空间向量与平行关系
空间向量与平行关系课件

(3)空间直线的向量表达式的两点作用: ①定位置:点A和向量a可以确定直线的_位__置__; ②定点:可以具体表示出l上的任意_一__点__. 3.向量a为平面α的法向量应满足的两个条件 (1)向量a表示直线l的_方__向__向__量__; (2)直线l_⊥__平面α.
4.用向量描述空间平行关系 设空间两条直线l,m的方向向量分别为a=(a1,a2,a3), b=(b1,b2,b3),两个平面α,β的法向量分别为u=(u1,u2,u3), v=(v1,v2,v3),则有如下结论
则
m
AN
0,
m NM 0,
所以
a 2
x1
0
y1
az1
0,
a 2
x1
a 2
y1
0
z1
0,
所以y1=-x1=-2z1.取z1=1,
所以平面AMN的一个法向量为m=(2,-2,1).
同理由
n n
DB DF
可00,,得x2=-y2,y2=-2z2.
令z2=1,
所以平面EFDB的一个法向量为n=(2,-2,1).
2.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直. (2)证明直线的方向向量与平面内的某一直线的方向向量共线. (3)证明直线的方向向量可用平面内的任两个不共线的向量表 示.即用平面向量基本定理证明线面平行.
3.证明面面平行的方法 设平面α的法向量为n1=(a1,b1,c1),平面β的法向量为 n2=(a2,b2,c2),则α//β⇔n1∥n2⇔(a1,b1,c1)=k(a2,b2,c2) (k∈R).
位置关系 向量关系 向量运算关系
l∥m
_a_∥__b_ _a_=_k_b_,_k_∈__R_
空间向量与平行关系 课件

[证明] 法一:如图5所示,以D为原点,DA、DC、 DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标 系,设正方体的棱长为1,则可求得
图5
M(0,1,12),N(12,1,1), D(0,0,0),A1(1,0,1),B(1,1,0), 于是M→N=(12,0,12),D→A1=(1,0,1), D→B=(1,1,0), 设平面 A1BD 的法向量是 n=(x,y,z),
x-2y-4z=0, 2x-4y-3z=0,
解得 z=0 且 x=2y,
令 y=1,则 x=2.
∴平面 α 的一个法向量为 n=(2,1,0).
[点评] 求平面法向量的方法与步骤: (1)选向量 求平面的法向量时,要选取两 相交向量A→C、A→B. (2)设坐标 设平面法向量的坐标为 n= (x,y,z).
图 11
解:以D为原点,分别以DA、DC、DD1所在直线 为x、y、z轴,建立空间直角坐标系,
法三:∵M→N=C→1N-C→1M=12D→A-12D→1D
=12(D→B+B→A)-12(D→1A1+A→1D)
=12D→B+12B→A-12D→1A1-12A→1D
=12D→B+12D→A1+12(B→A-D→A)
=12D→B+12D→A1+12B→D
=12D→A1
+
→ 0DB.
即M→N 可用D→A1 与D→B线性表示 , 故M→N 与D→A1 、D→B是共面向量 . 又 MN⊄平面 A1BD, DA1,DB⊂平面 A1BD,且 DA1∩DB=D, ∴MN∥平面 A1BD.
①u=(1,-1,2),v=(3,2,-12); ②u=(0,3,0),v=(0,-5,0); ③u=(2,-3,4),v=(4,-2,1).
空间向量与平行关系 课件

探究点三 利用空间向量证明平行关系 问题 怎样利用向量证明空间中的平行关系?
答案 可以按照下列方法证明空间中的平行关系. 线线 设直线 l1、l2 的方向向量分别是 a、b,则要证明 平行 l1∥l2,只需证明 a∥b,即 a=kb (k∈R) ①设直线 l 的方向向量是 a,平面 α 的法向量是 线面 u,则要证明 l∥α,只需证明 a⊥u,即 a·u=0; 平行 ②根据线面平行判定定理在平面内找一个向量 与已知直线的方向向量是共线向量即可;
则有 D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2), E(2,2,1),F(0,0,1),B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1). 设 n1=(x1,y1,z1)是平面 ADE 的法向量, 则 n1⊥D→A,n1⊥A→E,
∴平面 ABC 的一个法向量为 n=(1,1,1).
例 1 根据下列条件,判断相应的线、面位置关系: (1)直线 l1,l2 的方向向量分别是 a=(1,-3,-1), b=(8,2,2); (2)平面 α,β 的法向量分别是 u=(1,3,0),v=(-3,-9,0); (3)直线 l 的方向向量,平面 α 的法向量分别是 a=(1, -4,-3),u=(2,0,3); (4)直线 l 的方向向量,平面 α 的法向量分别是 a=(3,2,1), u=(-1,2,-1).
因为 p·v=(xa+yb)·v=xa·v+yb·v=0, 即平面 β 的法线与平面 α 内任一直线垂直. 所以平面 β 的法向量也是平面 α 的法向量,即 u∥v. 因此,α∥β.
小结 在“平面与平面平行的判定定理”的证明过程中突 出了直线的方向向量和平面的法向量的作用.以后我们用 向量证明有关结论时,直线的方向向量和平面的法向量是 重要的工具.
空间向量的垂直和平行关系

空间向量的垂直和平行关系空间向量是三维空间中具有大小和方向的量,它们之间存在着不同的关系。
其中最常见的关系是垂直和平行关系。
本文将深入探讨空间向量的垂直和平行关系,并分析其特点和性质。
一、垂直关系当两个向量的数量积等于零时,它们被称为垂直向量。
具体地说,对于空间中的向量A和A来说:A⋅A=AAA cos A=0其中,A⋅A表示向量A和A的数量积,AAA表示向量A和A的叉积,A表示两个向量之间的夹角。
当A为90度时,cos A=0,表明向量A和A 垂直。
垂直向量的特点和性质如下:1. 垂直向量的数量积为零,即两个向量之间的夹角为90度。
2. 向量的数量积等于零并不意味着它们一定是垂直的,还需考虑向量的长度和方向。
3. 若两个向量垂直,则它们的叉积为非零向量。
4. 若两个向量平行,则它们的数量积为非零常数。
5. 若一个向量与另一个非零向量垂直,则它与另一个向量平行。
二、平行关系当两个向量的叉积为零时,它们被称为平行向量。
具体地说,对于空间中的向量A和A来说:AAA=AAA sin A=0其中,AAA表示向量A和A的代数长度,sin A表示两个向量之间的夹角的正弦值。
当sin A等于零时,表明向量A和A平行。
平行向量的特点和性质如下:1. 平行向量的叉积为零,即两个向量之间的夹角的正弦值为零。
2. 平行向量之间的数量积可能为非零常数,也可能为零。
3. 若两个向量平行,则它们的数量积为非零常数。
4. 若两个向量垂直,则它们的叉积为非零向量。
5. 若一个向量与另一个非零向量平行,则它与另一个向量垂直。
通过对空间向量的垂直和平行关系进行分析,我们可以得出以下结论:1. 垂直和平行是空间向量最基本的关系,它们之间存在着一定的对应性。
2. 垂直和平行关系可以通过向量的数量积和叉积进行判断。
3. 垂直和平行向量在解决实际问题中具有重要的应用价值,如物理力学中的受力分析和几何学中的平面垂直关系。
在实际问题中,我们常常需要确定向量之间的关系,特别是垂直和平行关系。
3.2.2空间向量与平行.垂直关系

法二 (坐标法) 设 AB 中点为 O,作 OO1∥AA1. 以 O 为坐标原点,OB 为 x 轴,OC 为 y 轴, OO1 为 z 轴建立如图所示的空间直角坐标 系.由已知得
A(-12,0,0),B(12,0,0),C(0, 23,0),N(0, 23,14),B1(12,0, 1), ∵M 为 BC 中点,∴M(14, 43,0).
题型二 证明线线垂直
【例2】 已知正三棱柱 ABC-A1B1C1 的各棱长
都为 1,M 是底面上 BC 边的中点,N 是侧
棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥ MN. [思路探索] 解答本题可先选基向量,证明A→B1·M→N=0 或先 建系,再证明A→B1·M→N=0.
解 法一 (基向量法)
(3)若直线 l 的方向向量是 u,平面α的法向量是 v,则有 l∥α⇔u⊥v⇔u·v=0;l⊥α⇔u∥v⇔u=kv(k∈R).
空间垂直关系的向量表示
(1)线线垂直
设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b =(b1,b2,b3),则l⊥m⇔a_⊥__b__⇔ a_·_b_=__0__⇔ _a_1_b_1+__a_2b2+a3b3=0 (2)线面垂直
设直线l的方向向量是u=(a1,b1,c1),平面α的法向量是v=(a2, b2,c2),则l⊥α⇔u∥v⇔ __u_=__k_v.
(3)面面垂直
设平面α的法向量u=(a1,b1,c1),平面β的法向量v= (a2,b2,c2),则α⊥β⇔__u_⊥__v_⇔ ___u_·_v=__0_ ⇔ _a_1_a_2_+__b_1b_2_+__c_1_c_2=__0___ .
试一试:若平面α与β的法向量分别是a=(4,0,-2),
2.4.1 空间向量与平行关系 课件(北师大选修2-1)

(3)设n是平面π的法向量,a是直线l的方向向量,根据
下列条件判断π和l的位置关系:
①n=(2,2,-1),a=(-3,4,2); ②n=(0,2,-3),a=(0,-8,12); ③n=(4,1,5),a=(2,-1,0). [思路点拨] 本题可由直线的方向向量、平面的法向
(
)
解析:当a· b=0时,lπ或l∥π. 答案:D
2.已知直线l1,l2的方向向量分别为a,b,平面π1、π2的 法向量分别为n1,n2,若a=n1=(1,-2,-2),b=n2 =(-2,-3,2),试判断l1与l2,π1与π2,l1与π2间的位置 关系.
解:∵a· b=n1·2=a·2 n n
AC 的中点,所以 OB⊥AC,OA=OB=OC, 如图,建立空间直角坐标系,设 OA=a, 则 A(a,0,0), B(0, a,0), C(-a,0,0), P(0,0,
a a a),D-2,0,2,
a a 所以 OD =-2,0,2.
设平面 PAB 的法向量为 n=(x,y,z).
SD1=2SD,点N,R分别为A1D1,BC的中点.求证:
MN∥平面RSD.
证明:法一:如图所示,建立空间直角 坐标系,则根据题意得
4 M 3,0,3 ,
2 N(0,2,2),R(3,2,0),S0,4,3.
2 2 ∴ MN =-3,2,3, RS =-3,2,3, MN = RS . ∴ MN ∥ RS .
一点及其法向量确定,因此可利用直线的方向向量与平
空间向量的垂直与平行解析几何的几何关系

空间向量的垂直与平行解析几何的几何关系空间向量在解析几何中具有广泛的应用,它们可以描述物体在空间中的位置、方向和运动等属性。
在学习空间向量时,了解其垂直与平行的几何关系是非常重要的。
本文将通过几何解析的方式,深入探讨空间向量垂直与平行的性质及其应用。
一、垂直向量在空间中,当两个向量的数量积为零时,我们称这两个向量是垂直的。
数学上可以表达为:两个向量的数量积等于零,则它们垂直。
设有两个向量a和b,它们的坐标分别表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b垂直的条件可以表示为:a1 * b1 + a2 * b2 + a3 * b3 = 0这个条件求解出的结果就是两个向量垂直的充要条件。
垂直向量在几何上有许多重要的应用。
例如在平面几何中,两条直线互相垂直,则它们的方向向量必然垂直;在立体几何中,两个平面互相垂直,其法向量也必然垂直。
因此,熟练掌握垂直向量的性质对于解析几何的应用非常重要。
二、平行向量在空间中,当两个向量之间存在倍数关系时,我们称这两个向量是平行的。
数学上可以表达为:两个向量之间存在倍数关系,则它们平行。
设有两个向量a和b,它们的坐标表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b平行的条件可以表示为:a1/b1 = a2/b2 = a3/b3 = k (k为常数)其中k为两个向量平行的倍数关系。
平行向量的性质可以应用于线段、直线和平面的平行关系的判断。
例如,在平面几何中,两个直线互相平行,则它们的方向向量之间必然存在倍数关系;在立体几何中,平面与直线平行,则平面的法向量与直线的方向向量必然平行。
三、垂直与平行向量的应用举例1. 垂直向量的应用考虑一个示例问题:已知一条直线L的向量方程为(r - r1) · n = 0,其中r1为已知点,n为已知向量。
求直线L上与已知点A垂直的点B 的坐标。
解析:根据向量方程可以得知,L上的任意点P满足向量n与r - r1垂直的关系。
空间向量与平行关系(公开课)

A1
z
B1
C1
F
D
E
B
C
y
x
A
利用向量解决立体几何问题的三步曲:
①建立立体图形与空间向量的联系,用空间向量 表示问题中涉及的点、直线、平面. (化为向量问题) ②通过向量运算,研究点、直线、平面之间的位置关 系以及它们之间的距离和夹角的问题. (进行向量运算) ③把向量的运算结果“翻译”成相应的几何意义. (回到图形)
b ( a 2 , b 2 , c 2 ). n a 0 a1 x b1 y c1 z 0 ③建立方程组 a x b y c z 0 n b 0 2 2 2
④解方程组,利用赋值法,给 x, y, z 中的一个变量 赋一特值.
量为 n (2 ,0 ,3 ).
(4)直线 l 的方向向量为 a (3, 2,1), 为 n (1, 2, 1).
平面 的法向量
例2:如图,已知正方体
ABCD A1B1C1D1的棱长为2,
E , F分别是 BB1 , DD1的中点.
证明: FC1∥平面 ADE.
探究:
直线可以用方向向量进行描述,平面呢?
问题1:经过定点A且与向量 n 平行的平面有几个? 问题2:经过定点A且与向量 n 垂直的平面有几个?
定义:
直线 l , 取直线 l 的方向向量 n , 则向量 n 叫作 平面 的法向量. l
思考:平面的法向量有什么特点? ①非零 ②有无数条且互相平行
练习:如图所示,正方体的棱长为1. (1)平面 ABCD 的一个法向量为 (2)平面 CDD1C1 的一个法向量为 (3)平面 AB1D1 的一个法向量为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《空间向量与平行关系》
教学目标:
知识与技能:掌握线线平行,线面平行,面面平行的传统,基底,坐标方法.
过程与方法:在简单例题中利用这三种方法,循序渐进,慢慢熟练掌握.
情感与价值:通过对线,面平行,两种方法的比较.发现其中的数学规律,
学会总结,慢慢理解加深对数学的认识.
教育目标:数学课到底教什么?
一教知识:传授人类在历史发展的过程中对各类事物观察、归纳、推演和论证过的共有的和特有的稳定属性,即事物在变化过程中保持的不变性。
如三角形(类),其内角和
为180度(共有属性),而多边形的外角和为360度(更高层面的总结).
二教方法和思想:引导学生重演知识的发生发展的过程,感受人类先哲们探索的艰辛,体会数学先驱们天才的思想,从而学会观察事物,提出问题并加以解决,让数学知识
这“冰冷的美丽唤出火热的思考”。
三引导学生融会贯通:简化记忆,构建起自己的数学结构,即总结出自己解决问题的“中途点”,以期能站在前人的肩膀上思考和分析问题.
教学难点:线,面平行传统方法的回顾
处理办法:在学案进行复习巩固
教学重点:用向量解决线,面平行问题
处理办法:通过例题循序渐进
教学设计
一.(复习回顾)
2.方向向量:在空间中直线的方向上用一个与该直线平行的非零向量来表示,该向量称为这条直线
的一个方向向量.法向量:垂直于平面的向量(非零向量)
向量垂直:0=⋅⇔⊥→→→→b a b a (两非零向量)“思考为什么要强调两非零向量”?
二.新知引入:向量法
1.设直线m l ,的方向向量分别为→→b a ,,平面βα,的法向量分别为→→v u ,,则:
R
b a b a m l ∈=⇔⇔→→→→λλ,∥∥0
=⋅⇔⊥⇔→→→→u a u a l α∥R
v u v u ∈=⇔⇔→→→→λλβα,∥∥1.线线平行
①设直线n m ,的方向向量分别为→→b a ,,根据下列条件判断直线n m ,的位置关系:()2,1,2--=→a ()6,3,6--=→b ,()2,1,2--=→a ()
2,1,2--=→b ,②已知→1e ,→2e 是空间任意两个非零向量,根据下列条件判断直线n m ,的位置关系:→→→-=2132e e a →→→
+-=2132e e b →
→→-=2132e e a →
→
→
-=2
164e e b 2.线面平行
①设直线l 的方向向量为→a ,平面α的法向量为→u ,且直线l 不在平面α内.若0=⋅→→u a ,则(
)A.l α∥B.l ⊂α
C.l ⊥αD.l ⊂α或l α
∥②设直线l 的方向向量为→a ,平面α的法向量为→u ,若0=⋅→→u a ,则()
A.l α∥B.l ⊂α
C.l ⊥αD.l ⊂α或l α∥
③设直线m 的方向向量为→a ,平面σ的法向量为,→u 直线m 不在平面α内.
根据下列条件判断直线m 与平面σ的位置关系:()5,2,2-=→a ()4,46-=→,u ()5,2,2-=→a ()
2,23-=→,u 3.面面平行
①设平面βα,的法向量分别为→→v u ,,根据下列条件判断直线βα,的位置关系()2,2,1-=→u ()4,4,2--=→v ()6,6,3-=→u ()
4,4,2--=→v ②设平面σ的法向量为(1,2,-2),平面β的法向量为(-1,-2,k ),若βα∥,则k =(
)
A.2B.-4
C.4D.-2
在处理空间立体几何类题目的时候,可以考虑用这3种方法⎪⎩
⎪⎨⎧⎩⎨⎧)坐标(空间直角坐标系基底向量法传统方法.2.1下面就从这个题目简单的体会一下三种方法处理问题的过程吧.
例.已知正方体1111D C B A ABCD -棱长为2,F E ,分别是1BB 和1DD 的中点:求证:(1)AE FC ∥1(尝试上面总结的3种方法)
(2)∥1FC 平面ADE
(3)平面ADE ∥平面F
B C 11方法一:(传统方法)
证明:
(1)过E 点作1CC 的垂线,与1CC 交于点O ,连接DO
1111D C B A ABCD -是正方体
则有=∥EO BC =
∥AD ,即四边形AEOD 为平行四边形.∴DO
AE ∥ E 分别是1BB 的中点,即O 为中点1
CC 又因为F 为1DD 的中点,即FD =
∥1OC ,即四边形1FDOC 为为平行四边形.∴DO FC ∥1,即AE
FC ∥1(2)由(1)可知,AE
FC ∥1则⇒⎪⎭⎪⎬⎫⊄⊂ADE FC ADE AE AE
FC 平面平面∥11∥1FC 平面ADE
(3)AD C B AD BC BC C B ∥∥∥1111⇒⎭⎬⎫,AED C B AED C B AED AD AD C B 平面∥平面平面∥111111⇒⎪⎭
⎪⎬⎫⊄⊂由(2)可知∥1FC 平面ADE ,则
AED
B F
C AE
D C F AED C B C C B FC B FC C B B FC FC 平面∥平面平面∥平面∥平面平面1111111111111111⇒⎪⎪⎪⎭
⎪⎪⎪⎬⎫
=⊂⊂
1.已知正方体1111D C B A ABCD -棱长为2,F E ,分别是1BB 和1DD 的中点:求证:(1)AE FC ∥1(尝试上面总结的3种方法)
(2)∥1FC 平面ADE
(3)平面ADE ∥平面F
B C 11(1)解:法2(用“基底”)
法3(用“坐标”)
由于(2),(3)用基底不便于处理问题,
所以(2)(3)在此处采用“坐标法”(2)解:因为1111D C B A ABCD -是正方体,可以−→−DA ,−→−DC ,−→−1DD 分别为x 轴,y 轴,z 轴
建立如图所示的空间直角坐标系Dxyz .
(3)。