雷达原理实验报告(哈工程)
雷达原理实验报告(哈工程)

实验报告实验课程名称:雷达原理姓名:班级:电子信息工程4班学号:实验名称规范程度原理叙述实验过程实验结果实验成绩雷达信号波形分析实验相位法测角实验接收机测距和灵敏度实验目标距离跟踪和动目标显示实验平均成绩折合成绩注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2017年5 月雷达信号波形分析实验报告2017年4 月5 日班级电子信息工程4班姓名评分一、实验目的要求1. 了解雷达常用信号的形式。
2. 学会用仿真软件分析信号的特性。
3.了解雷达常用信号的频谱特点和模糊函数。
二、实验原理为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的时间。
根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S :目标距离;T :电磁波从雷达到目标的往返传播时间;C :光速。
三、实验参数设置载频范围:0.5MHz 脉冲重复周期:250us 脉冲宽度:10us 幅度:1V 线性调频信号 载频范围:90MHz 脉冲重复周期:250us 脉冲宽度:10us 信号带宽:14 MHz 幅度:1V 四、实验仿真波形x 10-3时间/s 幅度/v脉冲x 10-3时间/s幅度/v连续波0.51 1.52x 10-3时间/s幅度/v脉冲调制x 1070124频率/MHz幅度/d B脉冲频谱图x 10705104频率/MHz幅度/d B连续波频谱图-4-2024x 1070124频率/MHz幅度/d B脉冲调制频谱图0.51 1.52x 10-3-101时间/s 幅度/v脉冲8.2628.26258.263x 10-4-101时间/s 幅度/v连续波0.51 1.52x 10-3-101时间/s幅度/v脉冲调制-4-224x 1070244频率/MHz幅度/d B脉冲频谱图-4-224x 10705104频率/MHz幅度/d B连续波频谱图-4-224x 1070124频率/MHz幅度/d B脉冲调制频谱图02004006008001000五、实验成果分析实验中用到的简单脉冲调制信号的产生由脉冲信号和载频信号组成,对调制信号进行线性调频分析,得到上面的波形图。
雷达原理实验指导书2013(实验1-2)

雷达原理实验指导书2013(实验1-2)第一篇:雷达原理实验指导书2013(实验1-2)雷达原理实验指导书哈尔滨工程大学信息与通信工程学院2013年3月目录雷达原理实验课的任务和要求..........................................1 雷达原理实验报告格式................................................2 实验一雷达信号波形分析实验.. (3)雷达信号波形分析实验报告........................................5 实验二.数字式目标距离测量实验.. (6)数字式目标距离测量实验报告 (8)雷达原理实验课的任务和要求雷达原理实验课的任务是:使学生掌握雷达的基本工作原理和雷达测距、测角、测速的基本方法和过程;掌握雷达信号处理的基本要求,为了达到上述目的,要求学生做到:1.做好实验前准备工作预习是为做好实验奠定必要的基础,在实验前学生一定要认真阅读有关实验教材,明确实验目的、任务、有关原理、操作步骤及注意事项,做到心中有数。
2.严谨求实实验时要求按照操作步骤进行,认真进行设计和分析,善于思考,学会运用所学理论知识解释实验结果,研究实验中出现的问题。
3.遵从实验教师的指导要严格按照实验要求进行实验,如出现意外,要及时向老师汇报,以免发生意外事故。
4.注意安全学生实验过程中,要熟悉实验室环境、严格遵守实验室安全守则。
5.仪器的使用使用仪器前要事先检查仪器是否完好,使用时要严格按照操作步骤进行,如发现仪器有故障,应立即停止使用,报告老师及时处理,不得私自进行修理。
6.实验报告实验报告包括下列内容:实验名称、实验日期、实验目的、简要原理、主要实验步骤的简要描述、实验数据、计算和分析结果,问题和讨论等。
雷达原理实验报告格式一、封皮的填写:(1)实验课程名称:雷达原理(2)实验名称:按顺序填写(3)年月日:二、纸张要求:统一采用A4大小纸张,左侧装订,装订顺序与实验顺序一致。
哈工大《电子系统》实验报告模板

H a r b i n I n s t i t u t e o f T e c h n o l o g y《电子系统》实验报告院系:电信学院班级:设计者:学号:指导教师:孙思博实验一连续波雷达测速实验一、实验目的:1、掌握雷达测速原理。
2、了解连续波雷达测速实验仪器原理及其使用。
3、使用Matlab对实验数据进行分析,得到回波多普勒频率和目标速度。
二、实验原理:1、多普勒测速原理:由于运动目标相对辐射源的运动而引起发射信号的中心频率发生多普勒频移的现象称为多普勒效应。
目标运动方向的不同决定了多普勒频移的正负。
(如图1所示)图1.多普勒效应假设发射的是重复频率为错误!未找到引用源。
的脉冲串,雷达发射信号的波长为错误!未找到引用源。
时,设目标的速度为错误!未找到引用源。
,多普勒频率为错误!未找到引用源。
,以目标接近雷达为例,错误!未找到引用源。
错误!未找到引用源。
为接收脉冲串频率新频率错误!未找到引用源。
错误!未找到引用源。
为雷达发射信号的载频则:错误!未找到引用源。
,当|错误!未找到引用源。
|<<c时(1)2、多普勒信息的提取:在连续波工作状态时,利用相干检波器可以得到和错误!未找到引用源。
相关的一系列频谱分量,回波分量中的错误!未找到引用源。
、错误!未找到引用源。
、2错误!未找到引用源。
等高频分量被多普勒滤波器滤除,则最后获得就是多普勒分量,利用公式(1) 可以求得目标的速度。
本实验中发射波长为3cm,采样率是2048HZ。
三、实验仪器:实验装置如下:5402DSP测速传感器混频器连续波发射机传感器输出信号放大滤波AD 串行接口PC 机FFT图3-2 连续波雷达测速实验仪器原理框图图3. 测速雷达传感器三、 实验内容与步骤:1、 利用给定装置,使用一挡光板作为目标物体,移动该物体,则通过测速雷达传感器(如图3)能够获得回波数据,并被DSP 芯片采样,采样频率为2048HZ 。
2、 通过示波器观察波形,选择一高频干扰少的波形,利用软件获得其2048个数据,并存储在计算机中。
雷达原理实验报告1,2

实验一、二雷达的总体认识及基本操作I、II一、实验目的1.了解Bridge Master E X-Band雷达的基本组成2.学习正确操作Bridge Master E X-Band雷达,熟悉各基本功能的操作二、实验设备:Bridge Master E X-Band雷达两台S-Band收发机一台,天线一副三、实验步骤及要领1.开机检查天线附近是否有人作业火其他障碍物,将亮度(BRILLIANCE)、雨雪干扰抑制(A/CRAIN)海浪干扰抑制(A/CSEA)、增益(GAIN)等控钮反时针旋到底,功能开关(FUNCTION)置“STANDBY”。
开机,接通电源,将电源开关置“POWER ON”,然后雷达开始自检,倒时计数。
时间到后自动显示出“RADAR STANDBY”,此时表明雷达已准备好发射(未发射前天线是不转的)。
2.调节屏幕及数据亮度顺时针旋转显示器前端的键盘(KEY BOARD)上的亮度控钮(BRILLIANCE)使回波明亮清晰,通常应使控钮居中。
3.量程选择在KEY BOARD上,使用操纵杆(JOYSTICK)移动光标到“TRANSMIT”上,单击左键,选择发射及脉冲宽度选择。
使光标移动到显示屏的左上方的“RANGE”,通过单击“+”和“-”来改变量程,量程的选择与发射脉冲的宽度的关系见附录图4.调谐调节调谐控钮是用来调节接收机的本振频率。
在进行调谐前,应首先将海浪抑制控钮(A/CSEA)反时针旋到底,并使雷达工作于最大量程,然后转动调谐控钮使调谐指示亮带达到最长。
5.增益调整增益(GAN)控钮是用来调节接收机的放大量,此控钮应调节到显示屏幕上的背景噪声似见非见的位置。
为了设置合适的增益,首先应选择最远的两个量程之一,因为远量程时背景噪声更为明显,然后俺顺时针方向慢慢旋转增益控钮,使背景噪声达到刚见未见的状态。
若增益设置太低,目标回波可能被淹没在背景噪声中。
6.显示模式选择使用光标在显示屏幕右上方菜单改变显示模式。
雷达基础实训报告

一、实训目的本次雷达基础实训旨在使学员掌握雷达的基本原理、组成、工作过程以及雷达在现代军事和民用领域中的应用,提高学员对雷达技术的认识和操作能力。
二、实训内容1. 雷达基本原理雷达(Radar)是一种利用电磁波探测目标的无线电设备。
其基本原理是发射电磁波,然后接收目标反射回来的回波,通过分析回波的特性来确定目标的位置、速度等信息。
2. 雷达组成雷达主要由发射机、接收机、天线、信号处理器和显示器等组成。
(1)发射机:负责产生一定频率的电磁波,并驱动天线发射。
(2)接收机:负责接收目标反射回来的电磁波,并将信号放大。
(3)天线:负责发射和接收电磁波。
(4)信号处理器:负责对接收到的信号进行处理,提取目标信息。
(5)显示器:负责显示雷达检测结果。
3. 雷达工作过程(1)发射机产生一定频率的电磁波。
(2)电磁波经过天线发射出去。
(3)目标反射电磁波,回到雷达接收机。
(4)接收机将接收到的信号放大。
(5)信号处理器对信号进行处理,提取目标信息。
(6)显示器显示目标信息。
4. 雷达在现代军事和民用领域中的应用(1)军事领域:雷达在军事领域应用广泛,如预警雷达、防空雷达、舰载雷达、机载雷达等。
(2)民用领域:雷达在民用领域也有广泛应用,如气象雷达、交通雷达、地质雷达等。
三、实训过程1. 理论学习首先,学员通过查阅资料、听课等方式,对雷达基本原理、组成、工作过程等内容进行深入学习。
2. 实验操作在理论学习的的基础上,学员进行雷达实验操作。
具体步骤如下:(1)连接雷达设备,检查设备是否正常。
(2)调整雷达参数,如频率、脉冲宽度、脉冲重复频率等。
(3)发射电磁波,观察天线发射情况。
(4)接收目标反射回来的电磁波,观察接收机工作情况。
(5)对信号进行处理,提取目标信息。
(6)观察显示器显示的目标信息。
3. 结果分析通过实验操作,学员对雷达基本原理、组成、工作过程有了更直观的认识。
同时,通过对实验结果的分析,学员了解了雷达在探测目标、定位等方面的应用。
雷达对抗技术实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y雷达对抗技术实验报告〔一〕XX:学号:班级:1105201指导教师:冀振元,李高鹏哈工大电子与信息工程学院电子工程系雷达对抗技术实验〔一〕一、理论根底1、信号产生线性调频连续波〔LFMCW〕信号单周期表达式为:上式中,的取值X围是:LFMCW信号调制斜率,且::LFMCW信号起始频率:LFMCW信号幅度:LFMCW信号带宽:LFMCW信号周期多周期信号:式中,为整数采用FFT对信号进展谱分析,并用频谱进展平移显示。
仿真生成如下:图1 单周期线性调频信号时域和频谱图图2 多周期线性调频信号时域和频谱图2、信号分析非平稳信号是指信号的统计特征随时间变化的时变信号,其频率也是时间的函数。
线性调频信号是典型的非平稳信号。
传统的傅立叶变换可求得信号的频率,但该方法是基于信号的全局信息,并不能反映信号的局部特征,也不能反映其中某个频率分量出现的具体时间及其变化趋势,不具备分析信号的瞬时有效性。
而瞬时频率,能给出信号的调制变化规律,具有它独特的优势和瞬时有效性。
瞬时频率作为描绘非平稳信号特征的一个重要物理量,其估计和提取一直是非平稳信号处理中的研究热点。
目前,人们已提出如瞬时自相关法、相位法、过零点法、时频分析等多种手段和方法。
本实验只要求时频分析方法。
在信号的时频分析中用的最多的就是短时傅立叶变换〔STFT〕,短时傅立叶变换是典型的线性时频表示。
这种变换的根本思想就是用一个窗函数乘时间信号,该窗函数的时宽足够窄,使取出的信号可以看成是平稳的,然后进展傅立叶变换,可以反映该时宽中的频谱,如果让窗函数沿时间轴移动,可以得到信号频谱随时间变化的规律。
现对短时傅立叶变换及其性质介绍如下。
它在傅里叶分析中通过加窗来观察信号,因此,短时傅里叶变换也称加窗傅里叶变换。
其表达式为:其中表示的复共轭,是输入信号,是窗函数。
雷达原理实验报告1,2

雷达原理实验报告1,2实验一、二雷达的总体认识及基本操作I、II一、实验目的1.了解Bridge Master E X-Band雷达的基本组成2.学习正确操作Bridge Master E X-Band雷达,熟悉各基本功能的操作二、实验设备:Bridge Master E X-Band雷达两台S-Band收发机一台,天线一副三、实验步骤及要领1.开机检查天线附近是否有人作业火其他障碍物,将亮度(BRILLIANCE)、雨雪干扰抑制(A/CRAIN)海浪干扰抑制(A/CSEA)、增益(GAIN)等控钮反时针旋到底,功能开关(FUNCTION)置“STANDBY”。
开机,接通电源,将电源开关置“POWER ON”,然后雷达开始自检,倒时计数。
时间到后自动显示出“RADAR STANDBY”,此时表明雷达已准备好发射(未发射前天线是不转的)。
2.调节屏幕及数据亮度顺时针旋转显示器前端的键盘(KEY BOARD)上的亮度控钮(BRILLIANCE)使回波明亮清晰,通常应使控钮居中。
3.量程选择在KEY BOARD上,使用操纵杆(JOYSTICK)移动光标到“TRANSMIT”上,单击左键,选择发射及脉冲宽度选择。
使光标移动到显示屏的左上方的“RANGE”,通过单击“+”和“-”来改变量程,量程的选择与发射脉冲的宽度的关系见附录图4.调谐调节调谐控钮是用来调节接收机的本振频率。
在进行调谐前,应首先将海浪抑制控钮(A/CSEA)反时针旋到底,并使雷达工作于最大量程,然后转动调谐控钮使调谐指示亮带达到最长。
5.增益调整增益(GAN)控钮是用来调节接收机的放大量,此控钮应调节到显示屏幕上的背景噪声似见非见的位置。
为了设置合适的增益,首先应选择最远的两个量程之一,因为远量程时背景噪声更为明显,然后俺顺时针方向慢慢旋转增益控钮,使背景噪声达到刚见未见的状态。
若增益设置太低,目标回波可能被淹没在背景噪声中。
6.显示模式选择使用光标在显示屏幕右上方菜单改变显示模式。
雷达实验报告

雷达实验报告雷达实验报告摘要:本次实验旨在通过搭建雷达系统,探索雷达技术的原理和应用。
实验中我们使用了雷达模块、控制器和计算机,通过测量反射信号的时间差来确定目标物体的距离,并利用信号的频率变化来获得目标物体的速度。
实验结果表明,雷达系统能够准确地检测目标物体的位置和运动状态,具有广泛的应用前景。
1. 引言雷达(Radar)是一种利用电磁波进行探测和测量的技术。
它广泛应用于军事、民用和科学研究等领域,如航空、天气预报、导航等。
雷达系统通过发射电磁波并接收其反射信号,利用信号的时间和频率变化来确定目标物体的距离和速度。
本次实验旨在通过搭建雷达系统,深入了解雷达技术的原理和应用。
2. 实验设备和方法2.1 实验设备本次实验使用的设备有:雷达模块、控制器、计算机。
2.2 实验方法(1)搭建雷达系统:将雷达模块与控制器连接,并将控制器与计算机连接。
(2)设置实验参数:根据实验需求,设置雷达系统的工作频率和功率。
(3)目标检测:通过控制器发送电磁波,并接收其反射信号。
利用信号的时间差来计算目标物体的距离,并利用频率变化来计算目标物体的速度。
(4)数据分析:将实验结果导入计算机,并进行数据分析和处理。
3. 实验结果与讨论3.1 距离测量我们在实验中选择了不同距离的目标物体进行测量,并记录了实验结果。
通过分析数据,我们发现雷达系统能够准确地测量目标物体的距离。
实验结果与实际距离相差不大,证明了雷达系统的测量精度较高。
3.2 速度测量在实验中,我们选择了运动目标进行速度测量。
通过分析信号的频率变化,我们能够准确地计算目标物体的速度。
实验结果表明,雷达系统能够实时监测目标物体的运动状态,并提供准确的速度信息。
4. 实验误差分析在实验过程中,我们发现了一些误差来源。
首先,由于环境中存在其他电磁波干扰,可能会对实验结果产生一定的影响。
其次,雷达系统的精度受到设备本身的限制,可能会导致测量结果的偏差。
此外,实验操作的不准确也可能引入误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告实验课程名称:雷达原理姓名:班级:电子信息工程4班学号:注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2017年5 月雷达信号波形分析实验报告2017年4月5日班级电子信息工程4班姓名评分一、实验目的要求1. 了解雷达常用信号的形式。
2. 学会用仿真软件分析信号的特性。
3.了解雷达常用信号的频谱特点和模糊函数。
二、实验原理为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的时间。
根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速。
三、实验参数设置载频范围:0.5MHz脉冲重复周期:250us脉冲宽度:10us幅度:1V线性调频信号载频范围:90MHz脉冲重复周期:250us脉冲宽度:10us信号带宽:14 MHz幅度:1V四、实验仿真波形0.51 1.52x 10-3时间/s 幅度/v脉冲1.03561.03571.03581.0359x 10-3时间/s幅度/v连续波0.51 1.52x 10-3时间/s幅度/v脉冲调制-4-2024x 1070124频率/MHz幅度/d B脉冲频谱图-4-2024x 10705104频率/MHz幅度/d B连续波频谱图-4-2024x 1070124频率/MHz幅度/d B脉冲调制频谱图0.51 1.52x 10-3-101时间/s 幅度/v脉冲8.2628.26258.263x 10-4-101时间/s 幅度/v连续波0.51 1.52x 10-3-101时间/s幅度/v脉冲调制-4-2024x 1070244频率/MHz幅度/d B脉冲频谱图-4-2024x 10705104频率/MHz幅度/d B连续波频谱图-4-2024x 1070124频率/MHz幅度/d B脉冲调制频谱图020040060080010000500100015002000五、实验成果分析实验中用到的简单脉冲调制信号的产生由脉冲信号和载频信号组成,对调制信号进行线性调频分析,得到上面的波形图。
改变载频、信号带宽,线性高频结果会有很大变化。
由频谱特点可知线性调频信号可以扩展雷达信号的频谱,很容易获得较大的信号处理增益,从而降低了雷达发射信号峰值功率,是一种十分有效的低截获概率雷达信号,在抗干扰性方面,是一种具有良好的抗干扰性能的信号形式。
六、教师评语教师签字050010001500200025003000050010001500200025003000-50050频率/MHz功率/d B-10102030时间/us功率/d B相位法测角实验报告年月日班级姓名评分一、实验目的要求1. 了解雷达常用测角方法。
2. 学会用仿真软件验证测角算法。
3.能够设计并仿真测角解模糊程序。
二、实验原理1. 利用了相位法测角的数学模型2. 利用MATLAB 软件编写单基线测向算法和比幅法解模糊程序相位法测角利用了多哥天线所接收回波信号之间的相位差进行测角;振幅法测角利用了天线收到的回波信号幅值来做角度测量,该幅值的变化规律取决于天线方向图及天线扫描的方式。
振幅测角法可以分为最大信号法和等信号法。
三、实验参数设置1载频范围:3.5GHz 2短基线长度0.08 3长基线长度0.4四、实验仿真波形-30-20-100102030目标角度/°相位差/*π短基线相位差与角度关系目标角度/°相位差/*π目标角度/°相位差/*π相位差与角度关系目标角度/°相位差/*π相位差与角度关系-30-20-100102030目标角度误差/度短基线测角精度误差目标角度误差/度长基线测角精度误差五、实验成果分析由理论计算长基线最大测角为6度9分,matlab仿真中长基线最大测角为6.141度(如图二),验证理论与仿真相互验证,由误差图可以看出短基线测角精度明显高于长基线测角精度。
但两种测量方法的测角误差都不大,都不到1度的误差。
六、教师评语教师签字雷达测距和接收机灵敏度实验年月日班级姓名评分一、实验目的要求1.掌握目标回波测距的方法。
2.雷达回波信号能量变化对接收机输出的信号的幅度(包络)的影响。
3.掌握切线灵敏度的定义。
二、实验原理1.距离测量。
雷达工作时,发射机经天线向指定空间发射一串重复周期的高频脉冲。
如果在电磁波传播的路径上有目标存在,那么雷达可以接收到由目标反射回来的回波。
由于回波信号往返于雷达和目标之间,它将滞后于发射脉冲一个时间r t 。
如图3.1 示电磁波以光速传播,设目标的距离是R ,则传播的距离为光速乘以时间间隔,即2.切线灵敏度。
在某一输入脉冲功率电平的作用下,雷达接收机输出端脉冲与噪声叠加后信号的底部与基线噪声(只有接收机内噪声)的顶部在一条直线上(相切),则称此输入脉冲信号功率为切线信号灵敏度TSS P 。
对于单脉冲雷达信号,则有,其中,A 是输入信号的幅度,R 为接收机内阻。
本实验仪接收机内阻为50 欧姆。
三、实验参数设置本实验的可变参数为目标回波幅度的衰减百分比。
初始衰减值为0。
每按一次参数按钮,衰减增加5%,直到衰减百分比的最大值95%后又从初始值开始。
四、实验数据以及结果衰减为95%时,目标回波幅度衰减百分比与回波延时:五、结论以及讨论1.根据记录回波的时延,计算目标回波距离。
目标回波时延:tr=25us,根据公式R=C*tr/2计算得回波距离R为3.75km。
2.距离分辨率为多少?距离分辨率 ,实验测得目标回波脉冲宽度为240ns,代入距离分辨率公式得到 rc约为36m。
3. 目标回波输入信号的幅度改变,示波器输出信号有何变化?由数据表格及根据表格做出的波形图可以看出,示波器输出信号幅度随目标回波输入信号的幅度衰减的增大而减小。
4.雷达的切线灵敏度是多少?接收机灵敏度为: 95。
5. 基线噪声电压峰值Un和满足切线灵敏度条件下有信号处输出噪声的峰值Um 是否相同?为什么?基线电压峰值Un小于满足切线灵敏度条件下有信号处输出噪声的峰值Um,因为Un只是接收机内噪声而Um不仅包含接受机内噪声还包含外界干扰噪声所以Un<Um。
六、教师评语教师签字目标距离跟踪和动目标显示实验年月日班级姓名评分一、实验目的要求1.掌握距离跟踪的原理。
2.熟悉截获条件和失捕条件的含义。
3.掌握动目标显示的基本原理。
4.熟悉一次相消和二次相消的概念。
二、实验原理1.距离自动跟踪系统距离自动跟踪系统包括对目标的搜索、捕获、距离跟踪和失捕四个互相联系的部分。
搜索是指目标在整个雷达测距范围内,依次对各目标单元进行检测,判断该单元是否有目标存在。
如果在某个单元检测时满足跟踪的条件,确定该单元有目标存在,认为已经捕获到目标,开始对该单元的目标进行跟踪。
跟踪时,保证距离跟踪波门自动跟踪目标,连续测量目标距离。
在跟踪的过程中,一旦在某个单元跟踪时满足失捕条件,认为丢失目标,雷达重新开始搜索。
2.截获条件和失捕条件雷达处于距离搜索状态时,如果在同一距离单元处的n 个脉冲里有d 次检测到目标回波,就认为该位置处有目标,雷达由搜索状态转换到跟踪状态。
其中d /n 被称为截获条件。
雷达处于距离跟踪状态时,如果在距离波门内n 个脉冲数目里有m 次没有检测到目标回波,就认为丢失目标,雷达由跟踪状态转换到搜索状态。
其中m /n 次就认为是失捕条件。
3.动目标的回波设载频为0 ϖ ,重复周期为r T ,脉冲宽度为τ 的单脉冲雷达发射信号为,斜距为R ,径向速度为r v 的目标回波信号相对发射信号有一延时r t 满足,回波信号与发射信号间存在高频相位差,产生的频率差为,其中d f 称为多普勒频率。
零中频混频后,得到正交两路IQ 信号分别为,对于固定目标,多普勒频率为0,所以输出为包络恒定的电平。
回波脉冲的包络调制频率为多普勒频率。
动目标和固定目标的I 路输出波形如图3.6 示。
4.动目标显示原理在检波器的输出端,固定回波是一串振幅不变的脉冲,而运动目标是一串振幅调制的脉冲。
消除目标最简单的办法就是相邻重复周期的信号相减。
幅度固定的目标回波信号相减后相互抵消;而幅度变化的运动目标回波相减后输出相邻重复周期振幅变化的部分。
一次数字相消器一次数字相消器如图3.7 所示三、实验参数设置1.目标距离跟踪试验实验中有三个进程。
分别对应不同的失捕条件。
默认进程为进程1。
每个进程中可变参数都是截获条件。
本实验中统计的脉冲总数n=16。
d初值为6。
每按一次参数按钮, d 加 1。
d 的最大值为 15。
改变参数值按确认后,观察跟踪情况和失捕情况。
改变不同的进程,也就是换不同的失捕条件,改变参数d的值,重新观察跟踪情况和失捕情况,估计出跟踪时间和搜索时间的变化和差异。
2.动目标显示(MTI)实验该实验中有两个进程,进程1是一次相消器实验,进程2是二次相消MTI实验,当设置为进程1时,按确认后观察包络信号和积累信号,测量对应包络信号有目标处相消器输出信号的幅度。
当设置为进程2时,可变参数是二次对消的系数,初始值为1.5,每按一次按钮,系数加0.1.二次相消系数的最大值为2.5,改变参数确认后观察包络信号和积累信号,测量对应包络信号有目标处相消器输出信号的幅度。
四、实验数据以及结果图一:跟踪情况和失捕情况二次相消系数与目标幅度测试五、结论以及讨论1.运动目标的回波有什么特点?运动目标回波受杂波的影响比较大,当运动目标回波和杂波在雷达显示器上同时显示时,会使目标的观察变得困难。
由于运动目标的速度不同而引起回波信号频率产生的多普勒频移不相等,所以可以从频率上区分不同速度目标的回波。
2.在什么条件下,雷达跟不上目标?雷达处于距离搜索状态时,如果同一距离单元处的n个脉冲数目里有d次检测到目标回波,就认为该位置处有目标,如果目标运动速度足够快使雷达在同一距离单元处的n个脉冲里检测到目标的次数小于d则雷达无法跟上目标。
3.目标起伏对于跟踪的影响。
目标的起伏对目标的搜索、捕获、距离跟踪有较大的影响。
目标起伏越大,会使目标的发现概率降低,距离自动跟踪系统在整个雷达测距范围内难以实现搜索、捕获;在距离跟踪过程中也容易失捕。
4.分析失捕条件和截获条件对于雷达工作状态的影响。
若失捕条件中的m太小会使雷达长时间保持在跟踪状态,若截获条件中的n太大会使雷达不容易发现目标长时间保持在搜索状态。
5.在一次相消的工作方式下,动目标和静目标的包络信号和检测输出信号有什么特点?动目标的包络信号是移动的,在相位检测输出端,动目标回波是一串振幅调制的脉冲;固定目标的包络信号是不动的,静目标回波是一串振幅不变的脉冲。