法向量及平行关系
证明面面平行的方法

证明面面平行的方法面面平行是几何学中的一个重要概念,它指的是两个平面在空间中没有交点,且它们的法向量平行。
在实际问题中,我们常常需要证明两个平面是平行的,下面将介绍几种常用的方法来证明面面平行的情况。
首先,最直接的方法是利用平面的法向量来进行证明。
设有两个平面分别为平面α和平面β,它们的法向量分别为n1和n2。
要证明这两个平面平行,只需证明它们的法向量平行即可。
具体来说,如果n1与n2平行,则可以得出平面α和平面β是平行的。
因此,我们可以通过计算这两个法向量的夹角来判断它们是否平行。
若夹角为0度或180度,则说明这两个法向量平行,从而得出这两个平面是平行的。
其次,我们可以利用平面上的直线来证明平面的平行关系。
如果两个平面平行,那么它们在空间中的任意一条直线在这两个平面上的投影也是平行的。
因此,我们可以通过构造一条直线,然后在这两个平面上找到它们的投影,如果这两个投影是平行的,那么就可以得出这两个平面是平行的结论。
另外,我们还可以利用平行四边形的性质来证明平面的平行关系。
如果在空间中存在两个平行四边形,那么它们所在的平面也是平行的。
因此,我们可以通过构造平行四边形来证明两个平面的平行关系。
具体来说,我们可以在这两个平面上分别找到两个平行四边形,如果这两个平行四边形是平行的,那么就可以得出这两个平面是平行的结论。
最后,我们还可以利用向量的线性组合来证明平面的平行关系。
如果两个平面平行,那么它们上任意一点的法向量之间存在线性关系。
因此,我们可以通过选取这两个平面上的三个点,然后计算它们的法向量,如果这三个法向量之间存在线性关系,那么就可以得出这两个平面是平行的结论。
综上所述,我们可以利用平面的法向量、平面上的直线投影、平行四边形的性质以及向量的线性组合等方法来证明两个平面的平行关系。
在实际问题中,我们可以根据具体情况选择合适的方法来进行证明,以便更加方便和准确地得出结论。
通过掌握这些方法,我们可以更好地理解和运用平面的平行关系,为解决实际问题提供更多的思路和方法。
高中数学证明线面平行的方法

高中数学证明线面平行的方法在高中数学学习中,证明线面平行是一个常见的问题。
这个问题需要我们运用一定的数学知识和技巧,来证明两条线段或两个平面之间的平行关系。
下面介绍一些证明线面平行的方法:1. 向量法向量法是证明线面平行的常见方法。
我们可以用向量来表示线段和平面的方向,然后通过向量的内积来判断它们是否平行。
具体来说,如果两个向量的内积为0,那么它们就是垂直的;如果内积不为0,那么它们就是平行的。
例如,如果要证明直线AB与平面P平行,则可以假设向量AB和平面P的法向量n不平行。
然后计算向量AB和n的内积,如果结果为0,则AB与P垂直;如果结果不为0,则AB与P平行。
2. 三角形相似法如果两个平行线段或两个平面之间的平行关系不容易用向量法证明,可以使用三角形相似法。
具体来说,我们可以选择一个三角形,在两个平行线段或平面上各取一个点,然后通过证明两个三角形相似来证明它们平行。
例如,如果要证明平面P和平面Q平行,则可以选择一个三角形ABC,在平面P上取点A和B,在平面Q上取点C,然后证明三角形ABC和三角形ACB相似,从而得出平面P和平面Q平行的结论。
3. 平行四边形法平行四边形法是证明线段平行或平面平行的一种简单方法。
具体来说,我们可以找到一个平行四边形,其中两条边分别是要证明平行的线段或平面,然后证明它的另外两条边也平行,从而得出结论。
例如,如果要证明线段AB与线段CD平行,则可以找到一个平行四边形ABCD,其中AB和CD是相邻的两条边,AC和BD是另外两条边,然后证明AC和BD也平行,从而得出线段AB与线段CD平行的结论。
综上所述,证明线面平行的方法有很多种,我们可以根据具体情况选择合适的方法进行证明。
除了上述方法,还有投影法、反证法等方法。
大家可以尝试学习和运用这些方法,提高数学证明的能力。
两平面平行法向量的关系

两平面平行法向量的关系
两平面平行法向量是指两个平面的法向量相互平行的情况,它是几何学中一个重要的概念,它可以帮助我们理解平面上几何图形的形状、位置和构造。
首先,我们来看一下两平面平行法向量的定义,它指的是两个平面的法向量完全平行,也就是说,两个平面的法向量之间没有夹角,也就是说,它们是整体上平行的。
其次,我们来看一下两平面平行法向量的特征,首先,它们在同一平面上,也就是说,它们不存在夹角;其次,它们之间是完全平行的,也就是说,它们之间没有角度,也就是说,它们的模量是相同的;最后,它们的方向是相同的,也就是说,它们的向量乘积是正的。
最后,我们来看看两平面平行法向量的实际应用,它主要用于几何图形的分析和研究,比如,我们可以利用它来分析平面上的几何图形,比如,我们可以利用它来分析平面上的三角形、矩形、正方形和圆形等等。
另外,它也可以用于计算平面上几何图形的位置、构造和形状,从而帮助我们更好地理解几何图形的内部结构和外部形状。
总之,两平面平行法向量是几何学中一个重要的概念,它可以帮助我们更好地理解平面上几何图形的形状、位置和构造。
线面平行法向量关系

线面平行法向量关系全文共四篇示例,供读者参考第一篇示例:线面平行法向量关系是在数学中经常遇到的概念之一,它描述了两个对象之间的特殊关系。
在三维空间中,我们常常会遇到直线和平面,它们之间的关系可以通过法向量来描述。
如果一条直线与一个平面平行,那么这条直线的方向向量与平面的法向量是平行的,这就是线面平行法向量关系的核心概念。
我们来看一下什么是直线的方向向量和平面的法向量。
在三维空间中,直线可以用一个方向向量来描述,这个向量就是直线上的任意两点之间的矢量,它表示了直线的方向。
而平面有无穷多个法向量,但通常我们选择单位法向量来表示平面的法向量,单位法向量的模长为1。
平面的法向量垂直于平面内的所有向量,它的方向指向平面的外侧。
a = kb其中k是一个常数,它表示了两个向量的长度比例。
这个关系告诉我们,如果两个向量平行,那么它们之间必定存在一个比例关系。
这也是线面平行法向量关系的本质所在。
在向量运算中,线面平行法向量关系可以帮助我们计算向量的长度和方向。
如果我们知道一个平面的法向量和一条直线的方向向量,那么我们可以通过这个关系来确定它们之间的比例关系。
这可以帮助我们更好地理解向量之间的关系,并在计算中得到更简洁的表达。
除了线面平行法向量关系,还有一些相关的概念和定理,如平行直线的判定定理、平面的方程和向量的运算规律等。
这些内容都是数学中的重要知识点,对于理解几何关系和向量运算都有重要的作用。
线面平行法向量关系是数学中一个非常有用的概念,它描述了直线和平面之间的特殊关系。
通过这个关系,我们可以更好地理解几何和向量运算中的问题,解决实际计算中遇到的困难。
希望通过本文的介绍,读者对线面平行法向量关系有了更深入的理解。
【本篇文章共803字】。
第二篇示例:线面平行法向量关系是数学中的一个重要概念,它涉及到向量、线和面的关系。
在几何学中,我们经常需要研究线和面的相互位置关系,而线面平行法向量关系正是其中的一个重要内容。
平行向量的公式

向量平行的公式为:a//b→a×b=xn-ym=0
1、空间向量,如果一条直线与一平面平行,那么直线的方向向量与平面的法向量关系:直线方向向量s与平面法向量n的数量积为0。
即:sn=0。
直线与平面平行时,直线方向向量s与平面法向量n是垂直的关系。
2、必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a 的长度的m倍,即∣b∣=m∣a∣。
那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。
如果b=0,那么λ=0。
3)唯一性:如果b=λa=μa,那么(λ-μ)a=0。
但因a≠0,所以λ=μ。
证毕。
3、向量,最初被应用于物理学。
很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。
大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到;。
立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
3.2.1 空间向量与平行、垂直关系

3.2.1空间向量与平行、垂直关系预习课本P102~108,思考并完成以下问题1.平面的法向量的定义是什么?2.设直线l的方向向量u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l∥α,l ⊥α的充要条件分别是什么?[新知初探]1.平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a=λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u=λv ⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.(2)线面垂直设直线l 的方向向量是a =(a 1,b 1,c 1),平面α的法向量是u =(a 2,b 2,c 2),则l ⊥α⇔a ∥u ⇔a =λu ⇔a 1=λa 2,b 1=λb 2,c 1=λc 2(λ∈R).(3)面面垂直若平面α的法向量u =(a 1,b 1,c 1),平面β的法向量v =(a 2,b 2,c 2),则α⊥β⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)直线l 的方向向量是惟一的( )(2)若点A ,B 是平面α上的任意两点,n 是平面α的法向量,则AB ·n =0( ) (3)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行( )答案:(1)× (2)√ (3)√2.若A (1,0,-1),B (2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A .(2,2,6) B .(-1,1,3) C .(3,1,1) D .(-3,0,1)答案:A3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( )A .-2B .2C .6D .10 答案:D[典例] 已知平面α经过三点A (1,2,3),B (2,0,-,求平面α的一个法向量.[解] 因为A (1,2,3),B (2,0,-1),C (3,-2,0),所以AB =(1,-2,-4),AC =(2,-4,-3).设平面α的法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB =0,n ·AC =0,即⎩⎪⎨⎪⎧x -2y -4z =0,2x -4y -3z =0.得z =0,x =2y ,令y =1,则x =2,所以平面α的一个法向量为n =(2,1,0).利用待定系数法求法向量的解题步骤[活学活用]四边形ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =2,AD =1.在如图所示的坐标系Axyz 中,分别求平面SCD 和平面SAB 的一个法向量.解:A (0,0,0),D (1,0,0),C (2,2,0),S (0,0,2).∵AD ⊥平面SAB ,∴AD =(1,0,0)是平面SAB 的一个法向量. 设平面SCD 的法向量为n =(1,y ,z ),则n ·DC =(1,y ,z )·(1,2,0)=1+2y =0,∴y =-12.又n ·DS =(1,y ,z )·(-1,0,2)=-1+2z =0, ∴z =12.∴n =⎝⎛⎭⎫1,-12,12即为平面SCD 的一个法向量.[典例] 已知正方体ABCD -A 111111的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] 如图所示建立空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1=(0,2,1),DA =(2,0,0),AE =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA ,n 1⊥AE , 即⎩⎨⎧n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1, 令z 1=2,则y 1=-1, 所以n 1=(0,-1,2).因为FC 1·n 1=-2+2=0,所以FC 1⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C B 11=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1,n 2⊥C B 11,得⎩⎪⎨⎪⎧n 2·FC 1=2y 2+z 2=0,n 2·C B 11=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2. 令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.[活学活用]在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明:法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1),PQ =(-3,2,1),RS =(-3,2,1),∴PQ =RS ,∴PQ ∥RS ,即PQ ∥RS .法二:RS =RC +CS =12DC -DA +12DD 1,PQ =PA 1+A Q 1=12DD 1+12DC -DA ,∴RS =PQ ,∴RS ∥PQ , 即RS ∥PQ .利用空间向量证明垂直问题[典例] 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE ,∴以O 为原点建立空间直角坐标系O -xyz .如图所示.则由已知条件有C (1,0,0),E (0,-3,0),D (1,0,1),A (0,3,2).设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA =(a ,b ,c )·(0,23,2)=23b +2c =0, n ·DA =(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3), 又AB ⊥平面BCE , ∴AB ⊥OC , ∴OC ⊥平面ABE ,∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE .(1)用向量法判定线面垂直,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.(2)用向量法判定两个平面垂直,只需求出这两个平面的法向量,再看它们的数量积是否为0.[活学活用]在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,D 1B 1的中点,求证:EF ⊥平面B 1AC . 证明:设正方体的棱长为2,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).法一:EF =(-1,-1,1),AB 1=(0,2,2),AC =(-2,2,0), ∴EF ·AB 1=(-1,-1,1)·(0,2,2)=0,EF ·AC =(-1,-1,1)·(-2,2,0)=0,∴EF ⊥AB 1,EF ⊥AC ,又AB 1∩AC =A , ∴EF ⊥平面B 1AC .法二:设平面B 1AC 的法向量为n =(x ,y ,z ). 又AB 1=(0,2,2),AC =(-2,2,0),则⎩⎪⎨⎪⎧ n ⊥AB 1,n ⊥AC ⇒⎩⎪⎨⎪⎧n ·AB 1=2y +2z =0,n ·AC =-2x +2y =0,令x =1,可得平面B 1AC 的一个法向量为n =(1,1,-1). 又EF =-n ,∴EF ∥n ,∴EF ⊥平面B 1AC .层级一 学业水平达标1.若n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )A .(0,-3,1)B .(2,0,1)C .(-2,-3,1)D .(-2,3,-1)解析:选D 问题即求与n 共线的一个向量.即n =(2,-3,1)=-(-2,3,-1). 2.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9解析:选C ∵l ⊥α,v 与平面α平行, ∴u ⊥v ,即u ·v =0, ∴1×3+3×2+z ×1=0, ∴z =-9.3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个法向量是( ) A .(1,1,-1) B .(1,-1,1) C .(-1,1,1)D .(-1,-1,-1)解析:选D AB =(-1,1,0),AC =(-1,0,1).设平面ABC 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧-x +y =0,-x +z =0,取x =-1,则y =-1,z =-1.故平面ABC 的一个法向量是(-1,-1,-1).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .AC B .BD C .A 1D D .A 1A解析:选B 建立如图所示的空间直角坐标系.设正方体的棱长为1. 则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫12,12,1, ∴CE =⎝⎛⎭⎫12,-12,1, AC =(-1,1,0),BD =(-1,-1,0),A D 1=(-1,0,-1),A A 1=(0,0,-1).∵CE ·BD =(-1)×12+(-1)×⎝⎛⎭⎫-12+0×1=0,∴CE ⊥BD .5.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A .1 B .2 C .3D .4解析:选C ∵A M 1=A A 1+AM =A A 1+12AB ,D P 1=D D 1+DP =A A 1+12AB ,∴A M 1∥D P 1,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.6. 已知点P 是平行四边形ABCD 所在的平面外一点,如果AB =(2,-1,-4),AD=(4,2,0),AP =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP 是平面ABCD 的法向量;④AP ∥BD .其中正确的是_______(填序号).解析:由于AP ·AB =-1×2+(-1)×2+(-4)×(-1)=0,AP ·AD =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 答案:①②③7.在直角坐标系O -xyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为________.解析:由OP ⊥OQ ,得OP ·OQ =0. 即(2cos x +1)·cos x +(2cos 2x +2)·(-1)=0. ∴cos x =0或cos x =12.∵x ∈[0,π],∴x =π2或x =π3.答案:π2或π38.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是以∠ABC 为直角的等腰三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点E 在棱AA 1上,要使CE ⊥面B 1DE ,则AE =________.解析:建立如图所示的空间直角坐标系, 则B 1(0,0,3a ),C (0,2a,0), D2a 2,2a 2,3a . 设E (2a,0,z )(0≤z ≤3a ), 则CE =()2a ,-2a ,z ,B E 1=(2a,0,z -3a ),B D 1=⎝⎛⎭⎫2a 2,2a 2,0.又CE ·B D 1=a 2-a 2+0=0,故由题意得2a 2+z 2-3az =0,解得z =a 或2a . 故AE =a 或2a . 答案:a 或2a9.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 为PC 的中点,EF ⊥BP 于点F .求证:(1)P A ∥平面EDB ; (2)PB ⊥平面EFD .证明:以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系D -xyz ,如图,设DC =PD =1,则P (0,0,1),A (1,0,0),D (0,0,0),B (1,1,0),E ⎝⎛⎭⎫0,12,12. ∴PB =(1,1,-1),DE =⎝⎛⎭⎫0,12,12,EB =⎝⎛⎭⎫1,12,-12,设F (x ,y ,z ),则PF =(x ,y ,z -1),EF =⎝⎛⎭⎫x ,y -12,z -12. ∵EF ⊥PB ,∴x +⎝⎛⎭⎫y -12-⎝⎛⎭⎫z -12=0,即x +y -z =0.① 又∵PF ∥PB ,可设PF =λPB , ∴x =λ,y =λ,z -1=-λ.② 由①②可知,x =13,y =13,z =23,∴EF =⎝⎛⎭⎫13,-16,16. (1)设n 1=(x 1,y 1,z 1)为平面EDB 的一个法向量,则有⎩⎨⎧n 1·DE =0,n 1·EB =0,即⎩⎨⎧12y 1+12z 1=0,x 1+12y 1-12z 1=0,∴⎩⎪⎨⎪⎧x 1=z 1,y 1=-z 1. 取z 1=-1,则n 1=(-1,1,-1). ∵PA =(1,0,-1),∴PA ·n 1=0. 又∵P A ⊄平面EDB ,∴P A ∥平面EDB .(2)设n 2=(x 2,y 2,z 2)为平面EFD 的一个法向量,则有⎩⎨⎧n 2·EF =0,n 2·DE =0,即⎩⎨⎧13x 2-16y 2+16z 2=0,12y 2+12z 2=0,∴⎩⎪⎨⎪⎧x 2=-z 2,y 2=-z 2. 取z 2=1,则n 2=(-1,-1,1).∴PB ∥n 2,∴PB ⊥平面EFD .10.已知在长方体ABCD -A 1B 1C 1D 1中,E ,M 分别是BC ,AE 的中点,AD =AA 1=a ,AB =2a .试问在线段CD 1上是否存在一点N 使MN ∥平面ADD 1A 1,若存在确定N 的位置,若不存在说明理由.解:以D 为原点,建立如图所示的空间直角坐标系, 则A (a ,0,0),B (a,2a,0), C (0,2a,0),D 1(0,0,a ), E ⎝⎛⎭⎫12a ,2a ,0,M ⎝⎛⎭⎫34a ,a ,0, DC =(0,2a,0),CD 1=(0,-2a ,a ),假设CD 1上存在点N 使MN ∥平面ADD 1A 1并设CN =λCD 1=(0,-2aλ,aλ)(0<λ<1).则DN =DC +CN =(0,2a,0)+(0,-2aλ,aλ) =(0,2a (1-λ),aλ),MN =DN -DM =⎝⎛⎭⎫-34a ,a -2aλ,aλ. 又DC 是平面ADD 1A 1的一个法向量. ∴MN ⊥DC ,则2a (a -2aλ)=0,λ=12.又MN ⊄平面ADD 1A 1.故存在N 为CD 1的中点使MN ∥平面ADD 1A 1.层级二 应试能力达标1.已知a =⎝⎛⎭⎫1,2,52,b =⎝⎛⎭⎫32,x ,y 分别是直线l 1,l 2的一个方向向量.若l 1∥l 2,则( ) A .x =3,y =152B .x =32,y =154C .x =3,y =15D .x =3,y =154解析:选D ∵l 1∥l 2,∴321=x 2=y 52,∴x =3,y =154,故选D.2.在如图所示的空间直角坐标系中,ABCD -A 1B 1C 1D 1是棱长为1的正方体,给出下列结论:①平面ABB 1A 1的一个法向量为(0,1,0); ②平面B 1CD 的一个法向量为(1,1,1); ③平面B 1CD 1的一个法向量为(1,1,1); ④平面ABC 1D 1的一个法向量为(0,1,1).其中正确结论的个数为( )A .1B .2C .3D .4解析:选B ∵AD =(0,1,0),AB ⊥AD ,AA 1⊥AD ,又AB ∩AA 1=A ,∴AD ⊥平面ABB 1A 1,∴①正确;∵CD =(-1,0,0),而(1,1,1)·CD =-1≠0,∴(1,1,1)不是平面B 1CD 的法向量,∴②不正确;∵B C 1=(0,1,-1),CD 1=(-1,0,1),(1,1,1)·B C 1=0,(1,1,1)·CD 1=0,B 1C ∩CD 1=C ,∴(1,1,1)是平面B 1CD 1的一个法向量,∴③正确;∵BC 1=(0,1,1),而BC 1·(0,1,1)=2≠0,∴(0,1,1)不是平面ABC 1D 1的法向量,即④不正确.因此正确结论的个数为2,选B.3.若平面α,β的一个法向量分别为m =⎝⎛⎭⎫-16,13,-1,n =⎝⎛⎭⎫12,-1,3,则( ) A .α∥βB .α⊥βC .α与β相交但不垂直D .α∥β或α与β重合解析:选D ∵n =-3m ,∴m ∥n ,∴α∥β或α与β重合.4.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B ,AC 的中点,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 建系如图,设正方体的棱长为2,则A (2,2,2),A1(2,2,0),C (0,0,2),B (2,0,2),∴M (2,1,1),N (1,1,2),∴MN =(-1,0,1).又平面BB 1C 1C 的一个法向量为n =(0,1,0),∵-1×0+0×1+1×0=0,∴MN ⊥n ,∴MN ∥平面BB 1C 1C .故选B.5.若直线l 的一个方向向量为a =(1,0,2),平面α的一个法向量为u =(-2,0,-4),则直线l 与平面α的位置关系为________.解析:∵u =-2a ,∴a ∥u ,∴l ⊥α.答案:l ⊥α6.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则BP =________.解析:∵AB ⊥BC ,∴AB ·BC =0,∴3+5-2z =0,∴z =4.∵BP =(x -1,y ,-3),且BP ⊥平面ABC ,∴⎩⎨⎧ BP ·AB =0,BP ·BC =0,即⎩⎪⎨⎪⎧ x -1+5y +6=0,3x -3+y -12=0,解得⎩⎨⎧ x =407,y =-157,故BP =⎝⎛⎭⎫337,-157,-3.答案:⎝⎛⎭⎫337,-157,-37.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E ,F 分别是棱AB ,BC 的中点.求证:平面B 1EF ⊥平面BDD 1B 1.证明:以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图,由题意,知D (0,0,0),A (22,0,0),C (0,22,0),B 1(22,22,4),E (22,2,0),F (2,22,0),则B E 1=(0,-2,-4), EF =(-2,2,0).设平面B 1EF 的法向量为n =(x ,y ,z ).则n ·B E 1=-2y -4z =0,n ·EF =-2x +2y =0,得x =y ,z =-24y ,令y =1,得n =⎝⎛⎭⎫1,1,-24.又平面BDD 1B 1的一个法向量为AC =(-22,22,0),而n ·AC =1×(-22)+1×22+⎝⎛⎭⎫-24×0=0,即n ⊥AC ,∴平面B 1EF ⊥平面BDD 1B 1.8.如图,在三棱锥P -ABC 中,三条侧棱P A ,PB ,PC 两两垂直,且P A =PB =PC =3,G 是△P AB 的重心,E ,F 分别为BC ,PB 上的点,且BE ∶EC =PF ∶FB =1∶2.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 与直线PG 和BC 都垂直.证明:(1)如图,以三棱锥的顶点P 为原点,以P A ,PB ,PC 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系P -xyz .则A (3,0,0),B (0,3,0),C (0,0,3),E (0,2,1),F (0,1,0),G (1,1,0),P (0,0,0). 于是EF =(0,-1,-1),EG =(1,-1,-1).设平面GEF 的法向量是n =(x ,y ,z ),则⎩⎨⎧ n ⊥EF ,n ⊥EG ,即⎩⎪⎨⎪⎧ y +z =0,x -y -z =0,可取n =(0,1,-1).显然PA =(3,0,0)是平面PBC 的一个法向量.又n ·PA =0,∴n ⊥PA ,即平面PBC 的法向量与平面GEF 的法向量垂直,∴平面GEF ⊥平面PBC .(2)由(1),知EG =(1,-1,-1), PG =(1,1,0),BC =(0,-3,3),∴EG ·PG =0,EG ·BC =0,∴EG ⊥PG ,EG ⊥BC ,∴EG 与直线PG 和BC 都垂直.。
两个平面平行系数关系 -回复

两个平面平行系数关系-回复[两个平面平行系数关系]在几何学中,平面是指由无限多个点组成的二维空间。
而两个平面平行是指它们的法向量互相平行。
为了确定两个平面是否平行,我们可以比较它们的法向量。
一、法向量的定义平面可以由方程ax + by + cz + d = 0来表示,其中a、b、c是平面的法向量的分量,也被称为平面的法向量的系数。
d是该平面到原点的距离。
法向量是与平面垂直的向量,它垂直于平面的任何一条直线。
二、法向量的求取对于一个给定的平面方程ax + by + cz + d = 0,我们可以直接读取系数a、b、c得到该平面的法向量。
例如,对于方程2x + 3y + 4z + 5 = 0,法向量为(2, 3, 4)。
三、法向量的平行关系两个平面平行,意味着它们的法向量互相平行。
如果两个平面的法向量分别为(n1, n2, n3)和(m1, m2, m3),那么它们平行的充要条件是:n1/m1 = n2/m2 = n3/m3换句话说,两个平面平行,当且仅当它们的法向量对应的分量比例相等。
四、平面的系数关系对于一对平行平面,它们之间的系数存在一定的关系。
设两个平面的方程分别为:a1x + b1y + c1z + d1 = 0 (平面1)a2x + b2y + c2z + d2 = 0 (平面2)根据平面的法向量定义,我们可以得到:a1/b1 = a2/b2 = a3/b3 = t (t为常数)即,两个平行平面的系数的比值是一个常数。
五、利用平行平面系数关系求解问题在实际问题中,我们经常需要利用平行平面系数关系来求解一些几何问题。
例如,已知平面1的方程为2x + 3y + 4z + 5 = 0,且平面2与平面1平行,且过点(1, 2, 3),求平面2的方程。
根据条件,平面2与平面1平行,即它们的法向量成比例。
由平面1的法向量(2, 3, 4)可以得到平面2的法向量为(2t, 3t, 4t)。
过点(1, 2, 3)的平面方程为2t(x-1) + 3t(y-2) + 4t(z-3) = 0,化简后得到平面2的方程为2tx + 3ty + 4tz - (2t+6t+12t) = 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定. 注意:L的方向向
l
a
B A
和直线L上的向量 e 做直线l的方向向量。
量是非零向量; 而且有无数多个。 平行的向量 叫
确定一条直线需要两个要素:
e
①
定点A
。
。
定位置
定方向 定位置
② 方向向量 a
巩固性训练1
问题:如何求平面的法向量?
(1)设出平面的法向量为 n ( x, y, z)
(2)找出(求出)平面内的 两个不共线的 向量的坐标 a (a1 , b1 , c1 ), b (a2 , b2 , c2 )平面的法向
(3)根据法向量的定义建立关于x , y , z的 n a 0 a1 x b1 y c1 z 0 方程组 n b 0 a2 x b2 y c2 z 0
l 给定一点A和一个向量 n ,那么过点A, 以向量 n 为法向量的平面是完全确定的.
n
A
P
几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互相平行; 3.经过A点,以向量 n为平面的法向量 的平面 表示为:
AP n 0
例1:已知AB (2, 2,1), AC (4,5,3), 求平面ABC的
2 1
z
A1
M
N
C1
D1
方法一:线//线 线 / / 面
方法二:面//面 线 / / 面() x 方法三:平面向量分解定理()
D
A
B
C
y
方法四:向量--坐标法
例4 如图,已知矩形 ABCD 和矩形 ADEF 所在平面互相垂直,点 1 1 M , N 分别在对角线 BD, AE 上,且 BM BD, AN AE, 3 3 求证:MN // 平面CDE 简证:因为矩形ABCD和矩形ADEF F 所在平面互相垂直,所以AB,AD, AF互相垂直。以 AB, AD, AF 为正交 基底,建立如图所示空间坐标系, A 设AB,AD,AF长分别为3a,3b,3c, B 则可得各点坐标,从而有
1 2 x 2 y z 0 x 即 , 取z 1,得 2 单位法向量 4 x 5 y 3 z 0 有几个? y 1
1 2 2 求平面ABC的单位法向量为 ( , - ,) 3 3 3
1 n ( , 1,1), 2
3 | n | 2
由两个三元一次方程 组成的方程组的解是 解:设平面的法向量为n (x,y,z), 不惟一的,为方便起 见,取z=1较合理。 则n AB , n AC 因为平面的法向量不 是惟一的。 (x,y,z) (2, 2,1) 0, 怎样算是
单位法向量。
, 垂直于平面? (4,5,3) 0 (x,y,z)
三、平行关系:
设直线 l1 , l2 的方向向量分别为 e1 , e2 ,平面
1 ,2 的法向量分别为 n1 , n2 ,则
线线平行 l1 // l2 e1 // e2 e1 e2 ;
线面平行 l1 // 1 e1 n1 e1 n1 0 ;
面面平行 1 // 2 n1 // n2 n1 n2 .
C1 B1
A1
D
C
B
A
y
因为方向向量与法向量可以确定直线和 平面的位置,所以我们应该可以利用直线的 方向向量与平面的法向量表示空间直线、平 面间的平行、垂直、夹角等位置关系.
那么如何用直线的方向向量表示空间 两直线平行、垂直的位置关系以及它们之 间的夹角呢?如何用平面的法向量表示空 间两平面平行、垂直的位置关系以及它们 二面角的大小呢?
平行 垂直
平行
二、新授:平面的法向量
由于垂直于同一平面的直线是互相平行的, 所以,可以 用垂直于平面的直线的方向向量来刻画平面的“方向”。 平面的法向量:如果向量 n的基线垂直于平面 ,则称 这个向量垂直于平面 ,记作 n⊥ ,那 么 向 量 n 叫做 r 平面 的法向量.(或者说向量 n 与 正交)
量不惟一, 合理取值即 可。
(4)解方程组,取其中的一 个解,即得法向量。
同步练习 P105 练习A T3
n (1,1,1)
n (2,2,2, v 分别是两个不同平面α,β的法向量, 根据下列条件,判断α,β的位置关系.
(1)u (2,2,5), v (6,4,4) (2)u (1,2,2), v (2,4,4) (3)u (2,3,5), v (3,1,4)
垂直 平行
相交
例 2:在正方体 ABCD A1 B1C1 D1 中, 求证: DB1 是平面 ACD1 的法向量
z
D1
证:设正方体棱长为1,以 DA, DC , DD1 为单位正交基底,建立 如图所示空间坐标系 D xyz ,
则 A(1,0,0), C(0,1,0),D1(0,0,1), B1(1,1,1) DB1 (1,1,1) , AC (1,1,0) , x AD1 (1,0,1) DB1 AC 0 , 所以 DB1 AC ,同理 DB1 AD1 又因为 AD1 AC A 所以 DB1 平面 ACD , 从而 DB1 是平面 ACD1 的一个法向量.
注意:这里的线线平行包括线线重合,线面平行 法向量为n (a2 , b2 , c2 ),则 包括线在面内,面面平行包括面面重合 .
设直线l的方向向量为e (a1 , b1 , c1 ), 平面的
l // e n 0 a1a2 b1b2 c1c2 0;
例2.已知正方体ABCD-A1B1C1D1, 点M、N分别是对角线A1B、A1C1 的中点。求证:MN//侧面AD1; B1 1 MN AD
向量法 判断两直线位置关系 1.设 a, b 分别是两条不同直线 l1,l2的方向向 量,根据下列条件,判断l1,l2的位置关系.
(1)a (2,1,2), b (6,3,6) (2)a (1,2,2), b (2,3,2) (3)a (0,0,1), b (0,0,3)