2019-2020学年浙江省金华市婺城区九年级(上)期末数学试卷 (解析版)
(金华)2019-2020学年第一学期九年级期末测试-数学试题卷

2019-2020学年第一学期九年级期末测试数学试题卷一、选择题(每题3分,共30分)1.把抛物线y=x2+4先向下平移3个单位,再向左平移1个单位,所得抛物线的表达式为()A.y=(x+1)2+7 B.y=(x-1)2+7 C.y=(x-1)2+1 D.y=(x+1)2+1 2.若一个不透明的袋子中装有2个白球,3个黄球和1个红球,它们除颜色外都相同,则从袋子中随机摸出一个球是白球的概率为()A.16B.14C.13D.123.下列阴影三角形分别在小正方形组成的网格中,则与图中的三角形相似的是()A.B.C.D.第3题图第6题图4.在Rt△ABC中,∠C=90°,AC=3,AB=5,那么sin A的值是()A.34B.45C.35D.435.下列四个立体图形中,左视图为矩形的是()① ② ③ ④A.①③B.①④C.②③D.③④6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.32° B.116° C.58° D.64°1.2.3.7.小红在周末到某小镇去旅游,欣赏伟大祖国的大好河山,拍了一张照片如图,某桥桥身为一巨型单孔圆弧,全部由石块砌成,犹如一道彩虹横卧河面上,经测算,桥拱拱高为CD,河面宽AB为6 m,△ABC为等边三角形,则桥拱直径..为()A m B. m C.D. m第7题图第9题图第10题图8.已知二次函数y=ax2+bx+3(a≠0),当x=1和x=2019时函数的值相等,则当x=2020时,函数的值等于()A.32B.3 C.32D.-39.如图,已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以点A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO;④AO∶OP∶P A=1.A.①④B.②③C.③④D.①③④10.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若点A(0.5,y1),B,y2)在此抛物线上,则y1<y2,其中正确的有().A.2个B.3个C.4个D.5个二、填空题(每题4分,共24分)11.已知扇形的圆心角为30°,面积为3π,则该扇形的半径为.12.如图,点P为⊙O外一点,P A,PB为⊙O的切线,A,B为切点,PO交⊙O于点D,∠APO =30°,OD=5,则线段BP的长为.第12题图第13题图13.如图,在△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E.若AB=4,则BC 的长为.14.已知一个三角形的三边长分别为3、4、5,则该三角形的内切圆的半径为 . 15.如图,在△ABC 中,∠A =90°,CB =10,sin B =0.6,D 是BC 边上异于B ,C 两点的一个动点,过点D 分别作AB ,AC 边的垂线,垂足分别为E ,F ,则EF 的最小值为 .16.抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C .(1)抛物线的对称轴为 .(2)若抛物线上存在点P ,使得锐角∠PCO >∠OCA ,则点P 的横坐标x P 的取值范围为 .三、解答题(17~19每题6分,20~21每题8分,22~23每题10分,24题12分,共66分)17.(6分)计算:21()4sin 602tan 453---︒+︒+.18.(6分)“建设美丽的新农村”正在如火如荼建设当中,其中某村的标志性雕塑如图,某中学九年级数学兴趣小组想测量雕塑AB 的高度,小敏在雕塑前C 、D 两点处用测角仪测得顶端A 的仰角分别为45°和30°,测角仪高EC =FD =1 m ,EF =4 m ,求该雕塑的高度.(结果保留根号)19.(6分)在如图所示的正方形网格中(每个小正方形的边长都为1)建立平面直角坐标系,△ABC的三个顶点分别为(2,-4),B(4,-4),C(1,-1).(1)请在图中画出△ABC的外接圆.(2)画出△ABC绕原点O逆时针旋转90°后得到的△A1B1C1,并求出点B旋转所经过的路径长.(结果保留π)20.(8分)某中学九(1)班调查了全班同学的兴趣爱好,根据调查的结果组建了4个兴趣小组,分别是足球、乒乓球、篮球、排球,并将统计结果绘制成如图所示的两幅不完整的统计图(要求每位同学只能选择一种自己喜欢的球类).①②请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)图②中的m= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组的4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21.(8分)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.22.(10分)如图,已知AB为⊙O的直径,AC是⊙O的切线,连结BC交⊙O于点F,取弧BF的中点D,连结AD交BC于点E,过点E作EH⊥AB于点H.(1)求证:△HBE∽△ABC.(2)若CF=4,BF=5,求AC及EH的长.23.(10分)设二次函数y1、y2的图象顶点分别为(a,b)、(c,d),当a+c=0,bd=-1时,则称y1是y2的“顶好二次函数”.(1)理解:通过计算判断二次函数y1=x2-2x-1是否是y2=2x2+4x+2.5的“顶好二次函数”.(2)应用:请写出一个与二次函数y=2x2+8x+7开口方向相反的“顶好二次函数”.(3)拓展:已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x,函数y1+y2恰好是函数y1-y2的“顶好二次函数”,求n的值.24.(12分)定义:若抛物线y=ax2+bx+c(a≠0)满足a-b+c=0,则称该抛物线为“智慧抛物线”.如图1,“智慧抛物线”y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,若OB=3OA,点D为y轴上的一个动点.探究:(1)若“智慧抛物线”必过一点,求该点的坐标及此抛物线的解析式.(2)当△BCD的面积为6时,求点D的坐标.(3)在抛物线上是否存在点Q,使△BCQ是以BC为直角边的直角三角形?(4)如图2,过点C作CE⊥BD于点E,连结AE,直接写出线段AE的最小值.。
2019-2020学年浙教版九年级上期末考试数学试卷及答案解析

2019-2020学年浙教版九年级上期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列抛物线中,与y轴交点坐标为(0,3)的是()A.y=(x﹣3)2B.y=x2﹣3C.y=2x2﹣3x D.y=x2﹣2x+3 2.如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度可能是()A.60°B.90°C.120°D.180°3.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为()A.B.C.D.6.已知点(﹣2,y1),(,y2),(,y3)在函数y=﹣(x﹣1)2的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,已知在△ABC中,AB=14,BC=12,AC=10,D是AC上一点,过点D画一条直线l,把△ABC分成两部分,使其中的一个三角形与△ABC相似,这样的直线有几条()A.2B.3C.3或4D.48.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.9.已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.(5分)醴陵市农科站在相同条件下经试验发现蚕豆种子的发芽率为97.5%,请估计醴陵地区1000斤蚕豆种子中不能发芽的大约有斤.12.(5分)若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.(5分)如图,隧道的截面是抛物线型,抛物线的解析式为y=﹣2+4.隧道是单行道(车从正中间通过),为安全考虑,车顶与隧道顶部的垂直距离不少于0.5m,若货运汽车的宽为2米,则车安全通过隧道的限高为米.。
九年级上册金华数学期末试卷测试卷 (word版,含解析)

九年级上册金华数学期末试卷测试卷 (word 版,含解析)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人2.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°3.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定4.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.5.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数6.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .47.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .8.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >> B .312y y y >=C .123y y y >>D .123y y y =>9.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个 10.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6B .7C .8D .911.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cmB .13.6cmC .32.386cmD .7.64cm12.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣2二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________. 15.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.16.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 17.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.18.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)19.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)20.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.21.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.22.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.23.如图,已知矩形ABCD 的顶点A 、D 分别落在x 轴、y 轴,OD =2OA =6,AD :AB =3:1.则点B 的坐标是_____.24.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.三、解答题25.如图,在ABC ∆中,AD 是高.矩形EFGH 的顶点E 、H 分别在边AB 、AC 上,FG 在边BC 上,6BC =,4=AD ,23EF EH =.求矩形EFGH 的面积.26.在平面直角坐标系中,已知抛物线24y x x =-+.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线24y x x =-+的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x 轴相交于A 、B 两点(A 在B 左侧),与y 轴相交于点C ,连接BC .若点P 是直线BC 上方抛物线上的一点,求PBC ∆的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q ,使QBC ∆是以BC 为直角边的直角三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,说明理由. 27.解下列一元二次方程. (1)x 2+x -6=0; (2)2(x -1)2-8=0.28.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.29.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.30.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣12x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M为x轴上一点,求MD+55MA的最小值.31.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB 的高度.32.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.3.C解析:C 【解析】分析:连接BD ,根据平行四边形的性质得出BP=DP ,根据圆的性质得出PM=PN ,结合对顶角的性质得出∠DPN=∠BPM ,从而得出三角形全等,得出答案.详解:连接BD ,因为P 为平行四边形ABCD 的对称中心,则P 是平行四边形两对角线的交点,即BD 必过点P ,且BP=DP , ∵以P 为圆心作圆, ∴P 又是圆的对称中心, ∵过P 的任意直线与圆相交于点M 、N , ∴PN=PM , ∵∠DPN=∠BPM , ∴△PDN ≌△PBM (SAS ), ∴BM=DN .点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.4.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.5.A解析:A 【解析】 【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差. 【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差 故选A 考点:方差6.B解析:B 【解析】 【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.7.C解析:C 【解析】 【分析】x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解. 【详解】x=0时,两个函数的函数值y=b ,所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误; 由A 、C 选项可知,抛物线开口方向向上, 所以,a >0,所以,一次函数y=ax+b 经过第一三象限, 所以,A 选项错误,C 选项正确. 故选C .8.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.9.C解析:C 【解析】 【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD ,从而确定②是否正确,根据AD =BD =BC ,即 BC AC BCAC BC-=解得BC=12AC ,故④正确. 【详解】①BC 是⊙A 的内接正十边形的一边, 因为AB =AC ,∠A =36°, 所以∠ABC =∠C =72°,又因为BD 平分∠ABC 交AC 于点D , ∴∠ABD =∠CBD =12∠ABC =36°=∠A , ∴AD =BD ,∠BDC =∠ABD +∠A =72°=∠C , ∴BC =BD ,∴BC =BD =AD ,正确; 又∵△ABD 中,AD+BD >AB ∴2AD >AB, 故③错误.②根据两角对应相等的两个三角形相似易证△ABC ∽△BCD ,∴BC CDAB BC =,又AB =AC , 故②正确,根据AD =BD =BC ,即 BC AC BCAC BC-=,解得AC ,故④正确, 故选C . 【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质.10.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.11.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm ,∴书的宽约为20×0.618=12.36cm .故选:A .【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.12.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A 、原方程为二元一次方程,不符合题意;B 、原式方程为二元二次方程,不符合题意;C 、原式为分式方程,不符合题意;D 、原式为一元二次方程,符合题意,故选:D .【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题13.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答. 15.【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x 的解析:410 【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=2x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长.详解:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,∵四边形ABCD 是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x ,AN=4﹣x ,∵AB=2,∴AM=BM=1,∵AB=2,∴BE=1,∴=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,=,解得:x=4 3∴=故答案为3.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,16.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35. 点睛:知道“从2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.17.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.18.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 19.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2. 故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键. 20.【解析】【分析】根据重心的性质可得AG :DG =2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE ,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.21.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.22.【解析】【分析】先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,【解析】【分析】先在CB 上取一点F ,使得CF=12,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF , ∵∠DCE=90°,DE=4,DP=PE ,∴PC=12DE=2, ∵14CF CP =,14CP CB = ∴CF CP CP CB= 又∵∠PCF=∠BCP ,∴△PCF ∽△BCP , ∴14PF CF PB CP == ∴PA+14PB=PA+PF ,∵PA+PF≥AF ,2==∴PA+14∴PA+14PB的最小值为1452,故答案为145.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.23.(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.解析:(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.24.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.三、解答题25.6EFGH S =四边形【解析】【分析】根据相似三角形对应边比例相等性质求出EF,EH 的长,继而求出面积.【详解】解:如图:∵四边形EFGH 是矩形,AD 交EH 于点Q,∴∥EH FG∴AEH ABC ∆∆∽ ∴AQ EH AD BC= 设2EF x =,则3EH x = ∴42346x x -=解得:1x =. 所以2EF =,3EH =.∴236EFGH S EF EH =⋅=⨯=四边形【点睛】本题考查的知识点主要是相似三角形的性质,利用相似三角形对应边比例相等求出有关线段的长是解题的关键.26.(1)抛物线的方点坐标是()0,0,()3,3;(2)当32m =时,PBC ∆的面积最大,最大值为278;(3)存在,()1,4Q 或()2,5-- 【解析】【分析】(1)由定义得出x=y ,直接代入求解即可(2)作辅助线PD 平行于y 轴,先求出抛物线与直线的解析式,设出点P 的坐标,利用点坐标求出PD 的长,进而求出面积的二次函数,再利用配方法得出最大值(3)通过抛物线与直线的解析式可求出点B ,C 的坐标,得出△OBC 为等腰直角三角形,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N ,得出M ,N 的坐标,得出直线BN 、MC 的解析式然后解方程组即可.【详解】解:(1)由题意得:x y =∴24x x x -+=解得10x =,23x =∴抛物线的方点坐标是()0,0,()3,3.(2)过P 点作y 轴的平行线交BC 于点D .易得平移后抛物线的表达式为2y x 2x 3=-++,直线BC 的解析式为3y x =-+. 设()2,23P m m m -++,则(),3D m m -+. ∴()222333PD m m m m m =-++--+=-+()03m << ∴()2213327332228PBC S m m m ∆⎛⎫=-+⨯=--+ ⎪⎝⎭()03m << ∴当32m =时,PBC ∆的面积最大,最大值为278. (3)如图所示,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N由已知条件得出点B 的坐标为B(3,0),C 的坐标为C(0,3),∴△COB 是等腰直角三角形,∴可得出M 、N 的坐标分别为:M(-3,0),N(0,-3)直线CM 的解析式为:y=x+3直线BN 的解析式为:y=x-3由此可得出:2233y x x y x ⎧=-++⎨=+⎩或2233y x x y x ⎧=-++⎨=-⎩解方程组得出:14x y =⎧⎨=⎩或25x y =-⎧⎨=-⎩ ∴()1,4Q 或()2,5--【点睛】本题是一道关于二次函数的综合题目,解题的关键是根据题意得出抛物线与直线的解析式.27.(1)123;2x x =-=;(2)123;1x x ==-【解析】【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x 2+x -6=0;(3)(2)0x x +-=∴123;2x x =-=(2)2(x -1)2-8=0.22(1)8x -=2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.28.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++, 得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++.(2)由图像可知,当12y y >时,2x <-或3x >.(3)令0x =,则3y =,∴()0,3C .∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==.设点(),3E a a -,则()3,6D a a +-,∴()()263233a a a -=-++++,∴11a =,26a =-(舍去). ∴()4,5D -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.29.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.30.(1)25552443y x x =--+;(2. 【解析】【分析】(1)先把D 点坐标代入y =﹣12x +b 中求得b ,则一次函数解析式为y =﹣12x ﹣3,于是可确定A (﹣6,0),作EF ⊥x 轴于F ,如图,利用平行线分线段成比例求出OF =4,接着利用一次函数解析式确定E 点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),利用勾股定理得到AD =Rt △AMH ∽Rt △ADO ,利用相似比得到MH AM ,加上MD=MD ′,MD MA =MD ′+MH ,利用两点之间线段最短得到当点M 、H 、D ′共线时,MD的值最小,然后证明Rt △DHD ′∽Rt △DOA ,利用相似比求出D ′H 即可. 【详解】解:(1)把D (0,﹣3)代入y =﹣12x +b 得b =﹣3, ∴一次函数解析式为y =﹣12x ﹣3, 当y =0时,﹣12x ﹣3=0,解得x =﹣6,则A (﹣6,0), 作EF ⊥x 轴于F ,如图,∵OD ∥EF , ∴AO OF =AD DE =32, ∴OF =23OA =4, ∴E 点的横坐标为4,当x =4时,y =﹣12x ﹣3=﹣5, ∴E 点坐标为(4,﹣5), 把A (﹣6,0),E (4,﹣5)代入y =ax 2+4ax +c 得3624016165a a c a a c -+=⎧⎨++=-⎩,解得52453a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为25552443y x x =--+; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),在Rt △OAD 中,AD∵∠MAH =∠DAO ,∴Rt △AMH ∽Rt △ADO , ∴AM AD =MH OD=3MH , ∴MHAM , ∵MD =MD ′, ∴MDMA =MD ′+MH ,当点M 、H 、D ′共线时,MD +55MA =MD ′+MH =D ′H ,此时MD +55MA 的值最小, ∵∠D ′DH =∠ADO ,∴Rt △DHD ′∽Rt △DOA , ∴D H OA '=DD DA ',即6D H '=635,解得D ′H =1255, ∴MD +55MA 的最小值为1255.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、相似三角形的判定与性质及数形结合能力.31.4m【解析】【分析】首先根据DO=OE=1m ,可得∠DEB=45°,然后证明AB=BE ,再证明△ABF ∽△COF ,可得AB CO BF OF=,然后代入数值可得方程,解出方程即可得到答案. 【详解】解:延长OD ,∵DO ⊥BF ,∴∠DOE=90°,∵OD=1m ,OE=1m ,∴∠DEB=45°,∵AB ⊥BF ,∴∠BAE=45°,∴AB=BE ,设AB=EB=x m ,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴AB COBF OF=,1.51(51)5xx+∴=+-,解得:x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.32.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=2, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=2,∴AC22AD DC+8∴⊙O的半径为4.。
2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)

(2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.
27.【答案】解:(1)每次游戏可能出现的所有结果列表如下:
表格中共有9种等可能的结果,
则数字之积为3的倍数的有五种,
其概率为 ;数字之积为5的倍数的有三种,
其概率为 = .
(2)这个游戏对双方不公平.
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
3.抛物线y=3x2, y=-3x2, y= x2+3共有的性质是()
A.开口向上 B.对称轴是y轴 C.都有最高点 D.y随x值的增大而增大
4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()
A.k>- B.k>- 且k≠0 C.k≥- D.k≥- 且k≠0
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴ ,即 = .
(2)当∠B+∠EGC=180°时, = 成立.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的 ,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.
14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.
浙江省金华市婺城区2019届九年级上学期数学期末考试试卷

,中,无理数的是(,则答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.B. C. D.6.一组数据:,a ,a ,,若添加一个数据a ,下列说法错误的是A.平均数不变B.中位数不变C.众数不变D.方差不变7.一条排水管的截面如图所示,已知排水管的截面圆的半径,水面宽AB 是16dm ,则截面水深CD 是A.3dmB.4dmC.5dmD.6dm8.据金华海关统计,2018年月金华市共实现外贸进出口总值亿元人民币,同比增长数据亿元用科学记数法表示正确的是A.元B.元C.元D.元9.如图1,已知,,点P 为AB 边上的一个动点,点E 、F 分别是CA ,CB 边的中点,过点P 作于D ,设,图中某条线段的长为y ,如果表示y 与x 的函数关系的大致图象如图2所示,那么这条线段可能是A.PDB.PEC.PCD.PF10.若直线与函数的图象仅有一个公共点,则整数c 的值为A.3B.4C.3或4D.3或4或5含、的大的半径为上的一点,点答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分二、计算题(共1题)6.计算:.评卷人得分三、作图题(共1题)7.如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.①在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;②在图中画出以线段AB 为一腰,底边长为2的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.评卷人得分四、综合题(共7题)8.如图1,AB 是⊙O 的直径,P 为⊙O 外一点,C ,D 为⊙O 上两点,连结OP ,CD ,PD =PC.已知AB =8.中,,,,得到答案第6页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.11.小明在研究“利用木板余料裁出最大面积的矩形”时发现:如图1,是一块直角三角形形状的木板余料,以为内角裁一个矩形当DE ,EF 是中位线时,所裁矩形的面积最大若木板余料的形状改变,请你探究:(1)如图2,现有一块五边形的木板余料ABCDE ,,,,,现从中裁出一个以为内角且面积最大的矩形,则该矩形的面积为.(2)如图3,现有一块四边形的木板余料ABCD ,经测量,,,且,从中裁出顶点M ,N 在边BC 上且面积最大的矩形PQMN ,则该矩形的面积为.12.某校兴趣小组就“最想去的金华最美村落”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的最美乡村下面是根据调查结果绘制出的不完整的统计图,,,答案第8页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求抛物线的解析式;(2)如图2,D 点坐标为,连结若点H 是线段DC 上的一个动点,求的最小值.(3)如图3,连结AC ,过点B 作x 轴的垂线l ,在第三象限中的抛物线上取点P ,过点P 作直线AC 的垂线交直线l 于点E ,过点E 作x 轴的平行线交AC 于点F ,已知.求点P 的坐标;在抛物线上是否存在一点Q ,使得成立?若存在,求出Q 点坐标;若不存在,请说明理由.参数答案1.【答案】:第9页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:2.【答案】:【解释】:3.【答案】:【解释】:4.【答案】:【解释】:5.【答案】:【解释】:答案第10页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】:7.【答案】:【解释】:第11页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………8.【答案】:【解释】:9.【答案】:【解释】:10.【答案】:答案第12页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:第13页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:【答案】:答案第14页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:第15页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:答案第16页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:(1)【答案】:(2)【答案】:第17页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:答案第18页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:第19页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:答案第20页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:第21页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:【解释】:(1)【答案】:(2)【答案】:【解释】:答案第22页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第23页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:【解释】:(1)【答案】:答案第24页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:(1)【答案】:(2)【答案】:第25页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:答案第26页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第27页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。
2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.在﹣1,0,,3.010010001…,中任取一个数,取到无理数的概率是()A. B. C. D.2.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE= ,∠EAF=135°,则以下结论正确的是()A. DE=1B. tan∠AFO=C. AF=D. 四边形AFCE的面积为3.如图,⊙O 中,弦AB、CD 相交于点P,∠A=40°,∠APD=75°,则∠B=()A. 15°B. 40°C. 75°D. 35°4.二次函数y=ax²+bx+2(a≠0)的图像经过点(-1,1)则代数1-a+b的值为()A. -3B. -1C. 2D. 55.以下说法正确的是()A. 在同一年出生的400人中至少有两人的生日相同B. 一个游戏的中奖率是1%,买100张奖券,一定会中奖C. 一副扑克牌中,随意抽取一张是红桃K,这是必然事件D. 一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是6.如图,在平面直角坐标系中,点A(-1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=-x+b上,则b的值为( )A. -2B. 1C.D. 27.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF 的长为()A. 5B. 6C. 7D. 88.如图,半径为1的圆中,圆心角为120°的扇形面积为()A. B. C. π D.9.如图,分别是边上的点,,若,则的长是().A. 1B. 2C. 3D. 410.已知过点、和的抛物线的图象大致为A. B. C. D.二、填空题(共6题;共24分)11.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是________.13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,若OA2﹣AB2=8,则k的值为________.14.如图,在平面直角坐标系中,抛物线y= 与直线交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.15.如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是________.16.如图,已知△ABO顶点A(-3,6),以原点O为位似中心,把△ABO缩小到原来的,则与点A对应的点A'的坐标是________.三、解答题(共8题;共66分)17.小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.18.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以点O为位似中心,在网格图中作△A′B′C′(在位似中心的同侧)和△ABC位似,且位似比为1 2;(2)连结(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).19.如图, 是的边的中点,过延长线上的点作的垂线, 为垂足, 与的延长线相交于点,点在上, , ∥.(1)证明:;(2)证明:点是的外接圆的圆心;20.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.21.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答:(1)当每件商品售价定为140元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元,商场日盈利可达1500元?(3)商家应把商品的单价定为多少元时,可获得最大利润,并求出此时的利润为多少?22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图像与反比例函数的图像相交于A,P两点。
2019—2020年最新浙教版九年级数学上学期期末考试检测题及答案解析.doc

第一学期九年级期末模拟检测数学试题卷一、选择题(共10小题,每小题4分,满分40分)1.若,则的值为()A.B.C.D.2.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y13.⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.50° B.80° C.90° D.100°5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.6.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.8.如图,⊙O是△ABC的外接圆,BC的中垂线与相交于D点,若∠B=74°,∠C=46°,则的度数为()A.23° B.28° C.30° D.37°9.如图1,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图2所示,那么记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q10.甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是()A.甲﹣M,乙﹣N,丙﹣P B.甲﹣M,乙﹣P,丙﹣NC.甲﹣N,乙﹣P,丙﹣M D.甲﹣P,乙﹣N,丙﹣M二、填空题(共6小题,每小题5分,满分30分)11.(5分)已知线段a=3,b=27,则a,b的比例中项线段长等于.12.(5分)在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B 两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是.13.(5分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.14.(5分)如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为m.15.(5分)九(3)班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如表:根据以上结果,估计调查一辆私家车而它载有超过2名乘客的概率为.16.(5分)如图,把数字1,2,3,…,9分别填入图中的9个圈内,要求△ABC和△DEF的每条边上三个圈内的数字之和等于18,给出符合要求的填法.三、解答题(共8小题,满分80分)17.(8分)计算:3tan30°+cos245°﹣2sin60°.18.(8分)如图,在离铁塔150m的A处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD为1.52m,求铁塔高BC(精确到0.1m).(参考数据:sin30°12′=0.5030,cos30°12′=0.8643,tan30°12′=0.5820)19.(8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.20.(8分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1)问△ABC是否为等边三角形?为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,求⊙O的半径长.21.(10分)某书店销售儿童书刊,一天可售出20套,每套盈利40元,为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施,若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求y关于x的函数解析式(化为一般形式);(2)当每套书降价多少元时,书店可获最大利润?最大利润为多少?22.(12分)如图1,有两个分别涂有黄色和蓝色的Rt△ABC和Rt△A′B′C′,其中∠C=∠C′=90°,∠A=60°,∠A′=45°.思考:能否分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.(1)如图2,作直线CD,C′D,分别交AB于点D,交A′B′于点D′,∠BCD=45°,∠B′C′D′=30°,问△BCD与△B′C′D′、△ACD与△A′C′D′是否相似?并选择其中相似的一对三角形,说明理由.(2)如图3,作直线AD,B′D′,分别交BC于点D,交A′C′于点D′,若△ACD 与△B′C′D′、△ABD与△A′B′D′均相似,求∠CAD,∠C′B′D′的度数(直接写出答案)23.(12分)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知抛物线①:y=﹣2x2+4x+3与②:y=2x2+4x﹣1,请判断抛物线①与抛物线②是否关联,并说明理由;(2)将抛物线C1:y=﹣2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;(3)点A为抛物线C1:y=﹣2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.24.(14分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D为边BC 的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)当DP⊥AB时,求CQ的长;(2)当BP=2,求CQ的长;(3)连结AD,若AD平分∠PDQ,求DP,DQ的长.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.若,则的值为()A.B.C.D.【考点】比例的性质.【分析】用b表示a,代入求解即可.【解答】解:∵=,∴a=b,即==.故选A.【点评】本题主要考查了简单的比例问题,能够熟练掌握.2.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【考点】二次函数图象上点的坐标特征.【分析】求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.【解答】解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.【点评】此题考查了二次函数的性质,通常根据开口方向、对称轴,结合草图即可判断函数值的大小.3.⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm【考点】垂径定理.【分析】根据垂径定理,先求出弦长的一半,再利用勾股定理即可求出.【解答】解:如图∵AE=AB=4cm∴OA===5cm.故选B.【点评】本题主要考查半弦、半径、弦心距所构成直角三角形的计算,利用勾股定理求解.4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.50° B.80° C.90° D.100°【考点】三角形的外接圆与外心;三角形内角和定理;圆周角定理.【分析】由⊙O是△ABC的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)【考点】二次函数的性质.【分析】根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.【解答】解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.【点评】本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴是x=h.7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【考点】平行线分线段成比例.【分析】根据AH=2,HB=1求出AB的长,根据平行线分线段成比例定理得到=,计算得到答案.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.【点评】本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系列出比例式是解题的关键.8.如图,⊙O是△ABC的外接圆,BC的中垂线与相交于D点,若∠B=74°,∠C=46°,则的度数为()A.23° B.28° C.30° D.37°【考点】三角形的外接圆与外心;线段垂直平分线的性质;圆心角、弧、弦的关系.【分析】首先连接OB,OC,AO,设DO交BC于点E,由∠B=74°,∠C=46°,即可求得∠BAC的度数,又由△ABC的边BC的垂直平分线与△ABC的外接圆相交于点D,根据圆周角定理,即可求得∠AOB与∠BOE的度数,继而求得答案.【解答】解:如图,连接OB,OC,AO,设DO交BC于点E,∵OD是△ABC的边BC的垂直平分线,∴∠BOE=∠BOC,∵∠BAC=∠BOC,∴∠BOE=∠BAC,∵∠ABC=74°,∠ACB=46°,∴∠BOE=∠BAC=180°﹣∠ABC﹣∠ACB=60°,∴∠BOD=180°﹣∠BOE=180°﹣60°=120°,∵∠AOB=2∠ACB=92°,∴的度数为:92°,∴的度数为:120°﹣92°=28°.故选:B.【点评】此题考查了圆周角定理以及线段垂直平分线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图1,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图2所示,那么记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q【考点】动点问题的函数图象.【分析】根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案.【解答】解:A、从A点到M点y随x而减小一直减小到0,故A不符合题意;B、从A到B点y随x的增大而减小,从B到C点y的值不变,故B不符合题意;C、从A到AB的中点y随x的增大而减小,从AB的中点到M点y随x的增大而增大,从M点到C点y随x的增大而减小,故C符合题意;D、从A到M点y随x的增大而增大,从M点到C点y随x的增大而减小,故D不符合题意;故选:C.【点评】本题考查了动点问题的函数图象,利用观察点与动点P之间距离的变化关系得出函数的增减性是解题关键.10.甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是()A.甲﹣M,乙﹣N,丙﹣P B.甲﹣M,乙﹣P,丙﹣NC.甲﹣N,乙﹣P,丙﹣M D.甲﹣P,乙﹣N,丙﹣M【考点】推理与论证.【分析】根据已知M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大,即可得出M的丈夫一定不是乙,进而得出P的丈夫以及甲的丈夫进而求出即可.【解答】解:∵甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,且M的丈夫是乙的好友,并在三位先生中最年轻,∴M的丈夫一定不是乙,一定是甲或丙,∵丙的年龄比P的丈夫大,∴P与丙一定不是夫妻,且M的丈夫一定是甲,则P的丈夫是乙,N的丈夫是丙.故选:B.【点评】此题主要考查了推理与论证,根据题意得出M与P的丈夫是解题关键.二、填空题(共6小题,每小题5分,满分30分)11.已知线段a=3,b=27,则a,b的比例中项线段长等于9 .【考点】比例线段.【分析】根据比例中项的定义直接列式求值,问题即可解决.【解答】解:设a、b的比例中项为x,∵a=4,b=8,∴=,∴a,b的比例中项线段长等于9,故答案为:9.【点评】本题主要考查了比例线段.根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.12.在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出选择一条道路的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中选择一条道路的结果数为4,所以他们在途中相遇的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.13.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.14.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为 1.5 m.【考点】相似三角形的应用.【分析】因为光线是平行的,所以在题中有一组相似三角形,根据对应边成比例,列方程即可解答.【解答】解:∵BE∥AD,∴△CBE∽△CAD,∴EC:CD=BC:AC,∴1.2:3=1:AC,∴AC=2.5m,∴AB=AC﹣BC=1.5m.故答案为:1.5.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出窗户的高.15.九(3)班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如表:根据以上结果,估计调查一辆私家车而它载有超过2名乘客的概率为.【考点】列表法与树状图法. 【分析】先利用表中数据计算出一辆私家车载有超过2名乘客的频率,然后利用频率估计概率求解.【解答】解: =,估计调查一辆私家车而它载有超过2名乘客的概率为. 故答案为.【点评】本题考查了列表法与树状图法,利用频率估计概率是求实际生活中某事件概率的常用方法.16.如图,把数字1,2,3,…,9分别填入图中的9个圈内,要求△ABC 和△DEF 的每条边上三个圈内的数字之和等于18,给出符合要求的填法.【考点】规律型:图形的变化类.【分析】把填入A ,B ,C 三处圈内的三个数之和记为x ;D ,E ,F 三处圈内的三个数之和记为y ;其余三个圈所填的数位之和为z .结合图形和已知条件得到方程组,进而求得y=24,再进一步分析即可.【解答】解:把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.显然有x+y+z=1+2+…+9=45①,图中六条边,每条边上三个圈中之数的和为18,所以有z+3y+2x=6×18=108②,②﹣①,得x+2y=108﹣45=63③,把AB,BC,CA每一边上三个圈中的数的和相加,则可得2x+y=3×18=54④,联立③,④,解得x=15,y=24,继而解之z=6.在1,2,3,…,9中三个数之和为24的仅为7,8,9,所以在D,E,F三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中的数一旦确定,根据题目要求,其余六个圈内的数也随之确定,符合要求的填法之一如图:.【点评】此题考查数字的变化类,解题要特别注意三角形的顶点的数字的重复使用,能够根据各边的数字之和列方程组求解.三、解答题(共8小题,满分80分)17.计算:3tan30°+cos 245°﹣2sin60°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+()2﹣2×=+﹣=.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.如图,在离铁塔150m 的A 处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD 为1.52m ,求铁塔高BC (精确到0.1m ).(参考数据:sin30°12′=0.5030,cos30°12′=0.8643,tan30°12′=0.5820)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点A 作AE ⊥BC ,E 为垂足,再由锐角三角函数的定义求出BE 的长,由BC=BE+CE 即可得出结论.【解答】解:过点A 作AE ⊥BC ,E 为垂足,在△ABE 中,∵tan30°12′==,∴BE=150×tan30°12′≈87.30,∴BC=BE+CE=87.30+1.52≈88.8(m).答:铁塔的高BC约为88.8m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.【考点】利用频率估计概率;列表法与树状图法.【分析】(1)利用频率估计概率,则摸到绿球的概率为0.25,根据概率公式得到=0.25,然后解方程即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的球颜色不同的结果数,然后根据概率公式求解.【解答】解:(1)利用频率估计概率得到摸到绿球的概率为0.25,则=0.25,解得n=2,故答案为2;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的球的颜色不同的结果共有10 种,所以两次摸出的球颜色不同的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1)问△ABC是否为等边三角形?为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,求⊙O的半径长.【考点】圆周角定理;等边三角形的判定与性质;垂径定理.【分析】(1)先根据圆周角定理得出∠ABC的度数,再直接根据三角形的内角和定理进行解答即可;(2)连接OB,由等边三角形的性质可知,∠OBD=30°,根据BC=8利用直角三角形的性质即可得出结论.【解答】解:(1)△ABC是等边三角形:理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°,∴△ABC是等边三角形;(2)解:如图,连接OB,∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OE=,OB=,【点评】本题考查了圆周角定理、等边三角形的判定,垂径定理,解直角三角形等知识,将各知识点有机结合,旨在考查同学们的综合应用能力.21.(10分)(2015秋•绍兴期末)某书店销售儿童书刊,一天可售出20套,每套盈利40元,为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施,若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求y关于x的函数解析式(化为一般形式);(2)当每套书降价多少元时,书店可获最大利润?最大利润为多少?【考点】二次函数的应用.【分析】(1)根据题意设出每天降价x元以后,准确表示出每天书刊的销售量,列出利润y关于降价x的函数关系式(2)运用配方法求出二次函数最值.【解答】解:(1)设每套书降价x元时,所获利润为y元,则每天可出售(20+2x)套.由题意得:y=(40﹣x)(20+2x)=﹣2x2+80x﹣20x+800=﹣2x2+60x+800.(2)y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵﹣2<0,∴当x=15时,y取得最大值1250;即当将价15元时,该书店可获得最大利润,最大利润为1250元.【点评】此题考查了二次函数及一元二次方程在现实生活中的应用问题;解题的关键是准确列出二次函数解析式,灵活运用函数的性质解题.22.(12分)(2015秋•绍兴期末)如图1,有两个分别涂有黄色和蓝色的Rt △ABC和Rt△A′B′C′,其中∠C=∠C′=90°,∠A=60°,∠A′=45°.思考:能否分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.(1)如图2,作直线CD,C′D,分别交AB于点D,交A′B′于点D′,∠BCD=45°,∠B′C′D′=30°,问△BCD与△B′C′D′、△ACD与△A′C′D′是否相似?并选择其中相似的一对三角形,说明理由.(2)如图3,作直线AD,B′D′,分别交BC于点D,交A′C′于点D′,若△ACD 与△B′C′D′、△ABD与△A′B′D′均相似,求∠CAD,∠C′B′D′的度数(直接写出答案)【考点】相似形综合题.【分析】思考:在图1中,可以分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.根据相似三角形的判定方法即可证明.(1)如图2中,△BCD与△B′C′D′、△ACD与△A′C′D′相似,理由同上.(2)如图3中,当∠CAD=∠C′B′D′=15°时,△ACD与△B′C′D′、△ABD与△A′B′D′均相似.【解答】解:思考:在图1中,可以分别作一条直线分割这两个三角形,使△ABC 所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.作CD平分∠ACB交AB于D,作∠A′C′D′=60°JIAO A′B′于D′.则△ACD∽△C′A′D′,△BCD∽△C′B′D′.理由:∵∠A=∠A′C′D′=60°,∠ACD=∠A′=45°,∴△ACD∽△C′A′D′,∵∠B=∠B′C′D′,∠BCD=∠B′,∴△BCD∽△C′B′D′.(1)如图2中,△BCD与△B′C′D′、△ACD与△A′C′D′相似,理由同上.(2)如图3中,当∠CAD=∠C′B′D′=15°时,△ACD与△B′C′D′、△ABD与△A′B′D′均相似.理由:∵∠C=∠C′=90°,∠CAD=∠C′B′D′=15°,∴△ACD∽△B′C′D′,∵∠B=∠A′B′D′=30°,∠DAB=∠A′=45°,∴△BAD∽△B′A′D′.【点评】本题考查相似三角形的判定和性质、直角三角形的性质,解题的关键是灵活运用相似三角形的判定方法,学会取特殊角解决问题,属于中考常考题型.23.(12分)(2015秋•绍兴期末)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知抛物线①:y=﹣2x2+4x+3与②:y=2x2+4x﹣1,请判断抛物线①与抛物线②是否关联,并说明理由;(2)将抛物线C1:y=﹣2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;(3)点A为抛物线C1:y=﹣2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据两抛物线的关联依次判断即可;(2)根据两抛物线关联的定义直接列式得出结论;(3)分当点C位于AD左侧和当点C位于AD右侧,借助关联的意义设出点C坐标,表示出点B坐标代入抛物线解析式即可求出点C坐标.【解答】解:(1)由①知,y=﹣2(x﹣1)2+5,∴抛物线①:y=﹣2x2+4x+3的顶点坐标为(1,5),把x=1代入抛物线②:y=2x2+4x﹣1,得y=5,∴抛物线①的顶点在抛物线②上,又由②y=2(x+1)2﹣3,∴抛物线②的顶点坐标为(﹣1,﹣3),把x=﹣1代入抛物线①中,得,y=﹣3,∴抛物线②的顶点在抛物线①上,∴抛物线①与抛物线②关联.(2)抛物线y=﹣2x2+4x+3沿x轴翻折后抛物线为y=2x2﹣4x﹣3,即:y=2(x﹣1)2﹣5,设平移后的抛物线解析式为y=2(x﹣1﹣m)2﹣5,把x=1,y=5代入得2(1﹣1﹣m)2﹣5=5,∴m=±,∵m>0,∴m=,(3)①当点C位于AD左侧时,过点A作AD⊥x轴于D,过点B作BE⊥x轴于E,如图1,∴△ACD≌△CBE,∴CE=AD,BE=CD设C(c,0),∵点B在x轴下方,∴点B的纵坐标为c﹣1;Ⅰ、当点C在x轴负半轴上时,即:c<0,∴B(c+5,c﹣1),把B(c+5,c﹣1),代入y=﹣2(x﹣1)2+5中得,2c2+17c+26=0,∴c=﹣2或c=﹣,∴C(﹣2,0)或(﹣,0),Ⅱ、当点C在x轴正半轴上时,即:0<c<1把B(5﹣c,c﹣1),代入y=﹣2(x﹣1)2+5中得,2c2﹣15c+26=0,∴c=(不符合题意,舍),②当点C位于AD右侧时,设C(c,0),同①的方法得出B(c﹣5,1﹣c),将B(c﹣5,1﹣c)代入y=﹣2(x﹣1)2+5中得,2c2﹣25c+68=0,∴c=4或c=,∴C(4,0)或(,0),即:点C的坐标为:(﹣2,0)或(﹣,0)或(4,0)或(,0).【点评】此题是二次函数综合题,主要考查了新定义,全等三角形的判定和性质,解一元二次方程,分类讨论的思想,理解两抛物线关联是解本题的关键.24.(14分)(2015秋•绍兴期末)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D为边BC的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)当DP⊥AB时,求CQ的长;(2)当BP=2,求CQ的长;(3)连结AD,若AD平分∠PDQ,求DP,DQ的长.【考点】相似形综合题.【分析】(1)首先证明DQ∥AB,根据平行线等分线段定理即可解决问题.(2)分两种情形①如图2中,当点P在线段AB上时,作DM⊥AB,DN⊥AC,垂足分别为M、N,由△PDM∽△QDN,得==,推出QN=PM,推出PM=BM﹣PB=3﹣2=1,推出QN=即可解决问题.②如图3中,当点P在AB的延长线上时,根据PM=5,QN=,CQ=QN+CN计算即可.(3)如图4中,作AM⊥DP于M,AN⊥DQ于N.首先证明四边形AMDN是正方形,由APM≌△AQN,推出PM=NQ,推出PD+DQ=(PM+MD)+(DN﹣QN)=2DM=AD=5,由(2)可知PD:QD=4:3,由此即可计算.【解答】解:(1)如图1中,∵DP⊥AB,DQ⊥DP,∴DQ∥AB,∵BD=DC,∴CQ=AQ=4.(2)①如图2中,当点P在线段AB上时,作DM⊥AB,DN⊥AC,垂足分别为M、N,则四边形AMDN是矩形,DM、DN分别是△ABC的中位线,DM=4,DN=3,∵∠PDQ=∠MDN=90°,∴∠PDM=∠QDN,∵∠DNQ∠DMP=90°,∴△PDM∽△QDN,∴==,∴QN=PM,∵PM=BM﹣PB=3﹣2=1,∴QN=,∴CQ=QN+CN=+4=.②如图3中,当点P在AB的延长线上时,PM=5,QN=,CQ=QN+CN=4+=,综上所述,当BP=2,求CQ的长为或.(3)如图4中,作AM⊥DP于M,AN⊥DQ于N.∵AD平分∠PDQ,∴AM=AN,∵∠AMD=∠AND=∠MDN=90°,∴四边形AMDN是矩形,∵AM=AN,∴四边形AMDN是正方形,∴∠MAN=90°,DM=DN,∵∠BAC=∠MAN=90°,∴∠PAM=∠NAQ,∴△APM≌△AQN,∴PM=NQ,∵AB=6,AC=8,∴BC===10,AD=5,∵PD+DQ=(PM+MD)+(DN﹣QN)=2DM=AD=5。
2019-2020学年浙江省金华市婺城区九年级(上)期末数学试卷

2019-2020学年浙江省金华市婺城区九年级(上)期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)下列各数中,属于无理数的是( )A.2B.4C.0D.12.(3分)根据国家外汇管理局公布的数据,截止2019年9月末,我国外汇储备规模为30924亿美元,较年初上升197亿美元,升幅0.6%,数据30924亿用科学记数法表示为( )A.30924×108B.3.0924×1012C.3.0924×1011D.3.0924×10133.(3分)计算9个︷a+a+⋯+ab⋅b⋅⋯⋅b︸7个=( )A.9a7bB.a97bC.9ab7D.a9b74.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A.等腰三角形B.正三角形C.平行四边形D.正方形5.(3分)下列函数中,y的值随着x逐渐增大而减小的是( )A.y=2x B.y=x2C.y=―2xD.y=1﹣x6.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是4 37.(3分)把多项式4a2﹣1分解因式,结果正确的是( )A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)28.(3分)通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a﹣b)2=a2﹣2ab+b29.(3分)把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )A.141°B.144°C.147°D.150°10.(3分)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x (单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A.18°B.36°C.41°D.58°二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)在函数y=2x―1中,自变量x的取值范围是 .12.(4分)在数﹣1、1、2中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数y=x﹣2图象上的概率是 .13.(4分)如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是 .14.(4分)如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为 .15.(4分)如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直与桌面,A点距离桌面的高度为10公分,若此钟面显示3点45分时,A点距桌面的高度为16公分,如图2,钟面显示3点50分时,A点距桌面的高度 .16.(4分)如图①,是一建筑物造型的纵截面,曲线OBA是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线OH,AC,BD是与水平线OH垂直的两根支柱,AC=4米,BD=2米,OD=2米.(1)如图②,为了安全美观,准备拆除支柱AC、BD,在水平线OH上另找一点P作为地面上的支撑点,用固定材料连接PA、PB,对抛物线造型进行支撑加固,用料最省时点O,P之间的距离是 .(2)如图③,在水平线OH上增添一张2米长的椅子EF(E在F右侧),用固定材料连接AE、BF,对抛物线造型进行支撑加固,用料最省时点O,E之间的距离是 .三、解答题(本大题有8小题,共66分) 17.计算:(﹣1)﹣2―33+tan60°﹣(3﹣π)0.18.解不等式组{2x +1<3x12x <2并求出最大整数解.19.如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D . (1)小明所求作的直线DE 是线段AB 的 ;(2)联结AD ,AD =7,sin ∠DAC =17,BC =9,求AC 的长.20.某学校为了了解600名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在15.5~18.5这一组的频率为0.05.请回答下列问题:(1)在这个调查中,样本容量是 ;平均成绩是 ; (2)请补全成绩在21.5~24.5这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了29.403分,求该校学生体育成绩的年平均增长率.21.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=35,OD=3,求AE的长.22.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC 中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.23.如图1,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点O是边AC上一个动点(不与A、C重合),点D为射线AB上一点,且OA=OD,以点C为圆心,CD为半径作⊙C,设OA=x.(1)如图2,当点D与点B重合时,求x的值;(2)当点D在线段AB上,如果⊙C与AB的另一个交点E在线段AD上时,设AE=y,试求y与x之间的函数解析式,并写出x的取值范围;(3)在点O的运动过程中,如果⊙C与线段AB只有一个公共点,请直接写出x的取值范围.24.如图①,在平面直角坐标系中,抛物线y=x2的对称轴为直线l,将直线l绕着点P (0,2)顺时针旋转∠α的度数后与该抛物线交于AB两点(点A在点B的左侧),点Q是该抛物线上一点(1)若∠α=45°,求直线AB的函数表达式;(2)若点p将线段分成2:3的两部分,求点A的坐标(3)如图②,在(1)的条件下,若点Q在y轴左侧,过点p作直线l∥x轴,点M是直线l上一点,且位于y轴左侧,当以P,B,Q为顶点的三角形与△PAM相似时,求M 的坐标.2019-2020学年浙江省金华市婺城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)下列各数中,属于无理数的是( )A.2B.4C.0D.1【考点】算术平方根;无理数.【答案】A【分析】无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【解答】解:A.2是无理数;B.4=2,是整数,属于有理数;C.0是整数,属于有理数;D.1是整数,属于有理数.故选:A.2.(3分)根据国家外汇管理局公布的数据,截止2019年9月末,我国外汇储备规模为30924亿美元,较年初上升197亿美元,升幅0.6%,数据30924亿用科学记数法表示为( )A.30924×108B.3.0924×1012C.3.0924×1011D.3.0924×1013【考点】科学记数法—表示较大的数.【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:30924亿=3092400000000=3.0924×1012.故选:B.3.(3分)计算9个︷a+a+⋯+ab⋅b⋅⋯⋅b︸7个=( )A.9a7bB.a97bC.9ab7D.a9b7【考点】规律型:数字的变化类.【答案】C【分析】根据算式计算即可.【解答】解:9个︷a+a+⋯+ab⋅b⋅⋯⋅b︸7个=9ab7,故选:C.4.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A.等腰三角形B.正三角形C.平行四边形D.正方形【考点】轴对称图形;中心对称图形.【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选:D.5.(3分)下列函数中,y的值随着x逐渐增大而减小的是( )A.y=2x B.y=x2C.y=―2xD.y=1﹣x【考点】一次函数的性质;正比例函数的性质;反比例函数的性质;二次函数的性质.【答案】D【分析】反比例函数的增减性都有限制条件(即范围),一次函数当一次项系数为负数时,y随着x增大而减小.【解答】解:A、函数y=2x的图象是y随着x增大而增大,故本选项错误;B、函数y=x2的对称轴为x=0,当x≤0时y随x增大而减小故本选项错误;C、函数y=―2x,当x<0或x>0,y随着x增大而增大故本选项错误;D、函数y=1﹣x的图象是y随着x增大而减小,故本选项正确;故选:D.6.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是4 3【考点】算术平均数;中位数;众数;方差.【答案】C【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为4 3.故选:C.7.(3分)把多项式4a2﹣1分解因式,结果正确的是( )A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)2【考点】因式分解﹣运用公式法.【答案】B【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2;【解答】解:4a2﹣1=(2a+1)(2a﹣1),故选:B.8.(3分)通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a﹣b)2=a2﹣2ab+b2【考点】单项式乘多项式;完全平方公式的几何背景;平方差公式的几何背景.【答案】A【分析】根据阴影部分面积的两种表示方法,即可解答.【解答】解:图1中阴影部分的面积为:a2﹣b2,图2中的面积为:(a+b)(a﹣b),则(a+b)(a﹣b)=a2﹣b2故选:A.9.(3分)把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )A.141°B.144°C.147°D.150°【考点】多边形内角与外角.【答案】B【分析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【解答】解:(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°.故选:B.10.(3分)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x (单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A.18°B.36°C.41°D.58°【考点】二次函数的应用.【答案】C【分析】根据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题.【解答】解:由图象可得,该函数的对称轴x>18+542且x<54,∴36<x<54,故选:C.二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)在函数y=2x―1中,自变量x的取值范围是 x≥12 .【考点】二次根式有意义的条件;函数自变量的取值范围.【答案】见试题解答内容【分析】根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x的范围.【解答】解:根据题意得:2x﹣1≥0,解得,x≥1 2.12.(4分)在数﹣1、1、2中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数y=x﹣2图象上的概率是 16 .【考点】一次函数图象上点的坐标特征;列表法与树状图法.【答案】见试题解答内容【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x﹣2图象上的点个数,即可求出所求的概率.【解答】解:列表得:﹣112﹣1﹣﹣﹣(1,﹣1)(2,﹣1)1(﹣1,1)﹣﹣﹣(2,1)2(﹣1,2)(1,2)﹣﹣﹣所有等可能的情况有6种,其中该点刚好在一次函数y=x﹣2图象上的情况有:(1,﹣1)共1种,则P(该点刚好在一次函数y=x﹣2图象上)=1 6.故答案为:1 6.13.(4分)如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是 ﹣8 .【考点】反比例函数的图象;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【答案】见试题解答内容【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到12|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=12|k|,∴12|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.14.(4分)如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为 3 .【考点】菱形的性质;解直角三角形.【答案】见试题解答内容【分析】连接AC与BD相交于点O,根据菱形的对角线互相垂直平分可得AC⊥BD,BO=12BD,CO=12AC,再利用勾股定理列式求出AC、BD,然后根据锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=12BD,CO=12AC,由勾股定理得,AC=32+32=32,BD=12+12=2,所以,BO=12×2=22,CO=12×32=322,所以,tan∠DBC=COBO=32222=3.故答案为:3.15.(4分)如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直与桌面,A点距离桌面的高度为10公分,若此钟面显示3点45分时,A点距桌面的高度为16公分,如图2,钟面显示3点50分时,A点距桌面的高度 19公分 .【考点】钟面角;解直角三角形.【答案】见试题解答内容【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AD=10,进而得出A′C=16,从而得出MA″=3,得出答案即可.【解答】解:连接A″A′,∵当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.∴AD=10,∵钟面显示3点45分时,A点距桌面的高度为16公分,∴A′C=16,∴AO=A″O=6,则钟面显示3点50分时,∠A″OA′=30°,∴A′A″=3,∴A点距桌面的高度为:16+3=19公分.故答案是:19公分.16.(4分)如图①,是一建筑物造型的纵截面,曲线OBA是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线OH,AC,BD是与水平线OH垂直的两根支柱,AC=4米,BD=2米,OD=2米.(1)如图②,为了安全美观,准备拆除支柱AC、BD,在水平线OH上另找一点P作为地面上的支撑点,用固定材料连接PA、PB,对抛物线造型进行支撑加固,用料最省时点O,P之间的距离是 4 .(2)如图③,在水平线OH上增添一张2米长的椅子EF(E在F右侧),用固定材料连接AE、BF,对抛物线造型进行支撑加固,用料最省时点O,E之间的距离是 163 .【考点】二次函数的应用.【答案】见试题解答内容【分析】(1)先将抛物线逆时针旋转90度,再根据垂线段两点之间线段最短找到点P,即可求出用料最省时点O,P之间的距离;(2)根据对称性画出点E,结合一次函数解析式即可求得用料最省时点O,E之间的距离.【解答】解:(1)如图建立平面直角坐标系(以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴),过点B′作B′D′⊥y轴于点D′,延长B'D'到M'使M'D'=B'D',连接A'M'交OC'于点P',则点P'即为所求.设抛物线的函数解析式为y=ax2,由题意知旋转后点B'的坐标为(﹣2,2).代入解析式得a=1 2∴抛物线的函数解析式为:y=12x2,当x=﹣4时,y=8,∴点A'的坐标为(﹣4,8),∵B'D'=2∴点M'的坐标为(2,2)把点M'(2,2),A'(﹣4,8)代入直线y=kx+b中,得直线M'A'的函数解析式为y=﹣x+4,把x=0代入y=﹣x+4,得y=4,∴点P'的坐标为(0,4),∴用料最省时,点O、P之间的距离是4米.故答案为:4;(2)过点B'作B'P平行于y轴且B'P=2,作P点关于y轴的对称点P',连接A'P'交y轴于点E,则点E即为所求.∵B 'P =2∴点P 的坐标为(﹣2,4), ∴P '点坐标为(2,4)代入P '(2,4),A '(﹣4,8),解得直线A 'P '的函数解析式为y =―23x +163,把x =0代入y =―23x +163,得y =163,∴点E 的坐标为(0,163),∴用料最省时,点O 、E 之间的距离是163米.故答案为:163. 三、解答题(本大题有8小题,共66分) 17.计算:(﹣1)﹣2―33+tan60°﹣(3﹣π)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 【答案】见试题解答内容【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可. 【解答】解:(﹣1)﹣2―33+tan60°﹣(3﹣π)0=1(―1)2―333+3―1 =1―3+3―1 =018.解不等式组{2x +1<3x12x <2并求出最大整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【答案】见试题解答内容【分析】求出不等式组的解集,根据不等式组的解集求出即可. 【解答】解:{2x +1<3x①12x <2②由①得:x >1 由②得:x <4不等式组的解为:1<x <4 所以满足范围的最大整数解为3.19.如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D .(1)小明所求作的直线DE 是线段AB 的 线段AB 的垂直平分线(或中垂线) ; (2)联结AD ,AD =7,sin ∠DAC =17,BC =9,求AC 的长.【考点】线段垂直平分线的性质;作图—基本作图;解直角三角形.【答案】见试题解答内容【分析】(1)利用基本作法进行判断;(2)过点D 作DF ⊥AC ,垂足为点F ,如图,根据线段垂直平分线的性质得到AD =BD =7,则CD =2,在Rt △ADF 中先利用正弦的定义可计算出DF ,再利用勾股定理可计算出AF ,接着在Rt △CDF 中利用勾股定理可计算出CF ,然后计算AF +CF . 【解答】解:(1)小明所求作的直线DE 是线段AB 的垂直平分线(或中垂线); 故答案为线段AB 的垂直平分线(或中垂线); (2)过点D 作DF ⊥AC ,垂足为点F ,如图, ∵DE 是线段AB 的垂直平分线, ∴AD =BD =7 ∴CD =BC ﹣BD =2,在Rt△ADF中,∵sin∠DAC=DFAD=17,∴DF=1,在Rt△ADF中,AF=72―12=43,在Rt△CDF中,CF=22―12=3,∴AC=AF+CF=43+3=53.20.某学校为了了解600名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在15.5~18.5这一组的频率为0.05.请回答下列问题:(1)在这个调查中,样本容量是 60 ;平均成绩是 24.3 ;(2)请补全成绩在21.5~24.5这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了29.403分,求该校学生体育成绩的年平均增长率.【考点】一元二次方程的应用;总体、个体、样本、样本容量;频数(率)分布直方图.【答案】见试题解答内容【分析】(1)被考查的样本中数据的个数为样本容量,根据平均数的公式求得平均数即可;(2)用15.5~18.5这一组的频数除以该组的频率即可得到总人数,用总人数减去其他小组的频数即可补全直方图;(3)根据题意列出一元二次方程求解即可.【解答】解:(1)样本容量:3÷0.05=60;∴21.5~24.5组别人数=60﹣3﹣6﹣10﹣14=27人,总成绩=3×(15.5+18.5)2+6×(18.5+21.5)2+27×(21.5+24.5)2+10×(24.5+27.5)2+14×(27.5+30.5)2=1458,平均成绩=1458÷60=24.3,故答案为:60,24.3;(2)补全频数分布直方图如下(3)设年平均增长率为x,由题意得24.3(1+x)2=29.403解方程得x=10%,∴两年的年平均增长率为10%21.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=35,OD=3,求AE的长.【考点】勾股定理;垂径定理;圆周角定理;切线的性质;解直角三角形.【答案】见试题解答内容【分析】(1)连接OC,交AE于点H.根据垂径定理得到OC⊥AE.根据切线的性质得到OC⊥GC,于是得到结论;(2)根据三角函数的定义得到sin∠OCD=sin∠EAB=35.连接BE.AB是⊙O的直径,解直角三角形即可得到结论.【解答】(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:∵OC⊥GC,GC∥AE,∴OC⊥AE,∵CD⊥AB,∴∠CHF=∠FDA=90°,∵∠CFH=∠AFD,∴∠OCD=∠EAB.∴sin∠OCD=sin∠EAB=3 5.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE,∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵sin∠EAB=BEAB=35,∴BE=6,∴AE=8.22.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC 中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.【考点】四边形综合题.【答案】见试题解答内容【分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=12AC,即可得出OE=12BD,即可得出结论;(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【解答】解:(1)∵AD=BD,∴∠B=∠BAD,∵AD=CD,∴∠C=∠CAD,在△ABC中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC,BD,OE,∵四边形ABCD是矩形,∴OA=OB=OC=OD=12AC=12BD,∵AE⊥CE,∴∠AEC=90°,∴OE=12 AC,∴OE=12 BD,∴∠BED=90°,∴BE⊥DE;(3)如图3,∵四边形ABCD是矩形,∴AD=BC,∠BAD=90°,∵△ADE是等边三角形,∴AE=AD=BC,∠DAE=∠AED=60°,由(2)知,∠BED=90°,∴∠BAE=∠BEA=30°,过点B作BF⊥AE于F,∴AE=2AF,在Rt△ABF中,∠BAE=30°,∴AB=2BF,AF=3BF,∴AE=23BF,∴AE=3AB,∴BC=3AB.23.如图1,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点O是边AC上一个动点(不与A、C重合),点D为射线AB上一点,且OA=OD,以点C为圆心,CD为半径作⊙C,设OA=x.(1)如图2,当点D与点B重合时,求x的值;(2)当点D在线段AB上,如果⊙C与AB的另一个交点E在线段AD上时,设AE=y,试求y与x之间的函数解析式,并写出x的取值范围;(3)在点O的运动过程中,如果⊙C与线段AB只有一个公共点,请直接写出x的取值范围.【考点】圆的综合题.【答案】见试题解答内容【分析】(1)在Rt△BOC中,利用勾股定理得x2=32+(4﹣x)2,即可解决问题.(2)如图2中,过点O,C分别作OH⊥AB,CG⊥AB,垂足为点H,G.在Rt△OHA中,可得AH=45x,AD=85x,证明△AGC∽△ACB,可得AGAC=ACAB,即165―y+165―y+y=85x,即可解决问题.(3)分三种情形分别求解即可解决问题.【解答】解:(1)如图1中,在Rt△ABC中,∵∠ACB=90°,AB=5,BC=3,∴AC=AB2―BC2=52―32=4,∵OA=OB=x,∴OC=4﹣x,在Rt△BOC中,∵OB2=BC2+OC2,∴x2=32+(4﹣x)2,∴x=25 8.(2)如图2,过点O,C分别作OH⊥AB,CG⊥AB,垂足为点H,G.∵OH⊥AD,CG⊥AB,∴AH=DH,DG=EG,又∵在Rt△ABC中cos∠A=4 5;∴在Rt△OHA中AH=45 x,∴AD=85 x,又∵∠AGC=∠ACB=90°,∠A=∠A,∴△AGC∽△ACB,∴AGAC=ACAB,∴AG=16 5,又∵AE=y,∴GE=165―y,∴DG=GE=165―y,又∵DG+GE+EA=AD,即165―y+165―y+y=85x.化简得y=―85x+325(2<x≤285).(3)①如图3中,当⊙C经过点B时,易知:BH=DH=9 5∴BD=18 5,∴AD=5―185=75,∴85x =75, ∴x =78. 观察图象可知:当0<x <78时,⊙C 与线段AB 只有一个公共点. ②如图4中,当⊙C 与AB 相切时,CD ⊥AB ,易知OA =2,此时x =2.③如图5中,当258<x <4时,⊙C 与线段AB 只有一个公共点.综上所述,当0<x <78或x =2或258<x <4时,⊙C 与线段AB 只有一个公共点. 24.如图①,在平面直角坐标系中,抛物线y =x 2的对称轴为直线l ,将直线l 绕着点P (0,2)顺时针旋转∠α的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q是该抛物线上一点(1)若∠α=45°,求直线AB的函数表达式;(2)若点p将线段分成2:3的两部分,求点A的坐标(3)如图②,在(1)的条件下,若点Q在y轴左侧,过点p作直线l∥x轴,点M是直线l上一点,且位于y轴左侧,当以P,B,Q为顶点的三角形与△PAM相似时,求M 的坐标.【考点】二次函数综合题.【答案】见试题解答内容【分析】(1)直线的表达式为:y=x+b,将(0,2)代入上式并解得:b=2,即可求解;(2)分AP:PB=2:3,AP:PB=3:2两种情况,分别求解即可;(3)分∠QBP=45°、∠BQP=45°两种情况,分别求解即可.【解答】解:(1)∵∠α=45°,则直线的表达式为:y=x+b,将(0,2)代入上式并解得:b=2,故直线AB的表达式为:y=x+2;(2)①AP:PB=2:3,设A(﹣2a,4a2)B(3a,9a2),4a2―2―2a =9a2―23a,解得:a1=33,a2=―33(舍去),∴A(―233,43);②AP:PB=3:2,设A(﹣3a,9a2),B(2a,4a2),9a2―2―3a =4a2―22a,解得:a1=33,a2=―33(舍去),∴A(―3,3),综上(―233,43)或(―3,3);(3)∠MPA=45°,∠QPB≠45°A(﹣1,1),B(2,4),①∠QBP=45°时,此时B,Q关于y轴对称,△PBQ为等腰直角三角形,∴M1(﹣1,2)M2(﹣2,2),②∠BQP=45°时,此时Q(﹣2,4)满足,左侧还有Q'也满足,∵BQP=∠BQ'P,∴Q',B,P,Q四点共圆,则圆心为BQ中点D(0,4);设Q'(x,x2),(x<0),Q'D=BD,∴(x﹣0)2+(x2﹣4)2=22(x2﹣4)(x2﹣3)=0,∵x<0且不与Q重合,∴x=―3,∴Q′(―3,3),Q'P=2,∵Q'P=DQ'=DP=2,∴△DPQ'为正三角形,则∠PBQ′=12×60°=30°,过P作PE⊥BQ',则PE=Q′E=2,BE=2,∴Q′B=2+6,当△Q'BP~△PMA时,PQ′PA =Q′BPM,22=2+6PM,则PM=1+3,故点M(―1―3,2);当△Q'PB~△PMA时,PQ′PM =Q′BPA,2PM=2+62,则PM=3―1,故点M(1―3,2);综上点M的坐标:(﹣1,2),(﹣2,2),(―1―3,2),(1―3,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年浙江省金华市婺城区九年级(上)期末数学试卷一、选择题(共10小题).1.(3分)下列各数中,属于无理数的是( ) A .2B.4C .0D .12.(3分)根据国家外汇管理局公布的数据,截止2019年9月末,我国外汇储备规模为30924亿美元,较年初上升197亿美元,升幅0.6%,数据30924亿用科学记数法表示为( ) A .83092410⨯B .123.092410⨯C .113.092410⨯D .133.092410⨯3.(3分)计算97(a a ab b b++⋯+=⋅⋅⋯⋅个个)A .97a bB .97a bC .79a bD .97a b4.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰三角形B .正三角形C .平行四边形D .正方形5.(3分)下列函数中,y 的值随着x 逐渐增大而减小的是( ) A .2y x =B .2y x =C .2y x=-D .1y x =-6.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是437.(3分)把多项式241a -分解因式,结果正确的是( ) A .(41)(41)a a +-B .(21)(21)a a +-C .2(21)a -D .2(21)a +8.(3分)通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+9.(3分)把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则(APG ∠= )A .141︒B .144︒C .147︒D .150︒10.(3分)使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3)m 与旋钮的旋转角度x (单位:度)(090)x ︒<︒近似满足函数关系2(0)y ax bx c a =++≠.如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18︒B .36︒C .41︒D .58︒二、填空题(本大题有6小题,每小题4分,共24分) 11.(4分)在函数21y x =-中,自变量x 的取值范围是 .12.(4分)在数1-、1、2中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数2y x =-图象上的概率是 .13.(4分)如图,点A是反比例函数kyx=的图象上的一点,过点A作AB x⊥轴,垂足为B.点C为y轴上的一点,连接AC,BC.若ABC∆的面积为4,则k的值是.14.(4分)如图,网格中的四个格点组成菱形ABCD,则tan DBC∠的值为.15.(4分)如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直与桌面,A点距离桌面的高度为10公分,若此钟面显示3点45分时,A点距桌面的高度为16公分,如图2,钟面显示3点50分时,A点距桌面的高度.16.(4分)如图①,是一建筑物造型的纵截面,曲线OBA是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线OH,AC,BD是与水平线OH垂直的两根支柱,4AC=米,2BD=米,2OD=米.(1)如图②,为了安全美观,准备拆除支柱AC、BD,在水平线OH上另找一点P作为地面上的支撑点,用固定材料连接PA、PB,对抛物线造型进行支撑加固,用料最省时点O,P之间的距离是.(2)如图③,在水平线OH上增添一张2米长的椅子(EF E在F右侧),用固定材料连接AE、BF,对抛物线造型进行支撑加固,用料最省时点O,E之间的距离是.三、解答题(本大题有8小题,共66分) 17.计算:203(1)tan60(3)3π---+︒--.18.解不等式组213122x x x +<⎧⎪⎨<⎪⎩并求出最大整数解.19.如图,在锐角ABC ∆中,小明进行了如下的尺规作图: ①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ; ②作直线PQ 分别交边AB 、BC 于点E 、D . (1)小明所求作的直线DE 是线段AB 的 ; (2)联结AD ,7AD =,1sin 7DAC ∠=,9BC =,求AC 的长.20.某学校为了了解600名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在15.5~18.5这一组的频率为0.05.请回答下列问题:(1)在这个调查中,样本容量是 ;平均成绩是 ; (2)请补全成绩在21.5~24.5这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了29.403分,求该校学生体育成绩的年平均增长率.21.如图,AB是O的直径,AE是弦,C是弧AE的中点,过点C作O的切线交BA的延长线于点G,过点C作CD AB⊥于点D,交AE于点F.(1)求证://GC AE;(2)若3sin5EAB∠=,3OD=,求AE的长.22.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在ABC∆中,AD是BC边上的中线,若AD BD CD==,求证:90BAC∠=︒.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE CE⊥,求证:BE DE⊥,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果AED∆恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.23.如图1,在Rt ABC∆中,90ACB∠=︒,5AB=,3BC=,点O是边AC上一个动点(不与A 、C 重合),点D 为射线AB 上一点,且OA OD =,以点C 为圆心,CD 为半径作C ,设OA x =.(1)如图2,当点D 与点B 重合时,求x 的值;(2)当点D 在线段AB 上,如果C 与AB 的另一个交点E 在线段AD 上时,设AE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)在点O 的运动过程中,如果C 与线段AB 只有一个公共点,请直接写出x 的取值范围. 24.如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点(0,2)P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式; (2)若点p 将线段分成2:3的两部分,求点A 的坐标(3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标.参考答案一、选择题(本大题有10小题,每小题3分,共30分) 1.(3分)下列各数中,属于无理数的是( ) ABC .0D .1解:2B =,是整数,属于有理数; .0C 是整数,属于有理数; .1D 是整数,属于有理数.故选:A .2.(3分)根据国家外汇管理局公布的数据,截止2019年9月末,我国外汇储备规模为30924亿美元,较年初上升197亿美元,升幅0.6%,数据30924亿用科学记数法表示为( ) A .83092410⨯B .123.092410⨯C .113.092410⨯D .133.092410⨯解:30924亿123092400000000 3.092410==⨯. 故选:B .3.(3分)计算97(a a ab b b++⋯+=⋅⋅⋯⋅个个)A .97a bB .97a bC .79a bD .97a b解:9779a a a ab b b b++⋯+=⋅⋅⋯⋅个个,故选:C .4.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰三角形B .正三角形C .平行四边形D .正方形解:A 、是轴对称图形,不是中心对称图形.故错误; B 、是轴对称图形,不是中心对称图形.故错误; C 、不是轴对称图形,是中心对称图形.故错误;D 、既是轴对称图形,又是中心对称图形.故正确.故选:D .5.(3分)下列函数中,y 的值随着x 逐渐增大而减小的是( ) A .2y x =B .2y x =C .2y x=-D .1y x =-解:A 、函数2y x =的图象是y 随着x 增大而增大,故本选项错误;B 、函数2y x =的对称轴为0x =,当0x 时y 随x 增大而减小故本选项错误;C 、函数2y x=-,当0x <或0x >,y 随着x 增大而增大故本选项错误; D 、函数1y x =-的图象是y 随着x 增大而减小,故本选项正确;故选:D .6.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是43解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为43. 故选:C .7.(3分)把多项式241a -分解因式,结果正确的是( ) A .(41)(41)a a +-B .(21)(21)a a +-C .2(21)a -D .2(21)a +解:241(21)(21)a a a -=+-, 故选:B .8.(3分)通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+解:图1中阴影部分的面积为:22a b -, 图2中的面积为:()()a b a b +-, 则22()()a b a b a b +-=- 故选:A .9.(3分)把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则(APG ∠= )A .141︒B .144︒C .147︒D .150︒解:(62)1806120-⨯︒÷=︒, (52)1805108-⨯︒÷=︒,(62)180********APG ∠=-⨯︒-︒⨯-︒⨯ 720360216=︒-︒-︒144=︒.故选:B .10.(3分)使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3)m 与旋钮的旋转角度x (单位:度)(090)x ︒<︒近似满足函数关系2(0)y ax bx c a =++≠.如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18︒B .36︒C .41︒D .58︒解:由图象可得, 该函数的对称轴18542x +>且54x <, 3654x ∴<<,故选:C .二、填空题(本大题有6小题,每小题4分,共24分) 11.(4分)在函数21y x =-中,自变量x 的取值范围是 2x . 解:根据题意得:210x -, 解得,12x. 12.(4分)在数1-、1、2中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数2y x =-图象上的概率是6. 解:列表得: 1- 1 2 1----(1,1)- (2,1)- 1 (1,1)- ---(2,1) 2(1,2)-(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数2y x =-图象上的情况有:(1,1)-共1种, 则16P =. 故答案为:16. 13.(4分)如图,点A 是反比例函数ky x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若ABC ∆的面积为4,则k 的值是 8- .解:连结OA ,如图,AB x ⊥轴,//OC AB ∴,4OAB ABC S S ∆∆∴==,而1||2OAB S k ∆=, ∴1||42k =, 0k <,8k ∴=-.故答案为:8-.14.(4分)如图,网格中的四个格点组成菱形ABCD ,则tan DBC ∠的值为 3 .解:如图,连接AC 与BD 相交于点O ,四边形ABCD 是菱形,AC BD ∴⊥,12BO BD =,12CO AC =,由勾股定理得,223332 AC=+=,22112BD=+=,所以,12222BO=⨯=,1323222CO=⨯=,所以,322tan322CODBCBO∠===.故答案为:3.15.(4分)如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直与桌面,A点距离桌面的高度为10公分,若此钟面显示3点45分时,A点距桌面的高度为16公分,如图2,钟面显示3点50分时,A点距桌面的高度19公分.解:连接A A''',当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.10AD∴=,钟面显示3点45分时,A点距桌面的高度为16公分,16A C∴'=,6AO A O∴=''=,则钟面显示3点50分时,30A OA∠'''=︒,3A A∴'''=,A ∴点距桌面的高度为:16319+=公分.故答案是:19公分.16.(4分)如图①,是一建筑物造型的纵截面,曲线OBA 是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线OH ,AC ,BD 是与水平线OH 垂直的两根支柱,4AC =米,2BD =米,2OD =米.(1)如图②,为了安全美观,准备拆除支柱AC 、BD ,在水平线OH 上另找一点P 作为地面上的支撑点,用固定材料连接PA 、PB ,对抛物线造型进行支撑加固,用料最省时点O ,P 之间的距离是 4 .(2)如图③,在水平线OH 上增添一张2米长的椅子(EF E 在F 右侧),用固定材料连接AE 、BF ,对抛物线造型进行支撑加固,用料最省时点O ,E 之间的距离是 .解:(1)如图建立平面直角坐标系(以点O 为原点,OC 所在直线为y 轴,垂直于OC 的直线为x 轴),过点B '作B D y ''⊥轴于点D ',延长B D ''到M '使M D B D ''''=,连接A M ''交OC '于点P ',则点P '即为所求.设抛物线的函数解析式为2y ax =,由题意知旋转后点B '的坐标为(2,2)-. 代入解析式得12a = ∴抛物线的函数解析式为:212y x =, 当4x =-时,8y =,∴点A '的坐标为(4,8)-,2B D ''=∴点M '的坐标为(2,2)把点(2,2)M ',(4,8)A '-代入直线y kx b =+中,得直线M A ''的函数解析式为4y x =-+,把0x =代入4y x =-+,得4y =,∴点P '的坐标为(0,4),∴用料最省时,点O 、P 之间的距离是4米.故答案为:4;(2)过点B '作B P '平行于y 轴且2B P '=,作P 点关于y 轴的对称点P ',连接A P ''交y 轴于点E ,则点E 即为所求.2B P '=∴点P 的坐标为(2,4)-,P '∴点坐标为(2,4)代入(2,4)P ',(4,8)A '-,解得直线A P ''的函数解析式为21633y x =-+, 把0x =代入21633y x =-+,得163y =, ∴点E 的坐标为16(0,)3, ∴用料最省时,点O 、E 之间的距离是163米. 故答案为:163. 三、解答题(本大题有8小题,共66分)17.计算:20(1)tan 60(3)3π--+︒--. 解:20(1)tan 60(3)3π---+︒--213331(1)=-+- 1331=-0=18.解不等式组213122x x x +<⎧⎪⎨<⎪⎩并求出最大整数解. 解:213122x x x +<⎧⎪⎨<⎪⎩①② 由①得:1x >由②得:4x <不等式组的解为:14x <<所以满足范围的最大整数解为3.19.如图,在锐角ABC ∆中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ; ②作直线PQ 分别交边AB 、BC 于点E 、D .(1)小明所求作的直线DE 是线段AB 的 线段AB 的垂直平分线(或中垂线) ;(2)联结AD ,7AD =,1sin 7DAC ∠=,9BC =,求AC 的长.解:(1)小明所求作的直线DE 是线段AB 的垂直平分线(或中垂线);故答案为线段AB 的垂直平分线(或中垂线);(2)过点D 作DF AC ⊥,垂足为点F ,如图,DE 是线段AB 的垂直平分线,7AD BD ∴==2CD BC BD ∴=-=,在Rt ADF ∆中,1sin 7DF DAC AD ∠==, 1DF ∴=, 在Rt ADF ∆中,227143AF =-=,在Rt CDF ∆中,22213CF =-=,43353AC AF CF ∴=+=+=.20.某学校为了了解600名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在15.5~18.5这一组的频率为0.05.请回答下列问题:(1)在这个调查中,样本容量是 60 ;平均成绩是 ;(2)请补全成绩在21.5~24.5这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了29.403分,求该校学生体育成绩的年平均增长率.解:(1)样本容量:30.0560÷=; 21.5~24.5∴组别人数6036101427=----=人,总成绩(15.518.5)(18.521.5)(21.524.5)(24.527.5)(27.530.5)36271014145822222+++++=⨯+⨯+⨯+⨯+⨯=,平均成绩14586024.3=÷=,故答案为:60,24.3;(2)补全频数分布直方图如下(3)设年平均增长率为x,由题意得224.3(1)29.403x+=解方程得10%x=,∴两年的年平均增长率为10%21.如图,AB是O的直径,AE是弦,C是弧AE的中点,过点C作O的切线交BA的延长线于点G,过点C作CD AB⊥于点D,交AE于点F.(1)求证://GC AE;(2)若3sin5EAB∠=,3OD=,求AE的长.【解答】(1)证明:连接OC,交AE于点H.C是弧AE的中点,OC AE∴⊥.GC是O的切线,OC GC∴⊥,90OHA OCG∴∠=∠=︒,//GC AE∴;(2)解:OC AE ⊥,CD AB ⊥,OCD EAB ∴∠=∠. ∴3sin sin 5OCD EAB ∠=∠=. 在Rt CDO ∆中,3OD =,5OC ∴=,10AB ∴=,连接BE AB 是O 的直径,90AEB ∴∠=︒.在Rt AEB ∆中,3sin 5BE EAB AB ∠==, 6BE ∴=,8AE ∴=.22.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果AED ∆恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB 与BC 的数量关系.解:(1)AD BD =,B BAD ∴∠=∠,AD CD =,C CAD ∴∠=∠,在ABC ∆中,180B C BAC ∠+∠+∠=︒,180B C BAD CAD B C B C ∴∠+∠+∠+∠=∠+∠+∠+∠=︒ 90B C ∴∠+∠=︒,90BAC ∴∠=︒,(2)如图②,连接AC ,BD ,OE ,四边形ABCD 是矩形,1122OA OB OC OD AC BD ∴=====, AE CE ⊥,90AEC ∴∠=︒, 12OE AC ∴=, 12OE BD ∴=, 90BED ∴∠=︒,BE DE ∴⊥;(3)如图3,四边形ABCD 是矩形,AD BC ∴=,90BAD ∠=︒,ADE ∆是等边三角形,AE AD BC ∴==,60DAE AED ∠=∠=︒,由(2)知,90BED ∠=︒,30BAE BEA ∴∠=∠=︒,过点B 作BF AE ⊥于F ,2AE AF ∴=,在Rt ABF ∆中,30BAE ∠=︒,2AB BF ∴=,3AF BF =,23AE BF ∴=,3AE AB ∴=,3BC AB ∴=.23.如图1,在Rt ABC ∆中,90ACB ∠=︒,5AB =,3BC =,点O 是边AC 上一个动点(不与A 、C 重合),点D 为射线AB 上一点,且OA OD =,以点C 为圆心,CD 为半径作C ,设OA x =.(1)如图2,当点D 与点B 重合时,求x 的值;(2)当点D 在线段AB 上,如果C 与AB 的另一个交点E 在线段AD 上时,设AE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)在点O 的运动过程中,如果C 与线段AB 只有一个公共点,请直接写出x 的取值范围. 解:(1)如图1中,在Rt ABC ∆中,90ACB ∠=︒,5AB =,3BC =, 2222534AC AB BC ∴=-=-=,OA OB x ==,4OC x ∴=-,在Rt BOC ∆中,222OB BC OC =+,2223(4)x x ∴=+-,∴258x =. (2)如图2,过点O ,C 分别作OH AB ⊥,CG AB ⊥,垂足为点H ,G .OH AD ⊥,CG AB ⊥,AH DH ∴=,DG EG =,又在Rt ABC ∆中4cos 5A ∠=; ∴在Rt OHA ∆中45AH x =, ∴85AD x =, 又90AGC ACB ∠=∠=︒,A A ∠=∠,AGC ACB ∴∆∆∽,∴AG AC AC AB=, ∴165AG =, 又AE y =,∴165GE y =-, ∴165DG GE y ==-, 又DG GE EA AD ++-, 即16168555y y y x -+-+=. 化简得83228(2)555y x x =-+<. (3)①如图3中,当C 经过点B 时,易知:95BH DH ==∴185BD =, ∴187555AD =-=,∴8755x =, ∴78x =. 观察图象可知:当708x <<时,C 与线段AB 只有一个公共点. ②如图4中,当C 与AB 相切时,CD AB ⊥,易知2OA =,此时2x =.③如图5中,当2548x <<时,C 与线段AB 只有一个公共点.综上所述,当708x <<或2x =或2548x <<时,C 与线段AB 只有一个公共点. 24.如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点(0,2)P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式;(2)若点p 将线段分成2:3的两部分,求点A 的坐标 (3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标.解:(1)45α∠=︒,则直线的表达式为:y x b =+, 将(0,2)代入上式并解得:2b =,故直线AB 的表达式为:2y x =+;(2)①:2:3AP PB =,设(2A a -,24)(3a B a ,29)a ,22429223a a a a--=-, 解得:13a =,23a =, ∴234()3A ; ②:3:2AP PB =,设2(3,9)A a a -,2(2,4)B a a ,22924232a a a a--=-, 解得:13a =,23a =, ∴(3,3)A -, 综上234()3或(3,3);(3)45MPA ∠=︒,45(1,1)QPB A ∠≠︒-,(2,4)B , ①45QBP ∠=︒时,此时B ,Q 关于y 轴对称,PBQ ∆为等腰直角三角形,1(1M ∴-,22)(2,2)M -,②45BQP ∠=︒时,此时(2,4)Q -满足,左侧还有Q '也满足,BQP BQ P '=∠,Q '∴,B ,P ,Q 四点共圆,则圆心为BQ 中点(0,4)D ; 设2(,)Q x x ',(0)x <,Q D BD '=,222222(0)(4)2(4)(3)0x x x x ∴-+-=--=, 0x <且不与Q 重合, ∴3x =-, ∴(3,3)Q '-,2Q P '=,2Q P DQ DP ''===,DPQ '∴∆为正三角形, 则160302PBQ '∠=⨯︒=︒, 过P 作PE BQ '⊥, 则2PE Q E '==,2BE =∴26Q B '=+,当△~Q BP PMA '∆时,PQ Q B PA PM ''=262+=, 则13PM =+ 故点(13,2)M --; 当△~Q PB PMA '∆时, PQ Q B PM PA ''=,2262PM +=,则31PM =-, 故点(13,2)M -; 综上点M 的坐标:(1,2)-,(2,2)-,(13,2)-,(13,2).。