’增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图5-2所示,则可判II2I gB 2B B’图5-2 I-B'关系曲线由上分析可见,当B为容C’值无特殊要求;而当B为感性元件时,B’<│2B│才有判定为感性的意义。

B’>│2B│时,容性时相同,并不能说明电路是感性的。

因此B’<│2B│是判断电路性质的可靠条件,由此得判定条件为C’=(2) 与被测元件串联一个适当容量的试验电容,若被测阻抗的端电压下降,则判为容性,端压上升则为感性,判定条件为<│2X│式中X为被测阻抗的电抗值,C’为串联试验电容值,此关系式可自行证明。

三表法测交流电路等效参数(华电版)

三表法测交流电路等效参数(华电版)
4、电感线圈中流过电流不得超过0.4A。
5、换负载时,一定要把电压调至 “0”。
6、接线完毕,必须让老师检查,再接通电源,指导老师签完字后,再拆线。
七、预习思考题解答
(1)、答:阻抗模值: ,功率因数: ,等效电阻: = ,
等效阻抗: ,由上可得:阻值Z=R+jX= + 。电感量 = 。
(2)、答:与待测负载串联一个容抗适当的实验电容,若待测负载的端电压下降,则判断其为容性,端电压上升则为感性。
总的来说,本次实验基本达到预期实验目的,多亏了老师的悉心教导和一起做实验的同学配合,预习很重要,上课要认真听老师的讲解。
附原始数据:
Welcome !!!
欢迎您的下载,
资料仅供参考!
交流电压表
0~500V数字表
交流电流表
0~5A数字表
单相功率表
0~450V,0~5A
日光灯负载
220V日光灯
电容负载
4.7uF,1uF
镇流器
自耦调压器
0~450V
三、实验原理
在交流稳态电路中,通过用交流电压表、交流电流表以及功率表分别测量出负载的电压U、电流I和消耗的功率P,计算得到待测负载的等效电阻。等效电抗,在判断负载的性质(感性、容性或阻性),从而用实验的方法确定待测负载的等效阻抗参数,如下图所示,这种方法称为三表法,此为测量工频交流电路参数的基本方法之一。三表法测量负载的电压、电流和功率后,计算其等效参数的基本公式如下:
220
220.1
0.330
-0.01
C 0.00
666.97
0.000
-0.09
容性
4.77
150
150.1
0.223
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
一、实验目的
1. 学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方法
2. 学会功率表的接法和使用
二、原理说明
1. 正弦交流激励下的元件值或阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U,流过该元件的电流I和它所消耗的功率P,然后通过计算得到所求的各值,这种方法称为三表法,是用以测量50Hz交流电路参数的基本方法。

计算的基本公式为
阻抗的模
│Z│=
电路的功率因数
cosφ=
等效电阻
R=
等效电抗X=│Z│sinφ
如果被测元件是一个电感线圈,则有:
X= XL=│Z│sinφ= 2 f L
如果被测元件是一个电容器,则有:
X= X C=│Z│sinφ=
2. 阻抗性质的判别方法:
在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下:
(1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。

(a) (b)
图12-1 并联电容测量法
图12-1(a)中,Z为待测定的元件,C’为试验电容器。

(b)图是(a)的等效电路,图中G、B为待测阻抗Z的电导和电纳,B'为并联电容C’的电纳。

在端电压有效值不变的条件下,按下面两种情况进行分析:
①设B+B’=B",若B’增大,B"也增大,则电路中电流I 将单调地上升,故可判断B
为容性元件。

②设B+B’=B",若B’增大,而B"先减小而后再增大,电流I 也是先减小后上升,
如图5-2所示,则可判断B为感性元件。

I
I2
I g
B 2B B’
图5-2 I-B'关系曲线
由上分析可见,当B为容性元件时,对并联电容C’值无特殊要求;而当B为感性元件时,B’<│2B│才有判定为感性的意义。

B’>│2B│时,电流单调上升,与B 为容性时相同,并不能说明电路是感性的。

因此B’<│2B│是判断电路性质的可靠条件,由此得判定条件为C’=
(2) 与被测元件串联一个适当容量的试验电容,若被测阻抗的端电压下降,则判为容性,端压上升则为感性,判定条件为
<│2X│
式中X为被测阻抗的电抗值,C’为串联试验电容值,此关系式可自行证明。

判断待测元件的性质,除上述借助于试验电容C'测定法外还可以利用该元件电流、电压间的相位关系,若i超前于u,为容性;i滞后于u,则为感性。

四、实验内容
测试线路如图12-3所示
1. 按图12-3接线,并经指导教师检查后,方可接通市电电源。

2. 分别测量15W白炽灯(R),40W日光灯镇流器(L) 和4.7μf电容器( C)的等效参数。

要求R和C两端所加的电压为220V,L中流过电流小于0.4A。

3. 测量L、C串联与并联后的等效参数。

4. 用并接试验电容的方法来判别LC串联和并联后阻抗的性质。

计算所需的电容大小:
01 2.2
因此,L与C串联时为容性,L与C并联时为感性
5.观察并测定功率表电压并联线圈前接法与后接法对测量结果的影响。

A.前接法:
五、实验注意事项
1. 本实验直接用市电220V交流电源供电,实验中要特别注意人身安全,不可用手直接触摸通电线路的裸露部分,以免触电,进实验室应穿绝缘鞋。

2. 自耦调压器在接通电源前,应将其手柄置在零位上(逆时针旋到底),调节时,使其输出电压从零开始逐渐升高。

每次改接实验线路或实验完毕,都必须先将其旋柄慢慢调回零位,再断电源。

必须严格遵守这一安全操作规程。

4. 功率表要正确接入电路。

5. 电感线圈L中流过电流不得超过0.4A。

六、预习思考题
. 1. 在50Hz的交流电路中,测得一只铁心线圈的P、I和U,如何算得它的阻值及电感量?
答:
2. 如何用串联电容的方法来判别阻抗的性质?试用I 随X' c (串联容抗)的变化关系作定性分析,证明串联试验时,C'满足
X C
21
'
<ω 式中X 为被测阻抗的电抗值,'
C 为串联试验电容值。

证明: (电路图)
(1)设'''X X X =+,若'X 增大,'
'X 也增大,则电流I 变小,被测阻抗的端电压对应下降,则判断为容性。

(2)设'''X X X =+,若'X 增大,'
'X 先减小后增大,电流先增大后减小,被测阻抗的端电压对应也先上升后下降,则判断为感性。

由上分析可见,当X 为容性元件时,对串联电容 '
C 值无特殊要求;而当X 为感性元件时,
'''2X X <才有判定为感性的意义。

X X 2'>时,被测阻抗的端电压单调下降,与X 为容性时
相同,并不能说明电路是感性的。

因此'''2X X <是判断电路性质的可靠条件,由此得判定条件

X C 21
'

七、实验报告
1. 根据实验数据,完成各项计算。

计算参考公式(其中电感的单位是mH,电容的单位是f μ): I U Z =
UI
P =φcos φcos ⋅=Z R
3
2
2102⋅=-=f
X
L R Z X L L π
6
2
210
21⋅⋅=-=C
C X f C R Z X π 其计算结果已经显示在实验内容的数据表格中 并联电容'
C 范围的计算:
串联电容'
C 范围的计算:
22'
'
'414121R Z f C fX C X C ->
><ππω得由
%
100cos cos cos cos ⋅-=
计算值
计算值
测量值的误差计算
φφφηφ
C(
误差分析:
幅角误差产生的主要原因是仪表误差
2. 分析功率表并联电压线圈前后接法对测量结果的影响。

A.前接法:
B.后接法:
(1)前接法所得结果比负载实际损耗的功率大,所增大的值是电流表损耗的功率I2R A,也即电流表的功率。

(2)后接法测出的功率也比负载所损耗的功率大,所增大之值等于,这也即为电压表所损耗的功率。

实际结果:
(1)当被测阻抗为单一用电器时,前接法与后接法的测量结果基本相同。

(2)后接法测出的功率比前接法大一些,因并联电压线圈所消耗的功率也计入了功率表的读数之中,电压表消耗的功率较大,因此误差较大。

3. 总结功率表与自耦调压器的使用方法。

功率表使用方法
(1)接线
a.电流端串联在电路中,电压端并联在待测负载两端
b.两个*号端需接在一起
(2)读数
a. a.开启电源,显示屏出现“P”、“cos”等标识。

b. b.按动功能键一次,显示屏出现“P”,然后按确认键,即可读出功率P的读数。

c. c.继续按动功能键,待显示屏出现“cos”后按确认键,即可读出幅角COSφ之值。

自耦调压器使用方法
(1)使用前需将旋钮逆时针旋到底,再接通电源
(2)接线时,一端接G(接地端),一端接在W、V、U其中之一
(3)将电压表接入,缓缓旋动旋钮,直到电压表显示电压为预期输出电压值
不用时,要将旋钮逆时针旋到底,确保下次使用时的安全
(4)。

相关文档
最新文档