中国古代数学发展史

合集下载

中国古代数学发展史

中国古代数学发展史

中国古代数学发展史中国传统数学的形成与兴盛:公元前1 世纪至公元14 世纪。

分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9 位中国科学家的数学工作。

第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983),秦汉时期形成中国传统数学体系。

我们通过一些古典数学文献说明数学体系的形成。

1983-1984 年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170 年前后)的竹简,共千余支。

经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。

经研究,它和《九章算术》(公元1 世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。

《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100 年,它虽是一部天文学著作(“盖天说-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11 世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7 世纪人,相似形方法)。

勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。

中国传统数学最重要的著作是《九章算术》(东汉,公元100 年)。

它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。

中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。

《九章算术》是由“九数”发展而来。

在秦焚书(公元前213 年)之前,至少已有原始的本子。

中国古代数学的发展历史与现代启示(上古至宋元)

中国古代数学的发展历史与现代启示(上古至宋元)


十进位制系统,正是我们今天日常生活中常用的 逢十进一法。就是说,对正整数或正小数而言,以十为基 础,逢十进一,逢百进二,逢千进三等等。十进位制系统 的产生,为四则运算的发展创造了良好的条件。
• (二)中国古代数学的发展繁荣时期(西 汉末期至隋唐中叶)
方田(分数四则算法和平面形求面积法) 粟米(粮食交易的计算方法) 衰分(分配比例的计算方法) 少广(开平方和开立方法) 商功(立体形求体积法) 均输(管理粮食运输均匀负担的计算方法) 盈不足(盈亏类问题解法,也涉及能够用 这种解法处理的其他类型 方程(一次方程组解法和正负数) 勾股(勾股定理的应用和简单的测量问题 的解法)
中国古代数学,起源于人们早期的生产活动, 产生于物品上计算的需要、了解数字间的关系、 测量土地及预测天文事件。我国古代把数学叫算 术,又称算学,最后才改为数学。
• 1、远古时期
• 2、春秋时代
10+10=20 20×2=40
金 文 周 《 鼎 》
为秭东 廾 宫 秭 迺 , 曰 来 : 岁 偿 弗 偿 禾 , 十 则 秭 付 , 秭 遗 。 十
在《九章算术》时已十分成熟 (公元一世纪左右) 周髀里就有,《九章算术》时期成熟
印度最早在6世纪末 印度最早在7世纪
刘徽注中引入,宋朝秦九韶 1247 年已通 西欧16世纪才有,印度无 行 周髀已有开平方,《九章算术》时期开 西方在4世纪末有了开平方,但还无开立 平方、开立方已成熟 方;印度最早在7世纪 《九章算术》中有各种类型的应用问题 《九章算术》时已成熟 《九章算术》时已成熟 印度7世纪后的数学书中有某些与中国类 似的问题与方法 印度最早见于7世纪;西欧16世纪始有之 印度7世纪后开始有一些特殊类型的方程 组;西方迟至16世纪始有之

中国数学发展历史

中国数学发展历史
作堆垒素数论、数论导引及与王元合着的数论 在近似分析中的应用等都已成为经典著作.华罗 庚在复分析和典型群方面也有许多工作,其中论
文典型域上的多元复变量函数论被国际学术界 称为「华氏定理」.
陈景润,中国现代数学家,世界著名解析数论 学家之一. 1966年,陈景润攻克了世界著名数 学难题哥德巴赫猜想中的1+2,创造了距摘取 这颗数论皇冠上的明珠1+ 1只是一步之遥的 辉煌.他在哥德巴赫猜想的研究上居世界领 先地位.他研究哥德巴赫猜想和其他数论问 题的成就,至今,仍然在世界上遥遥领先.世界 级的数学大师、美国学者阿 ·威尔A Weil曾 这样称赞他:陈景润的每一项工作,都好像 是在喜马拉雅山山巅上行走. 陈景润于1978 年和1982年两次收到国际数学家大会请他作 45分钟报告的邀请,这是中国人的自豪和骄 傲
唐朝在数学教育方面有长足的发
展.656年国子监设立算学馆,设有算学
博士和助教,由太史令淳风等人编纂注
释算经十书
包括周髀算经、九章算术
海岛算经、孙子算经
张丘建算经、夏侯阳算经
缉古
算经、五曹算经
五经算术、缀术,
作为算学馆学生用的课本.对保存古代
数学经典起了重要的作用.
淳风 公元604-672年 唐代岐州雍人今陕西风翔
梅文鼎幼时注意观察天象,27岁起,始治数学、 历法,终身潜心学术.后接触西方书籍.康熙年间进 京,以学识为康熙帝赏识,曾系统考察古今中外历 法,又介绍欧洲数学,研究中西历算.其间,为明史馆 校订历志舛错10余处,撰成明史历志拟稿.近人称 梅文鼎和日本的关孝和、英国的牛顿为当时世界 的三大数学家,著有方田通法、方程论.
近现代数学发展时期
陈省身
数学家,美国国籍 .曾获美国国家科学 奖1975,沃尔夫数学奖1984等.1994年当选 为中国科学院外籍院士.陈省身是20世纪 的伟大几何学家,在微分几何方面的成就尤 为突出,被世人称为微分几何之父.

古今数学发展史

古今数学发展史

古今数学发展史我们从小学就开始学习数学,我们现在接触数学已经12年了,到了高考完填志愿我们还是选择了与数学打交道,算起来我们与数学的缘分颇深,那么你对数学的了解又有多少呢?数学又是怎样发展过来的呢?约公元前4000年,中国西安半坡的陶器上出现数字刻符。

公元前3000~前1700年,巴比伦的泥版上出现数学记载。

公元前2700年,中国黄帝时代传说隶首做算数之说,大挠发明了甲子。

公元前2500年前,据中国战国时尸佼著《尸子》记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”。

这相当于在已有“圆,方、平、直”等形的概念。

公元前2100年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现。

美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。

公元前2500年前,据中国战国时尸佼著《尸子》记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”。

这相当于在已有“圆,方、平、直”等形的概念。

公元前2100年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现。

最早的数学知识可以追溯到古代埃及和美索不达米亚(现今伊拉克地区)。

这些文明的人民使用数学来解决土地测量、建筑和贸易等实际问题。

古代埃及人发展了一套用于计数和计量的系统,而美索不达米亚人则使用了一套基于60进制的计数系统,我们现在仍在钟面上使用这个系统。

中世纪欧洲的数学主要受到阿拉伯数学的影响。

阿拉伯学者在代数学、三角学和算术方面有重要发展,他们还引入了十进制的数字系统和算术符号,这对现代数学的发展起到了关键作用。

在欧洲,数学家斯内尔发明了现代代数学中的符号表示法,他的著作《代数的演绎术》对代数学有深远影响。

当代数学仍在不断发展中,涌现出了许多新的领域、理论和应用。

随着技术的进步,数学在解决现实世界的问题以及推动科学和技术的发展中扮演着越来越重要的角色。

中国的数学历史

中国的数学历史

中国的数学历史中国是古代文明的重要代表之一,同时也有着光辉的数学历史。

以下是有关中国数学历史的一些重要内容:1.最早的数学发展:约在公元前11世纪,中国的商代就已开始发展数学。

商代的贡献主要包括单位的建立,长度和重量的标准化以及简单的算数。

2.数学家张丘建的贡献:在东汉末年,张丘建发表的《算经》成为了数学史上的重要经典之一。

这部作品包括594个题目,主要涵盖了算术、代数、几何和三角学四个方面的内容。

3.数学家李冶的成就:唐代数学家李冶贡献了许多重要的发现,特别是在解释和应用三角函数方面做出了重要贡献。

他还发明了多种算术方法,并开发了新的几何工具。

4.算学的发展:在宋代,算学成为了学校的主要课程之一,并且开始出现了关于代数学和几何学的研究。

宋代数学家朱世杰发明了一种新的十进制计数方法,并提出若干关于除法和乘方的原则。

5.《数学九章》的出现:明代数学家秦九韶和杨辉共同编写了《数学九章》这部长篇巨著。

这本书详细介绍了代数学、几何学和三角学的各个方面。

它不仅仍然是数学研究的必读之书,而且还影响了欧洲的数学研究。

6.数学教育的革新:在清朝,数学成为了中国的高等教育的重要课程之一。

清末时期的数学家严复通过翻译数学教材的方式,将西方的数学思想引入到中国。

总的来说,中国的数学历史相当悠久而且丰富,其成就在几何、代数以及计算机等领域对现代科学技术的发展做出了积极的贡献。

虽然现代数学已经发生了很大的变化,但中国数学所开创的理性、系统、严密的数学思想仍然有着深远的影响。

中国古代数学发展史

中国古代数学发展史
魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。赵爽用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。
中国古代数学发展史
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。

中国古代数学发展史

中国古代数学发展史

中国古代数学发展史一、概述中国古代数学发展源远流长,可以追溯到公元前11世纪的商代时期。

在古代数学的发展过程中,中国的数学家们积极探索,不断创新,逐渐形成了独特的数学体系。

本文将从古代数学的起源、发展阶段和主要成就三个方面,对中国古代数学发展史进行探讨。

二、起源中国古代数学的起源可以追溯到商代,商代的甲骨文中已经有了一些数学的雏形。

这些甲骨文中包含了一些计数的符号,比如“一”、“二”、“三”等,以及一些简单的数学运算符号。

这些早期的数学符号成为后来发展的基础。

三、发展阶段1. 春秋战国时期在春秋战国时期,中国古代数学开始逐渐形成体系。

这个时期的数学家们开始研究几何学和代数学。

其中,著名的数学家彭勃提出了“勾股定理”的雏形,奠定了后来几何学的基础。

2. 秦汉时期秦汉时期是中国古代数学发展的重要时期。

这个时期的数学家们在几何学和代数学方面取得了重要的成就。

李冶提出了“周公疏密术”,开始研究无穷级数的性质。

刘徽在几何学方面做出了很多重要贡献,他提出了“刘徽定理”,解决了很多几何问题。

3. 魏晋南北朝时期魏晋南北朝时期是中国古代数学发展的黄金时期。

这个时期的数学家们在几何学、代数学和数论方面取得了巨大的成就。

刘徽的弟子祖冲之提出了“祖冲之定理”,解决了一些几何问题。

刘徽和祖冲之的研究成果对后来的数学发展产生了深远的影响。

四、主要成就1. 几何学中国古代数学在几何学方面取得了很多重要的成就。

早期的数学家们研究了简单的几何图形,比如点、线、面等。

随着数学的发展,他们开始研究更复杂的几何图形,比如三角形、圆形等。

刘徽和祖冲之的研究成果对几何学的发展产生了深远的影响。

2. 代数学中国古代数学在代数学方面也取得了重要的成就。

数学家们开始研究代数方程和代数运算。

他们提出了一些代数定理和公式,解决了一些代数问题。

这些成就对后来代数学的发展起到了重要的推动作用。

3. 数论数论是中国古代数学的另一个重要领域。

数学家们开始研究数的性质和规律。

数学在中国的发展历史

数学在中国的发展历史

数学在中国的发展历史中国的数学发展历史可以追溯到古代,最早的数学文化可以追溯到商周时期,此时已经有扁鹊算术、卜筮等各种数学科技的应用。

接下来,随着战国时期的发展,数学逐渐形成了一些基本概念和计算方法,如乘法、几何应用等。

汉代是中国数学发展的重要时期之一,汉武帝时期出现了《九章算术》,它包含了“A+B”、“一元二次方程”、“直角三角形”等数学概念。

此外,还有另一部重要的数学著作《孙子算经》,它在数学领域的发展和应用方面都有重大的作用。

这些著作的出现标志着中国数学从此开始了一个新的时期。

唐代是中国数学史上又一个伟大的时期,数学领域的繁荣要归功于宋朝的一位伟大的数学家李冶。

他的著作“欧几里德几何原本”和“数学通轨”为中国数学发展的奠基石。

在中国数学的发展史上,唐朝还出现了用于计算圆周率的平积法、线性同余方程以及大中等肋芝麻算法等重要的数学方法。

宋朝是中国数学史上的黄金时期之一,这个时期的数学领域达到了一个新的高峰。

这一时期著名的数学家有杨辉、李之仪、祖冲之、秦九韶等,他们的数学著作成为了学术研究成果的代表。

此外,宋朝还出现了加减乘除、高次方程、三角函数以及应用微积分等数学方法。

明朝是中国数学史上的又一个重要时期,明朝时期数学家朱载堉的“借芝麻将军之名开设算术课”的做法,引发了全国的数学热潮,使中国数学进入了一个新的时代。

总的来说,中国古代数学的发展历程非常悠久,这个发展过程的关键在于它不仅继承发扬了古代数学遗产,而且还对数学的发展提供了自己的贡献,成为了中华民族数学文化的一部分。

随着时代的发展与进步,如今的中国数学正在不断发展壮大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国古代数学发展史中国传统数学的形成与兴盛:公元前1 世纪至公元14 世纪。

分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9 位中国科学家的数学工作。

第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983 ),秦汉时期形成中国传统数学体系。

我们通过一些古典数学文献说明数学体系的形成。

1983 -1984 年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170 年前后)的竹简,共千余支。

经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。

经研究,它和《九章算术》(公元1 世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。

《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100 年,它虽是一部天文学著作(“盖天说”-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11 世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7 世纪人,相似形方法)。

勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。

中国传统数学最重要的著作是《九章算术》(东汉,公元100 年)。

它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。

中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。

《九章算术》是由“九数”发展而来。

在秦焚书(公元前213 年)之前,至少已有原始的本子。

经过西汉张苍(约公元前256 -152 年,约公元前200 年,西汉阳武(今河南原阳)人)、耿寿昌(公元前73 -49 年,约公元前50 年)等人删补,大约成书于东汉时期,至迟在公元100 年。

全书246 个问题,分成九章:(1)方田(土地测量),包括正方形、矩形、三角形、梯形、圆形、环形、弓形、截球体的表面积计算,另有约分、通分、四则运算,求最大公约数等运算法则;(2)粟米(粮食交易的比例方法);(3)衰分(比例分配的算法),介绍依等级分配物资或按等级摊派税收的比例分配算法;(4)少广(开平方和开立方法);(5)商功(立体形求体积法);(6)均输(征税),处理行程和合理解决征税问题,包括复比例和连比例等比较复杂的比例分配问题;(7)盈不足(盈亏类问题解法及其应用);(8)方程(一次方程组解法和正负数);(9)勾股(直角三角形),介绍利用构股定理测量计算高、深、广、远的问题。

所包含的数学成就是丰富和多方面的,主要内容包括分数四则和比例算法、面积和体积的计算、关于勾股测量的计算等,既有算术方面的,也有代数与几何方面的内容。

如方程第一题,其算筹式为它完整地叙述了当时已有的数学成就,对中国传统数学发展的影响,如同《原本》对西方数学发展的影响一样深远,在长达一千多年间,一直作为中国的数学教科书,并被公认为世界数学古典名著之一。

《九章算术》标志以筹算为基础的中国古代数学体系正式形成。

第二次高峰:数学稳步发展三国演义(中国,1998 )。

从公元220 年东汉分裂,到公元581 年隋朝建立,史称魏晋南北朝。

这是中国历史上的动荡时期,也是思想相对活跃的时期。

在长期独尊儒学之后,学术界思辨之风再起,在数学上也兴起了论证的趋势。

许多研究以注释《周髀算经》、《九章算术》的形式出现,实质是寻求这两部著作中一些重要结论的数学证明。

这是中国数学史上一个独特而丰产的时期,是中国传统数学稳步发展的时期。

《九章算术》注释中最杰出的代表是刘徽和祖冲之父子。

刘徽(魏晋,公元3 世纪)(中国,2002 ),淄乡(今山东邹平县)人,布衣数学家,于263 年撰《九章算术注》,不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造,奠定了这位数学家在中国数学史上的不朽地位,成为中国传统数学最具代表性的人物。

刘徽数学成就中最突出的是“割圆术”(圆内接正多边形面积无限逼近圆面积)在刘徽之前,通常认为“周三径一”,即圆周率取为3。

刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,通过计算圆内接正3072 边形的面积,求出圆周率为3927/1250 (=3.1416 )(阿基米德计算了圆内接和外切正96 边形的周长)。

为方便计算,刘徽主张利用圆内接正192 边形的面积求出157/50 (=3.14 )作为圆周率,后人常把这个值称为“徽率”。

这使刘徽成为中算史上第一位用可靠的理论来推算圆周率的数学家,并享有国际声誉。

让我们来体会刘徽的“割圆术”刘徽对n 的估算值(密克罗尼西亚,1999 )。

刘徽利用极限思想求圆的面积,就极限思想而言,从现存中国古算著作看,在清代李善兰及西方微积分学传入中国之前,再没有人超过甚至达到刘徽的水平。

2000 年国家最高科学技术奖得主吴文俊院士指出:“从对数学贡献的角度来衡量,刘徽应该与欧几里得、阿基米德相提并论”。

刘徽的数学思想和方法,到南北朝时期被祖冲之推进和发展。

祖冲之(429 -500 年),范阳遒县(今河北涞源)人,活跃于南朝的宋、齐两代,曾做过一些小官,但他却成为历代为数很少能名列正史的数学家之一。

祖冲之:“迟疾之率,非出神怪,有形可检,有数可推。

”祖冲之的著作《缀术》,取得了圆周率的计算和球体体积的推导两大数学成就。

祖冲之关于圆周率的贡献记载在《隋书》(唐,魏征主编)的《律历志》中:“古之九数,圆周率三,圆径率一,其术疏舛。

自刘歆、张衡、刘徽、王蕃、皮延宗之徒,各设新率,未臻折衷。

宋末,南徐州(今江苏镇江)从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。

密率,圆径一百一十三,圆周三百五十五。

约率,圆径七,周二十二。

” 即,祖冲之算出圆周率在3.1415926 与3.1415927 之间,并以355/113 (=3.1415929 …)为密率,22/7 (=3.1428 …)为约率。

1913 年日本数学史家三上义夫(1875 -1950 年)在《中国和日本的数学之发展》里主张称355/113 为祖率。

祖冲之如何算出如此精密结果,《隋书•律历志》写道:“所著之书,名为《缀术》,学官莫能究其深奥,是故废而不理”。

《缀术》失传了,没有任何史料流传下来。

史学家认为,祖冲之除开继续使用刘徽的“割圆术”“割之又割”外,并不存在有其它方法的可能性。

如按刘徽的方法,继续算至圆内接正12288 边形和正24576 边形可得出圆周率在3.14159261 与3.14159271 之间。

《缀术》的另一贡献是祖氏原理:幂势既同则积不容异,在西方文献中称为卡瓦列里原理,或不可分量原理,因为1635 年意大利数学家卡瓦列里(1598 -1647 年)独立提出,对微积分的建立有重要影响。

在数学成就方面,整个唐代却没有产生出能够与其前的魏晋南北朝和其后的宋元时期相媲美的数学大家,主要的数学成就在于建立中国数学教育制度。

为了教学需要唐初由李淳风(604 -672 年)等人注释并校订了《算经十书》(约656 年),即《周髀算经》、《九章算术》、《海岛算经》(刘徽)、《孙子算经》(约成书于公元400 年,内有“物不知数”问题)、《夏候阳算经》(成书于公元6、7 世纪,内有“百鸡问题”:今有鸡翁一,直钱五;鸡母一,直钱三;鸡雏三,直钱一。

凡百钱,买鸡翁、母、雏各几何)、《张邱建算经》(张邱建,北魏清河(今邢台市清河县)人,约成书于公元466 -485 年间)、《缀术》(祖冲之)、《五曹算经》(北周甄鸾(字叔遵,河北无极人)著)、《五经算经》(北周甄鸾著)和《缉古算经》(约成书于626 年前后,唐王孝通,内有三次方程及其根,但没有解题方法)。

十部算经对继承古代数学经典有积极的意义,显示了汉唐千余年间中国数学发展的水平,是当时科举考试的必读书(公元587 年隋文帝开创中国的科举考试制度,1905 年清朝废止科举制度)。

第三次高峰:数学全盛时期社会背景:公元960 年,北宋王朝的建立结束了五代十国(907 -960 年)割据的局面。

北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到了广泛应用。

雕版印书的发达,特别是北宋中期,在宋仁宗庆历年间(约1041 —1048 年),毕升活字印刷术的发明(平民发明家毕升总结了历代雕版印刷的丰富的实践经验,经过反复试验,制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命,关于毕升的生平事迹,人们却一无所知,幸亏毕升创造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里),给数学著作的保存与流传带来了福音。

事实上,整个宋元时期(960 —1368 年),重新统一了的中国封建社会发生了一系列有利于数学发展的变化,以筹算为主要内容的中国传统数学达到了鼎盛时期。

中国传统数学以宋元数学为最高境界。

这一时期涌现许多杰出的数学家和先进的数学计算技术,其印刷出版、记载着中国传统数学最高成就的宋元算书,是世界文化的重要遗产。

下面介绍宋元时期的一些计算技术。

贾宪三角贾宪(约公元11 世纪)是北宋人,在朝中任左班殿值,约1050 年完成一部叫《黄帝九章算术细草》的著作,原书丢失,但其主要内容被杨辉的《详解九章算法》摘录,因能传世。

贾宪发明了“增乘开方法”,是中算史上第一个完整、可推广到任意次方的开方程序,一种非常有效和高度机械化的算法。

在此基础上,贾宪创造了“开方作法本源图”(即“古法七乘方图”或贾宪三角),西方人叫“帕斯卡三角”或“算术三角形”,因为法国数学家帕斯卡(1623 -1662 年)于1654 年发表论文《论算术三角形,以及另外一些类似的小问题》。

算术三角形(利比里亚,1999 )。

隙积术沈括(1030 -1094 年),北宋钱塘(今浙江杭州)人,北宋著名的科学家,1080 年任延州(今陕西延安市)知州,因1082 年的“永乐城(今宁夏银川附近)之战”败于西夏(1032 -1227 年)而结束政治生涯,经过6 年的软禁之苦后,开始赋闲幽居生活。

相关文档
最新文档