雷达原理复习
《雷达原理》知识点总结

【雷达任务:测目标距离、方位、仰角、速度;从目标回波中获取信息【雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。
在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。
【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。
【测角:根据接收回波最强时的天线波束指向【雷达是如何获取目标信息的?【雷达组成:天线,发射机,接收机,信号处理机,终端设备(电源,显示屏),收发转换开关【发射机工作原理:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。
【发射机基本组成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。
主振放大式:脉冲调制器,中间和输出射频功放,电源,定时器,固体微波源(主控振荡器,用来产生射频信号)工作过程:(1)单级振荡式:信号由振荡器产生,受调制(2)主振放大式:信号由固体微波源经过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定时器协调工作。
优缺点:单击振荡式:简单经济轻便,频率稳定度差,无复杂波形;主振放大式:频率稳定度高,相位相参信号,有复杂波形,适用频率捷变雷达【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。
峰值功率(脉冲期间射频振荡的平均功率)和平均功率(脉冲重复周期内输出功率的平均值)。
(3)总效率Pt/P。
(4)调制形式:调制器的脉冲宽度,重复频率,波形。
(5)信号稳定度/频谱纯度,即信号各项参数。
【调制器组成:电源,能量储存,脉冲形成【调制器任务与作用:为发射机的射频各级提供合适脉冲,将一个信号载到一个比它高的信号上【仿真线:由于雷达的工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数的网络代替长线,即仿真线【刚/软性开关:刚性开关的电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关的人工线性调制器,特点为完全放电,效率高,功率大。
雷达原理复习总结

雷达原理复习要点第一章(重点)1、雷达的基本概念雷达概念(Radar):radar的音译,Radio Detection and Ranging 的缩写。
无线电探测和测距,无线电定位。
雷达的任务:利用目标对电磁波的反射来发觉目标并对目标进行定位,是一种电磁波的传感器、探测工具,能主动、实时、远距离、全天候、全天时获得目标信息。
从雷达回波中可以提取目标的哪些有用信息,通过什么方式获得这些信息?斜距R : 雷达到目标的直线距离OP方位α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。
仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或凹凸角。
2、目标距离的测量测量原理式中,R为目标到雷达的单程距离,为电磁波来回于目标与雷达之间的时间间隔,c为电磁波的传播速率(=3×108米/秒)距离测量辨别率两个目标在距离方向上的最小可区分距离最大不模糊距离3、目标角度的测量方位辨别率取决于哪些因素4、雷达的基本组成雷达由哪几个主要部分,各部分的功能是什么同步设备:雷达整机工作的频率和时间标准。
放射机:产生大功率射频脉冲。
收发转换开关: 收发共用一副天线必需,完成天线与放射机和接收机连通之间的切换。
天线:将放射信号向空间定向辐射,并接收目标回波。
接收机:把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。
显示器:显示目标回波,指示目标位置。
天线限制(伺服)装置:限制天线波束在空间扫描。
电源其次章1、雷达放射机的任务为雷达供应一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去2、雷达放射机的主要质量指标工作频率或波段、输出功率、总效率、信号形式、信号稳定度3、雷达放射机的分类单级振荡式、主振放大式4、单级振荡式和主振放大式放射机产生信号的原理,以及各自的优缺点单级振荡式: 脉冲调制器:在触发脉冲信号激励下产生脉宽为τ的脉冲信号。
《雷达原理》知识点总结

【雷达任务:测目标距离、方位、仰角、速度;从目标回波中获取信息【雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。
在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。
【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。
【测角:根据接收回波最强时的天线波束指向【雷达是如何获取目标信息的?【雷达组成:天线,发射机,接收机,信号处理机,终端设备(电源,显示屏),收发转换开关【发射机工作原理:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。
【发射机基本组成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。
主振放大式:脉冲调制器,中间和输出射频功放,电源,定时器,固体微波源(主控振荡器,用来产生射频信号)工作过程:(1)单级振荡式:信号由振荡器产生,受调制(2)主振放大式:信号由固体微波源经过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定时器协调工作。
优缺点:单击振荡式:简单经济轻便,频率稳定度差,无复杂波形;主振放大式:频率稳定度高,相位相参信号,有复杂波形,适用频率捷变雷达【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。
峰值功率(脉冲期间射频振荡的平均功率)和平均功率(脉冲重复周期内输出功率的平均值)。
(3)总效率Pt/P。
(4)调制形式:调制器的脉冲宽度,重复频率,波形。
(5)信号稳定度/频谱纯度,即信号各项参数。
【调制器组成:电源,能量储存,脉冲形成【调制器任务与作用:为发射机的射频各级提供合适脉冲,将一个信号载到一个比它高的信号上【仿真线:由于雷达的工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数的网络代替长线,即仿真线【刚/软性开关:刚性开关的电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关的人工线性调制器,特点为完全放电,效率高,功率大。
雷达原理及系统复习

第二十一页,共88页。
雷达接收到的回波功率反比于目标与 雷达站间距离R的四次方
雷达收到功率: r • 收发不同天线时
r
Ar:雷达天线接收面积
• 收发同天线时
第二十二页,共88页。
当接收功率为接收机最小检测功率S imin时:
• 收发不同天线时,最大作用距离
• 收发同天线时,最大作用距离
习题
第三十九页,共88页。
角度测量
• 测角的物理基础:电波在均匀介质中传播的 直线性,雷达天线的方向性。
• 测角的性能参数:测天角线范对围于不、同测方向角到速达度的电、磁测波具角有精 度或准确度、角分辨不力同。的振幅和相位的响应
• 测角的方法:相位法,振幅法。
利用相位响应进行测角
利用振幅响应进行测角
测距精度与发射信号(时宽)带宽(或处理后脉冲宽度)有关,脉冲越窄、 性能越好
第六页,共88页。
测角
利用天线方向性实现
目标角位置:方位角α
仰角β
α
接收回波最强时的天线波束指向
天线尺寸增加,波束变窄,测角精度和角分辨力提高
角位置还可以利用两个分离接收天线收到信号的相位差来决定
2π弧度=360°=6000密位,1密位=0.06 °
tr
2R tr c C :光速,
R ctr 2
第五页,共88页。
例:一单基地脉冲雷达目标回波时延为1μs,求目标离雷 达的距离。
解:由公式
R ctr 代入参数可得 R 150m 2
常见时延与距离:
1μs--0.15km, 6.67μs--1km, 12.3μs--1.852km(1海里), 10μs--1.5km, 100μs--15km, 1ms--150km,
雷达知识点总结

雷达知识点总结1.雷达的工作原理1雷达测距原理超高频无线电波在空间传播具有等速、直线传播的特性,并且遇到物标有良好的反射现象。
用发射机产生高频无线电脉冲波,用天线向外升空和发送无线电脉冲波,用显示器展开计时、排序、表明物标的距离,用引爆电路产生的引爆脉冲并使它们同步工作。
2雷达测方位原理(1)利用超高频无线电波的空间直线传播;(2)雷达天线是一种定向型天线;(3)用方位读取系统把天线的瞬时边线随时精确地送至显示器,并使荧光屏上的扫描线和天线同步转动,于是物标脉冲也就按它的实际方位表明在荧光屏上。
雷达基本共同组成(1)触发电路(triggercircuit)促进作用:内要一定的时间产生一个促进作用时间很短的细长脉冲(引爆脉冲),分别送至发射机、接收机和显示器,并使它们同步工作。
(2)发射机(transmitter)促进作用:在引爆脉冲的掌控下产生一个具备一定宽度的大功率高频的脉冲信号(射频脉冲),经波导馈线送进天线向外升空。
参数:x波段:9300mhz―9500mhz(波长3cm)s波段:2900mhz―3100mhz(波长10cm)(3)天线(scanner;antenna)作用:把发射机经波导馈线送来的射频脉冲的能量聚成细束朝一个方向发射出去,同时只接收从该方向的物标反射的回波,并再经波导馈线送入接收机。
参数:顺时针匀速旋转,转速:15―30r/min(4)接收机(receiver)作用:将天线接收到的超高频回波信号放大,变频(变成中频)后,再放大、检波,变成显示器可以显示的视频回波信号。
(5)收发开关(t-rswitch)促进作用:在升空时自动停用接收机入口,使大功率射频脉冲只送至天线向外电磁辐射而不步入接收机;在升空完结后,能够自动拨打接收机通路使些微的脉冲信号成功步入接收机,同时停用发射机通路。
(6)显示器(display)作用:传统的ppi显示器在触发脉冲的控制下产生一条径向的距离扫描线,用来计时、计算物标回波的距离,同时这条扫描线由方位扫描系统带动天线同步旋转。
雷达原理复习总结

雷达原理复习要点第一章(重点)1、雷达的基本概念雷达概念(Radar):radar的音译,Radio Detection and Ranging 的缩写。
无线电探测和测距,无线电定位。
雷达的任务:利用目标对电磁波的反射来发现目标并对目标进行定位,是一种电磁波的传感器、探测工具,能主动、实时、远距离、全天候、全天时获取目标信息。
从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息?斜距R : 雷达到目标的直线距离OP方位α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。
仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。
2、目标距离的测量测量原理式中,R为目标到雷达的单程距离,为电磁波往返于目标与雷达之间的时间间隔,c为电磁波的传播速率(=3×108米/秒)距离测量分辨率两个目标在距离方向上的最小可区分距离ρr=cτ2最大不模糊距离3、目标角度的测量方位分辨率取决于哪些因素4、雷达的基本组成雷达由哪几个主要部分,各部分的功能是什么同步设备:雷达整机工作的频率和时间标准。
发射机:产生大功率射频脉冲。
收发转换开关: 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。
天线:将发射信号向空间定向辐射,并接收目标回波。
接收机:把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。
显示器:显示目标回波,指示目标位置。
天线控制(伺服)装置:控制天线波束在空间扫描。
电源第二章1、雷达发射机的任务为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去2、雷达发射机的主要质量指标工作频率或波段、输出功率、总效率、信号形式、信号稳定度3、雷达发射机的分类单级振荡式、主振放大式4、单级振荡式和主振放大式发射机产生信号的原理,以及各自的优缺点单级振荡式:脉冲调制器:在触发脉冲信号激励下产生脉宽为τ的脉冲信号。
雷达原理及系统复习

KT0BnFn
• 信噪比表示的雷达方程
检波后积累
由
可得,
则
灵敏度
识别系数M
min
作用距离
雷达原理及系统复习
检测装置 检测门限
• 检测准则
门限检测采用奈曼-皮尔逊准则。该准则要求在给定的 信噪比条件下,在满足一定的虚警概率时的发现概率 最大,或者漏警概率最小。 降低门限的缺点:只要有噪声存在,其尖峰超过门限 电平的概率增加,虚警相应增加。
雷达原理及系统复习
• 大气折射和雷达直视距离
改变雷达的测量距离,产生测距误差;引起仰角测量误差
原因:
大气成分随时间、地点而改变,且不同高度的空 气的密度也不相同,大气密度随高度变化的结果 使折射系数对高度增加而减小。因此电磁波在正 常大气下的传播折射常使电波射线向下弯曲。
雷达原理及系统复习
• 雷达直视距离的计算
测距
利用发射信号回波时延求得
tr
tr
2R c
C :光速,
R ctr 2
雷达原理及系统复习
例:一单基地脉冲雷达目标回波时延为1μs,求 目标离雷达的距离。 解:由公式 R c t r 代入参数可得 R150m
2
常见时延与距离:
1μs--0.15km, 6.67μs--1km, 12.3μs--1.852km(1海里), 10μs--1.5km, 100μs--15km, 1ms--150km,
频率选择因素:体积、分辨力、用途、功能
雷达原理及系统复习
• 工作波长的选择
从接收机灵敏度来看,须考虑所选λ下接收机内部噪声和大
气噪声大小以及电磁波在大气中的衰减, λ应长一些。
从提高距离分辨率、角分辨率、天线增益的角度来看,希 望λ要短一些。
雷达的知识点总结

雷达的知识点总结一、雷达的工作原理雷达的工作原理是利用发射器发射一定频率的无线电波,当这些电波遇到目标物时,一部分电波被目标物所反射,接收器捕捉这些被反射的电波,并通过信号处理,确定目标物的距离、方向和速度信息。
雷达工作的基本原理包括发射、接收和信号处理三个步骤。
1. 发射:雷达发射器产生并发射一定频率的无线电波,这些电波称为RCS(雷达交会截面)。
2. 接收:当RCS遇到目标物时,一部分电波被目标物所反射,接收器接收并捕捉这些被反射的电波。
3. 信号处理:接收到的被反射的电波通过信号处理系统进行处理,根据信号的时间延迟、频率偏移和振幅变化等信息,确定目标物的距离、方向和速度。
二、雷达的分类根据不同的工作原理和应用领域,雷达可以分为不同的分类。
1. 按工作频率分类:雷达可以根据工作频率的不同分为X波段雷达、K波段雷达、S波段雷达等,不同频率的雷达适用于不同的应用领域。
2. 按工作方式分类:雷达可以根据工作方式的不同分为连续波雷达和脉冲雷达,连续波雷达适用于测距,脉冲雷达适用于测速和目标分辨。
3. 按应用领域分类:雷达可以根据应用领域的不同分为军用雷达、民用雷达、航空雷达、舰船雷达等。
三、雷达的应用领域雷达技术在军事、民用航空、舰船航行、天气预报和科学研究等领域都有重要的应用价值。
1. 军事领域:雷达在军事领域具有重要的作用,可以用于目标探测、追踪和导航,对于战争中的空中防御和攻击具有重要的战术意义。
2. 民用航空:雷达在民用航空领域用于飞行导航、空中交通管制和飞行安全监测,对于航空运输的安全与效率具有重要的作用。
3. 舰船航行:雷达在舰船航行中用于目标探测、导航和防御,对于海上安全和航行效率起到关键的作用。
4. 天气预报:气象雷达用于对大气中的降水、风暴和气旋等气象现象进行探测和监测,对于天气预报和自然灾害预警具有重要的作用。
5. 科学研究:雷达技术也被广泛应用于科学研究领域,例如地球科学领域的地形测绘和地壳运动监测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。
雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。
当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。
目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。
采用不同的极化可以测定目标的对称性。
β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角在圆柱坐标系中表示为:水平距离D,方位角α,高度H目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。
目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。
相对速度的测量:观测时间越长,速度测量精度越高。
目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。
2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备3、雷达的工作频率:220MHZ-35GHZ。
L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。
第二章雷达发射机1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。
雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。
2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源触发脉冲脉冲调制器大功率射频振荡器收发开关电源高压电源接收机主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。
射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器高压电源高压电源电源脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机5、发射机的主要性能指标:● 工作频率和瞬时带宽:雷达发射机的频率是按照雷达的用途确定的。
瞬时带宽是指输出功率变化小于1bB 的工作频带宽度。
● 输出功率:雷达发射机的输出功率直接影响雷达的威力范围以及抗干扰的能力。
雷达发射机的输出功率可分为峰值功率t P 和平均功率av P 。
tP 是指脉冲期间射频振荡的平均功率;av P 是指脉冲重复周期内的输出功率的平均值。
av P =t P v f● 信号形式与脉冲波形:按调制方式可将信号分为规则波形与随机信号;理想矩形脉冲的主要参数是脉冲幅度和脉冲宽度,实际的信号都具有上升边和下降边,还有顶部波动和顶部倾斜。
● 信号的稳定度和频谱纯度:信号的稳定性是指信号的各项参数,即信号的振幅、频率、脉冲宽度及脉冲重复频率是否随时间变化的程度。
不稳定量可以分为确定的不稳定量:由电源的波纹、脉冲调制波形的顶部波形和外界有规律的机械振动产生;随机的不稳定量:由发射管的噪声、调制脉冲的随机起伏,用统计的方法分析。
对于离散型的寄生输出,信号的频谱纯度为该离散分量的单边带功率与信号功率之比;对于寄生型输出,信号的频谱纯度定义为以偏离载频若干赫兹的傅里叶频率上每单位的单边带功率与信号功率之比。
● 发射机的效率:发射机的效率通常指发射机输出射频功率与输入供电或发电机的输入功率之比。
6、固态雷达发射机:固态发射机由多个功率放大器组件直接合成,或者在空间合成得到需要的输出功率。
固态发射机的分类:集中合成式全固态发射机;分布式空间合成相控阵雷达发射机优点:不需要阴极加热,寿命长;具有很高的可靠性;体积小、重量轻;工作频带宽、效率高;系统设计和运用灵活;维护方便‘成本较低。
微波单片集成收发组件的优点:成本低;高可靠性;电路的一致性好、成品率高;尺寸小、重量轻。
第三章 雷达接收机1、雷达接收机的主要功能是:对雷达天线接收到的微弱信号进行预选、放大、变频、滤波、解调、数字化处理,同时抑制外部的干扰、杂波以及机内噪声,使回波信号尽可能多的保持目标信息,以便进一步进行信号处理和数据处理。
一般来说,雷达探测的飞机、船只、地面车辆和人员反射回来的回波是有用信号;地面、海面、云雨、鸟群等反射的回波为杂波;干扰是指各种有源干扰和无源干扰。
雷达接收机主要由微波电路、模拟电路、数字电路、数字信号处理组成。
雷达系统一般采用超外差接收机:接收机前端:包括接收机保护器;射频放大器;射频滤波器,抑制进入接收机的干扰,置于放大器前,对雷达接收机的抗干扰和抗过载能力有好处,但是增加了接收机的噪声,置于放大器之后,对接收机的灵敏度和噪声系数有好处,但是抗干扰能力和抗过载能力变差;混频器2、雷达接收机的基本组成:接收机前端、中频接收机、频率源。
接收机前端一般采用二次变频,因为对于具有一定射频带宽的雷达接收机,一次变频的镜像频率一般会落在信号频率带宽之内,只有通过提高中频频率才能使镜像频率落在信号频带范围外。
镜像频率的信号和噪声是不需要的,会使接收机的噪声系数变高,必须通过射频滤波器滤掉。
或者直接采用镜像抑制混频器。
中频接收机:为具有对数放大和“零中频”的中频接收机,包括匹配滤波器频率源:具有一定频域稳定度的本机振荡器;相干振荡器;自动频率控制。
频率合成器是全相参频率源的核心部分,可以用直接合成和间接合成的方法实现。
3、雷达接收机的主要质量指标:● 灵敏度和噪声系数:灵敏度表示接收机接收微弱信号的能力。
噪声系数F 的定义是:接收机输入端的信号噪声功率比与输出端的信号噪声功率比的比值,其表达式为:=iiOO S N S N F 接收机灵敏度与噪声系数的关系为:min i o n S kT B FM =● 接收机的工作频带宽度和滤波特性:接收机的工作频带宽度表示接收机的瞬时工作频率范围。
接收机的工作频带较宽时,必须选择较高的中频,以减少混频器输出的寄生响应对接收机性能的影响。
接收机的滤波特性主要取决于中频频率的选择和中频部分的频率特性。
如果中频滤波特性的带宽大于回波信号的带宽,则过多的噪声进入接收机,反之,信号的能量将会损失,使得接收机输出的信噪比减小● 动态范围和增益:动态范围表示接收机工作时允许的输入信号强度的变化范围。
所允许的最小输入信号强度通常取最小可检测信号,而所允许的最大的输入信号强度则根据正常工作的要求定。
当输入的信号过大时,接收机将发生过载饱和,从而使较小的目标回波显著减小。
接收机的增益表示对回波信号的放大能力,通常表示为输出信号功率与输入信号功率之比。
● 频率源的频率稳定性和频谱纯度:短期频率稳定度通常用单边带相位噪声功率密度来表示。
频谱纯度主要是频率源的杂波抑制度和谐波抑制度。
● 幅度和相位的稳定性● 正交鉴相器的正交度:模拟正交鉴相器和数字正交鉴相器。
正交鉴相器的正交度表示鉴相器保持信号幅度和信号信息的准确程度。
模拟正交鉴相器指相干振荡器的频率与中频信号的中心频率相等,使其差频为零;可以处理较宽的基带信号,难以实现I 、Q 通道良好的幅度平衡和相位正交;数字鉴相器的工作原理是直接用A/D 变换器对中频信号,然后进行I/Q 分离。
全数字化处理,可以实现很高的I/Q 幅度平衡和相位正交,工作稳定性好。
● A/D 变化器的技术参数● 抗干扰能力● 频率源和发射激励性能:从频域角度,主要检测波形和发射激励信号的频谱特性;从时域角度信号的质量主要是调制信号的前沿、后沿和顶部起伏,以及调制载波的频率和相位特性。
4、接收机的噪声系数和灵敏度接收机的噪声来源主要分为两种:内部噪声,主要由接收机中的馈电、放电保护器、高频放大器或混频器产生,在时间上是连续的,相位和幅度是随机的;外部噪声是 由雷达天线进入接收机的各种人为干扰、天电干扰、工业干扰、宇宙干扰和天线热噪声。
电阻热噪声:是由于导体中自由电子的无规则热运动形成的。
电阻产生的起伏噪声电压均方值为2n4n u kTRB =额定噪声功率:当负载阻抗与噪声源内阻抗匹配时,噪声源输出最大的噪声功率 o n N kTRB =天线噪声:包括天线的热噪声和宇宙噪声,前者是由天线周围介质微粒的热运动产生的噪声,后者是由太阳以及银河系产生的噪声,这种起伏噪声被天线吸收后进入接收机就呈现为天线的热起伏噪声2nA 4A A n u kT R B =天线噪声温度取决于天线方向图中各辐射源的噪声温度,他与波瓣仰角θ和工作频率f 有关。
噪声带宽:把不均匀的噪声功率谱等效为在一定频带内是均匀的功率谱,这个频带为等效噪声功率谱带宽。
2020()()n H f df B H f ∞=⎰5、噪声系数和噪声温度:噪声系数的定义是接收机的输入信号噪声功率比与输出信号噪声功率比的比值。
它表示由于接收机内部噪声的影响,使接收机输出端额信噪比其输入端的信噪比变差的倍数。
0i a N F N G =噪声系数只适用于接收机的线性电路和准线性电路;为保证噪声系数具有单值确定性,规定输入噪声以天线等效电阻在室温290K 时产生的热噪声为标准;噪声系数是没有单位的数值用分贝表示;噪声系数的概念与定义可以推广到任何无源或有源的四段网咯。
等效噪声温度把接收机内部噪声看成理想接收机的天线电阻在温度e T 时所产生的 0(1)e T F T =- 级联电路的噪声系数:32111211......F F F F G G G --=+++321112.....e T T T T G G G =+++ 接收机的灵敏度:表示接收机接收微弱信号的能力。
第四章 雷达终端1、雷达终端的基本内容:目标数据的录取、数据处理和目标状态的现实。
任务是发现目标,测定目标的位置坐标,根据目标回波的特点及其变化关系来判断目标的性质。
2、雷达坐标系:直角坐标、极坐标。
一维显示、二维显示。
采用的显示器件:阴极射线管、平板显示器。
扫描方式:直线扫描、径向扫描、圆周扫描,随机扫描方式、光栅扫描一次显示显示目标的距离、方位、仰角、高度、位置为模拟显示,二次显示显示目标的高度、速度、航线,以数字显示为主。
主要类型:距离显示器、平面显示器、高度显示器、情况显示器、综合显示器● 距离显示器:一维显示,用屏幕上的光点距参考面的水平偏移量表示目标的斜距,光点的垂直距离表示目标回波的强度。
A 型显示器采用直线扫描方式;A/R 型显示器采用双踪直线扫描方式;J 型显示器采用圆周显示器,主波与回波沿顺时针方向扫略弧线的长度对应目标的斜距。