分数拆分经典解法
单位分数拆分

数学第一讲 单位分数的拆分一、分数变形问题例1.(1) 有一个分数,分子加3可约简为57,分子减3,可约简为12,求这个分数。
解法1: 通分510714=,17214=,此时分母相同,分子差3,而由题意分子应差6,故再翻倍,520728=,114228=,所以原数为1728 解法2:设原数为y x ,则357312y x y x+⎧=⎪⎪⎨-⎪=⎪⎩,解得2817x y =⎧⎨=⎩(2) 有一个分数,分母加1可约简为23,分母减1,可约简为34,求这个分数。
解法1:通分子得:2636,3948==,此时分子相同分母差1,而由题意分母应差2,故再次翻倍,212312,318416==,所以原数为1217解法2:设原数为y x ,则213314y x y x ⎧=⎪⎪+⎨⎪=⎪-⎩,解得1712x y =⎧⎨=⎩(3) 有一个分数,分母减1可约简为12,分母加12,可约简为13,求这个分数。
解法1:目前分子相同分母差1,而由题意应分子相同分母差13,故分子分母同时乘以13,113113,226339==,所以原数为1327 解法2:设原数为y x ,则1121123y x y x ⎧=⎪⎪-⎨⎪=⎪+⎩,解得2713x y =⎧⎨=⎩例2.(1) 有一个分数,分子减4可约简为13,分母减7,可约简为12,求这个分数。
解:设原数为y x ,则413172y x y x -⎧=⎪⎪⎨⎪=⎪-⎩,解得4519x y =⎧⎨=⎩(2) 有一个分数,分子加5可约简为34,分母减2,可约简为12,求这个分数。
解:设原数为y x ,则534122y x y x +⎧=⎪⎪⎨⎪=⎪-⎩,解得167x y =⎧⎨=⎩例3.(1) 将分数2943的分子减去a ,分母加上a ,则分数可约简为35,求a.解法1:约分前分子分母总和不变29+43=72,分成3:5两份,即35=2745,可见a=2解法2:由题意得:293435aa -=+,解得a=2(2) 将分数3944的分子、分母均加上a ,则分数可约简为1617,求a.解法1:约分前分子分母差不变44-39=5,即16801785=,可见a=41解法2:由题意得:39164417aa +=+,解得a=41二、比较大小方法汇总1、通分(通分母或分子)2、比较与1的差距(有时可能比较与1/2的差距)3、比较倒数4、估计、放缩5、交叉相乘6、 例(1)1219_____1522真分数分子分母同时加3,故<(0,0)aa xa b x b b x +<<<>+(2)23_____1320与1的差距分别是13和720,而772120<,故>(3)71718383_____7171718383837171711017183838310183⨯==⨯, 717171711010171838383831010183⨯==⨯, 故=(4)11115541_____1115541111111055415540>,故>(5)218101654321____152347456789 与13比较,13=218107654321=152263456789,故<(6)218191654321____152347456789分别减去13得84654321和84456789,故<(7)9991000_____10001001显然<(8)117448_____207888与14比较,117448>14>207888,故>(9)661998_____66619998 661661066101866286661998998099801899989998+=<=<+三、单位分数(埃及分数)例1.(1)18=1()+1()=1()+1()=1()+1()=1()+1()解:8的约数有1,2,4,8,故有4种拆法:1211816161613118242412151184040101911872729==+==+==+==+(2) 18=1()+1()+1()+1() (填不同的数)1111111111,896324816896326012=+++=+++……例2.甲、乙合作加工一批零件,共需15天,若单独作,各需多少个整天?解:15的约数有1,3,5,15,故有4种拆法:121115303030141115606020161115909018116111524024016==+==+==+==+例3.(1) 将下列和表示为一个最简分数:111111223344556++++⨯⨯⨯⨯⨯ 答:56(2) 你能从以下99个埃及分数中挑出10个,使这10个埃及分数的和为1吗?21,31,41,51,…,991,1001. 解:1111111111 (2233491010)1111111111261220304256729010=-+-+-++-+=+++++++++例4.(1) 若11111()7A B A B C D =+=-≠,则A +B +C +D =____. 解:111117568642=+=-,A +B +C +D =112(2) A 、B 都是三位数且1111998A B -=,求A 、B.答:A=666,B=999语文第一讲情节概括题期数:秋季年级:六年级编稿:刘薇责编:刘玉霞或者概括整个事件的情节,或者概括这个情节中的某几个部分。
拆分法妙算分数的四种方法

拆分法妙算分数的四种方法
拆分法是一种用于计算分数的方法,可以将一个分数拆分成更简单的形式,方便计算。
以下是拆分法的四种常见方法:
一、公因式法:
公因式法是指将分子和分母中的公因式提取出来,然后进行约分。
例如,对于分数3/6,可以发现3和6的最大公因数是3,因此可以将分数拆分成1/2
二、分子和分母相乘法:
这种方法是将分子和分母进行分解,并且将各个因子相乘。
例如,对于分数4/9,可以将分子4拆分成2*2,分母9拆分成3*3,然后将拆分后的因子相乘得到2*2/3*3,进一步化简为4/9
三、化简法:
这种方法适用于分子和分母中含有相同因子的情况。
例如,对于分数36/48,可以发现分子36和分母48都可以被4整除,因此可以将分数化简为9/12,再进一步化简为3/4
四、最大公约数法:
最大公约数法是指找到分子和分母的最大公约数,然后将分子和分母分别除以最大公约数得到新的分数。
例如,对于分数15/25,可以发现15和25的最大公约数是5,因此可以将分数化简为3/5
这四种拆分法可以根据实际情况灵活应用,能够帮助我们更方便地计算分数。
在计算过程中,我们可以根据分子和分母的因式结构来选择最合适的方法,以达到简化分数的目的。
分数拆分妙法

分数的拆分要领之阳早格格创做
要领一:分数相加(减)拆分:
①把分母领会量果数后得出几个约数,再与分歧的任性几个约数相加(减),动做分母战分子的公倍数扩分. ②再拆成二个分数的战(好).
③把拆启后的二个分数约分,化成最简分数.
要领二:分数相加(减)拆分:
①把分母领会量果数后得出几个约数,再与分歧的任性几个约数分母相乘,分子相加(减),再乘以相加(减)后战(好)的倒数.
②再拆成二个分数的战(好),再乘以相加(减)后战(好)的倒数.
③把拆启后的分数约分,化成最简分数.
1a(a+1)=1a - 1a+1 => 1a = 1a(a+1)+ 1a+1
112 = 13*4= 13-14
a+(a+1)a(a+1)= 1a + 1a+1 => 1a = a+(a+1)a(a+1)- 1a+1
712 = 3+43*4= 13+14
1a*(a+m) = ( 1a - 1a+m )* 1m
112 = 12*6=(12- 16)* 14
m
a*(a+m)= 1
a-
1
a+m
4 12 =
4
2*6=
1
2-
1
6。
分数的拆分

第十三讲 分数的拆分〈精讲〉一、知识要点:1、把一个分数写成两个或两个以上分数单位的和,通常称之为分数拆分。
2、一般地,设A 为大于1的自然数,在A 1=)( 1+)( 1的括号里填入不同的自然数,使等式成立的解法是:⑴任选A 的两个不同的约数a 和b ;⑵将A 1的分子、分母同时乘以(a +b ),得:A1=)(b a A b a +⨯+)(; ⑶将上面式子拆成两个分数之和A 1=)(b a A a +⨯+)(b a A b +⨯; ⑷再将这两个分数化简,便可以得到结果。
3、形如下面的分数可以直接拆分:)1(1+⨯n n =n 1-11+n ;)(d n n d +⨯=n 1-dn +1。
4、看起来很复杂的分数计算题,如果用一般的常规方法做,就很复杂。
结合题目的特点,掌握一些分数拆分的方法,可以使计算巧妙、简便。
二、典型例题解析:例1、在下面的括号里填入两个不同的自然数,使等式成立:151=)( 1+)( 1例2、已知181=A 1+B 1+C 1,A ,B ,C 是不同的自然数,求A ,B ,C 的值。
例3、计算21+61+121+201+301+421+561。
例4、计算:411⨯+741⨯+1071⨯+13101⨯+16131⨯。
分数的拆分〈精练〉1、在下面的括号里填入两个不同的自然数,使等式成立。
⑴201=)( 1+)( 1;⑵51=)( 1+)( 1。
2、在下面的括号里填入三个不同的自然数,使等式成立。
241=)( 1+)( 1+)( 1。
3、计算:211⨯+321⨯+431⨯+……+50491⨯。
4、计算:61+121+201+…+721+901+1101。
5、计算:13112⨯+15132⨯+17152⨯+19172⨯+1916、计算:614⨯+1164⨯+16114⨯+…+76714⨯+81764⨯姓名 学校 学号________________ 成绩 分数的拆分〈作业〉1、已知71=A 1+B1,A ,B 是不同的自然数,求A ,B 的值。
小学奥数-(分数拆分)PPT

图片编辑与美化方法
选用通用的音频视频格式,确保课件能够在不同设备和平台上正常播放。
音频视频格式选择
对音频视频素材进行必要的剪辑、合并、添加字幕等处理,提高课件的观赏性和实用性。
音频视频编辑与处理
根据课件内容和受众群体,合理设置音频视频的播放速度、音量和画质等参数,确保观众能够获得最佳的视听体验。
分数拆分
小学奥数全能解法及训练
解法精讲
精讲1
10
15
分数 的拆分
精讲2
精讲3
典例精析
例1
18× (18+2)
典例精析
例1
180
20
例2
例2
求 的和。
举一反三
练习1
(填两个不同的整数)
15
3
规律总结
在分母的因数中找到两个数之和是2的倍。 数。
空白与负空间
选择适合主题和氛围的色彩,注意色彩的饱和度和对比度,避免过于刺眼或难以辨认。
色彩搭配和字体选择建议
字体选择
色彩搭配
统一的风格有助于学生快速识别课件内容,提高学习效率。
提高识别度
统一的风格能够体现课件的专业性和严谨性,提升教师形象。
增强专业性
统一的风格便于后期对课件进行修改和更新,保持课件的时效性和准确性。
定义
旨在辅助教师进行教学,提高教学效果,增强学生的学习兴趣和参与度。
目的
定义与目的
演示型课件
交互型课件
游戏型课件
仿真型课件
课件类型及特点
01
02
03
04
以幻灯片、动画等形式展示教学内容,适用于课堂演示和讲解。
具有交互功能,学生可以通过操作课件进行自主学习和练习。
好学又好记:分数拆分法,一口诀搞定,既快且正确

好学又好记:分数拆分法,一口诀搞定,既快且正确
大家好,这里是汪老师家教现场,今天为大家分享的是好学又好记:分数拆分法,一口诀搞定,既快且正确,喜欢的小伙伴就请点赞加关注。
只要看过五年级下册课本的朋友都知道,分数拆分是五年级数学难点之一,很多孩子看到就害怕,我想说的是分数拆分法,一口诀搞定,好学好记,既快又正确,下面用具体的例子来讲解一下我所总结的分数拆分的具体步骤,在文章的最后,我将用自编的口诀来解决类似不同的题目,下面请看题:
第一步:找出分母12的因数,(1,2,3,4,6,12)。
第二步:把因数进行分组,根据题目而定,有几个分数相加分成几组,本题是三个分数相加,分为三组,(1,2,3),(2,3,4)(3,4,6)等等,这里就不一一列举了。
第三步:这里我随便选一组(3,4,6),分子分母同时乘3+4+6得:
第四步:拆开分数。
第五步:约分,把该分数化成最简分数。
最后,我将以上步骤编成可以记忆的口诀:
一找因数二分组,
三扩四拆五约分。
下面我用自编口诀,来拆解下面一道题:
一找因数:18的因数有(1,2,3,6,9,18)
二分组:任选其一即可,这里选(1,2,3)
三扩:
四拆:
五约分:
你学会了没有?喜欢的小伙伴请点赞关注转发,数学有方法,关注汪老师家教现场,体验不一样的数学思维,让我们共同进步,加油!。
分数拆分(奥数)

点击目标把单位“1”平均分成若干份,表示期中一份的数叫分数单位。
分数单位又叫埃及分数。
在很早以前,埃及人就研究如何把一个分数单位表示成若干个分数单位的和,把一个真分数表示成两个(或几个)分数单位的和叫分数的拆分。
例:1133121122366663⨯===+=+⨯ 11441311334121212124⨯===+=+⨯ 11551411445202020205⨯===+=+⨯ 方法一:111(1)1n n n n =+⨯++ 或 111(1)1n n n n =-⨯++ 课堂练习:15= 17=例:在()()11114=+ 的括号里填上适当的自然数,使等式成立方法二:把一个分数单位拆分成两个分数单位之和的方法是⑴ 找分母的约数;⑵ 扩分 把分数单位1A的分子、分母分别乘A 的任意两个约数之和; ⑶ 拆分 把所得分数拆分成两个分数之和,使两个约数恰好是两个分数的分子; ⑷ 约分 把所得两个分数约成最简分数。
练习:112= 121= 11997= 例:()()1116=+的括号里填入适当的自然数,使等数成立。
(填出全部结果)将17拆成3个单位分数之和。
把1拆分成5个单位分数之和。
将14拆成11A B-的形式。
将18拆成4个单位分数之和。
将110化为111a b c++的形式,其中,,a b c为自然数,且它们的最大公约数为1.总结:把一个分数1a拆成几个分数单位之差的方法如下:找分母的约数,扩分,拆分,约分。
练习:将下列各分数写成两个单位分数之差 16 19 17 11995课后练习1. 将下列个分数写成两个单位分数之和或差。
()()()111112=++ ()()11110=- ()()11190-= ()()11115=- ()()()()1111115=+++2.计算1111112612203042+++++。
分数拆分法

分数拆分法
分数拆分法是一种数学求解方法,通过将一个分数拆分为更简单的分数或整数的和来进行计算。
这种方法常用于求解分数的运算和简化。
对于一个分数,分数拆分法的思想是将其分解为分子和分母的和或差的形式,使得计算更加简便。
具体步骤如下:
1. 首先,观察分数的分子和分母是否存在可以公约的因子。
如果存在公约因子,可以先进行约分操作,将分子和分母分别除以最大公约数,使其变为最简分数。
2. 若分数的分子大于分母,可以先通过整除法将其拆分为整数部分和真分数。
整数部分即是分子与分母相除的商,而真分数部分即是余数与分母构成的分数。
3. 对于真分数,可以进一步拆分为分子和分母的和或差的形式。
常用的拆分方法有相差1的两个分数相加、分子可以被分母整除的两个分数相加、相差2的两个分数相加等。
通过反复应用上述拆分法,可以将复杂的分数拆分为简单的分数或整数的和,从而方便进行计算和简化。
需要注意的是,使用分数拆分法计算时,应注意保持等式两边的值相等,避免出现计算错误。
同时,应根据具体问题选择合适的拆分方法,以得到最简洁的结果。
分数拆分法是数学中常用的求解方法之一,通过灵活运用这种方法,可以简化复杂问题的求解过程,提高计算效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题: 分数的拆分
知识概述:
把单位“1”平均分成若干份,表示其中一份的数叫单位分数。
单位分数又叫埃及分数。
在很早以前,埃及人就研究如何把一个分数单位表示成若干个分数单位的和,把一个真分数表示成两个(或几个)分数单位的和叫分数的拆分。
教学目标:
1、让学生熟练的掌握“单位分数”加减计算的速算方法,并能准确快速的计算。
2、让学生掌握分数拆分的基本方法,并能使一些计算简化。
3、让学生感受归纳的一般方法。
教学重点:1、发现总结“单位分数”加减计算的速算方法。
2、分数的拆分的方法。
教学难点:分数的拆分的灵活应用。
教具与学具:
本周通知事项:
教学过程:
一、引入:
12
7化成小数等于多少? 分析:4
131127+==0.3 。
+0.25=0.583 。
这里的31和4
1数学里称为:单位分数(分数单位)。
今天我们学习的课题就是如何又快又准将一个分数拆分成若干个单位分数的和(或者差)。
定义:把单位“1”平均分成若干份,表示其中一份的数叫单位分数(分数单位)。
二、新课教授:
例1:在等式y
x 1161+= 中,求出所有整数解。
分析:要找出一组解很容易,但是要找出所有解容易漏。
通过观察我们发现要使分子最终为1,必需让分子分母约分。
怎样才能约分?我们想到了约数。
这时列出6的所有约数:1,
2,3,6。
通过扩分的方法:
911812)(1×62)(1×161+=++= 10
11513)(2×63)(2×161+=++=
812413)(1×63)(1×161+=++= 8
12416)(2×66)(2×161+=++= 714216)(1×66)(1×161+=++= 9
11816)(3×66)(3×161+=++= 分析:里面结果相同的原因?
注意:两个相加的约数,它们比值相同时结果也相同。
总结:y
x n 111+=型,拆分分数的步骤: 1.找出分母n 的所有的约数;(找约数)
2.将约数进行分组,比值相同的分为一组;(分组)
3.将n
1的分子、分母分别同时乘以其中两个约数之和(或者差);(扩分) 4.将所得分数拆成同分母的两个分数之和(或者差),使两个约数恰好是两个分数的分子;(拆分)
5.将各个分数分别约分,使分子为1,即变成单位分数。
(约分) 练习:z
y x 11161++= 分析:此题与之前题目的区别以及相同之处?可不可以用同样的方法解答?
请同学们说出结果。
例2:已知两个不同的单位分数之和是
12
1,则这两个单位分数之差的(较大分数为被减数)的最小值是多少?
1.12的所有约数:1,2,3,4,6,12。
2.分组:
第一组:(1,2)、(2,4)、(3,6)、(6,12) 第五组:(1,12)
1813612)(1×122)(1×1121+=++= 131156112)(1×1212)(1×1121+=++=
第二组:(1,3)、(2,6)、(4、12) 第六组:(2,3),(4,6)
1614813)(1×123)(1×1121+=++= 20
13012)(1×122)(1×1121+=++= 第三组:(1,4)、(3,12) 第七组:(3,4)
1516014)(1×124)(1×1121+=++= 21
12812)(3×124)(3×1121+=++= 第四组:(1,6)、(2,12)
14
18416)(1×126)(1×1121+=++= 第七组差值最小。
分析:
b a 11121+= (假设a>b ,即b 1<1a ),⇒b
a 11211-= 12
1211211)1121(111-=+-=--=-b b b b b a b ,b 越大,结果越小。
b 是怎么得来的?假设约数为(x ,y )且x <y ,y y x b )(12+=
=)1(12y x +也就是y
x 比值最大时,b 最大,即第七组(3,4) 例3:如果c
b a 1111++=
,其中a 、b 、c 为自然数且互不相同,求a+b+c 的和? 分析:假设a=b=c ,那么3131311++=,三个分数中一定至少有一个比31要大(若全比3
1小的话,则和要比1小,不可能为1),a ,b ,c 为自然数,比31大的单位分数只有2
1。
即可转化为c b 11211++=,那么c b 11211+=-即可转化为我们熟悉的问题。
练习:一群酒鬼喝酒,第一瓶时倒了几个,第二瓶时又倒了几个,第三瓶时全部倒下,最后倒下的说他喝了一瓶,如果他说的是真的,那么一共有多少人?
c
b a 1111++=,假设喝第一瓶的有a 个人,那么每个人喝了a 1,以此类推第二瓶,有b 个人,
那么每个人喝了b 1,第三瓶,有c 个人,那么每个人喝了c
1。
最后说话的人三瓶酒都喝过了,他第一瓶喝了a 1,第二瓶喝了b 1,第三瓶喝了c
1,最后他说了一句话:他只喝了一瓶。
那么c
b a 1111++=。
补充: 公式:111)(n ×11+++=n n n 或者1
111)(n ×1+-=+n n n 推导:
y x 1161+=的过程:
x y 1611-==x x 66-,那么6
6-=x x y ,66-=y y x 令t=x-6,那么x=t+6
t
t t t t y 366366)6(6+=+=+=,将y 代入66-=y y x 中有t x +=6 即t
y 366+= t x +=6 根据
t 36为整数,知道t 为36的约数,那么可以列出t 求解。
板书设计: 分数的拆分
例题1、 结论:
例题2、 推导:
例题3、
课后反思:
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,
感谢您的配合和支持)。