人教版七年级数学上册余角和补角

合集下载

人教版七年级上册数学余角和补角

人教版七年级上册数学余角和补角

一、概述二、余角和补角的概念和性质1. 余角的定义2. 余角的性质3. 补角的定义4. 补角的性质三、余角和补角在解题中的应用1. 实例分析四、余角和补角的相关习题与解析五、总结概述数学作为一门基础学科,具有广泛的应用价值和重要的理论基础。

在初中数学的学习过程中,余角和补角作为常见的概念,对于学生来说可能有一定的难度。

本文将就人教版七年级上册数学中的余角和补角进行深入的解析,帮助学生更好地掌握这一知识点。

余角和补角的概念和性质1. 余角的定义在平面直角坐标系中,两个角的和为90°,则称这两个角为余角。

余角可以用符号表示,假设角A和角B为余角,则可以表示为A+B=90°。

2. 余角的性质余角的性质包括以下几点:① 两个互余角的和为90°;② 余角的关系是对称的,即如果角A是角B的余角,那么角B也是角A的余角;③ 一个角与其余角之差为90°。

3. 补角的定义在平面直角坐标系中,两个角的和为180°,则称这两个角为补角。

补角也可以用符号表示,假设角A和角C为补角,则可以表示为A+C=180°。

4. 补角的性质补角的性质包括以下几点:① 两个互补角的和为180°;② 补角的关系是对称的,即如果角A是角C的补角,那么角C也是角A的补角;③ 一个角与其补角之差为90°。

余角和补角在解题中的应用在数学解题中,余角和补角的概念经常被用到。

在解方程和证明等过程中,都可能涉及到余角和补角的相关知识。

下面通过实例分析来展示余角和补角在解题中的应用。

实例分析例1:已知角A的余角是30°,求角A的度数。

解:根据余角的定义和性质,可以得出A+30=90,解方程得到A=60。

角A的度数为60°。

例2:已知角B的补角是120°,求角B的度数。

解:根据补角的定义和性质,可以得出B+120=180,解方程得到B=60。

角B的度数为60°。

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

1
4
3
如果两个角的和为90° (直角),那么称这两个
角 互为余角 ,简称“互余”。
几何语言叙述:
如果∠1+∠2=90°(或者∠1=90°-∠2),
那么∠1与∠2互为余角 .
总结归纳
2
1
4
3
如果两个角的和为180°(平角),那么称这两
个角 互为补角,简称“互补”。
几何语言叙述:
如果∠3+∠4=180°(或者∠3=180°-∠4),
o
10
o
30
o
o
80
60
o
100
o
120
o
150
o
170
3.填表:
∠α

∠α的余角
∠α的补角
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
27°37′
117°37′
90° x
180° x
62°23′
x
4.如右图,点A、O、B在同一直线上,OD平分
AOB, COE=90°。回答下列问题:
总结归纳
性质:
同角或等角的余角相等。
同角或等角的补角相等。
例题解析
请认真观察下图,回答下列问题:
①图中有哪几对互余的角?请用几何语言形式表示:
(∠A+∠1=90°, ∠1+∠2=90°)
(∠A+∠E=90°) (∠2+∠E=90°)
②图中哪几对角是相等的角(直角除外)?为什么?
(∠2=∠A) (同角的余角相等)
O

人教版初中数学七年级上册第四章4.3.3余角和补角

人教版初中数学七年级上册第四章4.3.3余角和补角

O
60°
上发现了客轮B.仿照表示灯塔方位的方法,
A
画出表示客轮B方向的射线.并说出你是怎样画出的.
②同时在它南偏西10°、西北(北偏西45°)方向上又分 别发现了货轮C和海岛D.请再画出表示货轮C和海岛D方向的射 线.
如图,A地和B地都是海上观测站,从A地发现它的北偏东 60°方向有一艘船,同时,从B地发现这艘船 在它的北偏东30°方向,你能从图中确定这艘船的位置吗?
练习 : 看谁答得快:
∠α
∠α 的余角
∠α 的补角
30° 54° 90°
62°23′

60 °
150 °
36 °
126 °
00
另 比余外角:大同,(等并9)且0 °角大的90补°角
27 ° 37 ′
117 ° 37 ′
90 x
同一个角的余角和补角什么关系?
1、动手画一画:
1)已知∠α(如图),请利用三角板画的∠α的余角
样的角称为方位角.
方位角的表示习惯上以正北、正南方向为基准来描述物体 的方向. 即用“北偏东多少度”“北偏西多少度” 或者“南偏东多少度”“南偏西多少度”来表示方向.
北 西北
西 O
西南 南
东北 东 东南

30°
西

O 60°

北例4:如图,货轮O在航行过程中,发现灯塔A
在它南偏东60°方向上. ①在它北偏东40°方向
性质3:等角的补角相等
如图,∠1与∠2互余, ∠3与∠4互余,并且∠1= ∠3,
2
1
3
4
请问:∠ 2与∠4相等吗?为什么?你还能得出什么结论?
答:相等。
∵∠1与∠2互余,可得∠2=90°- ∠1 ; 又∠3与∠4互余,可得∠4=90°- ∠3; 且∠1= ∠3,所以90°- ∠1=90°- ∠3 ; ∴∠2= ∠4

人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件

人教版七年级数学上  4.3.3《余角和补角》课件(共18张PPT)课件

理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m

人教版数学七年级上册4.3.3余角和补角(教案)

人教版数学七年级上册4.3.3余角和补角(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是两个角的和等于90°时,它们互为余角;补角是两个角的和等于180°时,它们互为补角。它们在几何图形的拼接和角度计算中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过一个三角形的例子,展示如何利用余角和补角的知识来求解未知角度。
三、教学难点与重点
1.教学重点
-重点一:余角和补角的定义及其性质。理解两个角互为余角或补角的含义,掌握它们之间的关系。
-举例:强调当两个角的和等于90°时,它们是余角;当两个角的和等于180°时,它们是补角。
-重点二:求解余角和补角的方法。能够根据给定的角度,计算其余角或补角。
-举例:如果已知一个角是60°,学生需要能够计算出它的余角是30°,补角是120°。
五、教学反思
在今天的课堂中,我引导学生学习了余角和补角的概念及其应用。回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课环节,我发现通过提出与日常生活相关的问题,学生的兴趣和好奇心得到了很好的激发。然而,在接下来的新课讲授中,我意识到在解释余角和补角的概念时,可能还需要更具体的例子和直观的图形来帮助学生更好地理解。在这方面,我可以在以后的课堂中尝试使用更多样的教学资源,如动画、实物模型等,以提高学生的几何直观。
二、核心素养目标
1.理解并掌握余角和补角的概念,提高学生的几何直观和空间观念。
2.培养学生运用数学语言进行逻辑推理,提高逻辑思维和问题解决能力。
3.能够将余角和补角知识应用于解决实际问题时,增强学生的数学应用意识和创新能力。
4.在合作交流中,培养学生团队协作能力和交流表达能力,提高数学学科核心素养。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

4.3.3余角和补角-七年级数学上册(人教版)

4.3.3余角和补角-七年级数学上册(人教版)

上.同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又
分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客
轮B,货轮C和海岛D方向的射线.

画法:1. 以点O为顶点,表示正北
●D
●B
方的射线为角的一边,画40°的角, 使它的另一边OB落在东与北之间. 射线OB的方向就是北偏东40°,即 西
板各个角的度数
30°
90°
90°
45° 60°
45°
互动新授
人教版数学七年级上册
在一副三角尺中,每块都有一个角是90o,而其他两个角的和是多少呢?90o
一般地,如下图,如果两个角的和等于90°(直角),就说这两个 角互为余角 ( 简称为两个角互余 ),即其中一个角是另一个角的余角.
2
1
如图:∠1与∠2互为余角,也可以说∠1是∠2的余角,或者∠2 是∠1 的余角. 余角是成对出现的,所以不能说某个角是余角.
(1)以1cm表示10海里,在图中画出B,C的位置; (2)求∠BAC的度数; (3)量出B,C的图上距离,并换算出实际距离. 解:(1)如图, (2)∠BAC=180°-20°-70°=90°. (3) 用 刻 度 尺 量 出 B , C 的 图 上 距 离 约 为 2.5cm,所以实际距离约为25海里.
D AO
C E
B
课堂小结
人教版数学七年级上册
互余
两角间的 1 2 90
数量关系 (1 90 2)
互补
1 2 180 (1 180 2)
对应图形
性质
同角或等角的 余角相等
同角或等角的 补角相等
课后作业
1.如图,下列说法正确的个数有( D ) ①射线OA表示北偏东30°; ②射线OB表示北偏西30°; ③射线OD表示南偏西45°,也叫西南方向; ④射线OC表示正南方向. A.1个 B.2个 C.3个 D.4个

6.3.3余角和补角 课件-人教版数学七年级上册

6.3.3余角和补角 课件-人教版数学七年级上册
∠WOA= ∠SOB,∠SOA= ∠EOB.
综合应用创新
解法提醒
1.以观测点为顶点,南北方向线和东西方向线各自形成
平角,可以解决互补问题.
2.以观测点为顶点,南北方向线和东西方向线相交形成
直角,可以解决互余问题.
3.利用角度计算或同角(或等角)的余角、补角相等,解决
等角问题.
综合应用创新
题型
4
利用角的和差关系及余角的性质探究两角之间的关系
2.等式的性质在角的推理中的应用,即若∠
1= ∠ 2,则∠1±∠3=∠2±∠3.
综合应用创新
方法点拨:
在图形的变换探究中,应善于抓住不变
的量(如本题的两个直角)和变化的量(如本题
图6.3-29 ①中∠ AOD=∠ AOB+∠ BOD,
图6.3-29 ②中∠ AOD=∠AOB- ∠BOD).结
合两个量才能探究出结论是否变化.
的符合要求.
综合应用创新
解:因为∠1+∠2 =180°,所以∠2+∠1+∠2 >180°,故
A 选项不是∠2 的余角. 因为∠2+∠1 - ∠2 = ∠1 ≠ 9 0°,


故B 选项不是∠2 的余角. 因为∠1+∠2 =180 °,所以 ∠1










+ ∠2 =9 0°. 所以∠2+ ∠1 = ∠1+ ∠2+ ∠2 >9 0°,
例 8 如图6.3-29 ①所示,将一副三角尺的直角顶点重合
在点О 处.
思路引导:紧扣要判定的角和
两个90 °角的关系进行分析.
综合应用创新
(1)(ⅰ)∠AOD和∠BOC 相等吗?请说明理由.
解:(ⅰ)∠AOD= ∠BOC. 理由如下:

人教版七年级数学上册第四章 几何图形初步 余角和补角

人教版七年级数学上册第四章 几何图形初步 余角和补角

1
2
3
= ∠2=180°–∠1
∠3=180°–∠1
结论:同角 (等角) 的补角相等.
类似地,可以得到: 同角 (等角) 的余角相等.
探究新知
素养考点 余角和补角的识别
例 如图,点A,O,B在同一直线上,射线 OD 和 D 射线 OE 分别平分∠AOC 和∠BOC,
图中哪些角互为余角?
解:因为点A,O,B在同一直线上, 所以∠AOC和∠BOC 互为补角.
(2)OE是∠BOC的平分线吗?请说明理由.
解:OE平分∠BOC,理由如下: 因为∠DOE=90°,所以∠AOD+∠BOE=90°,
D
所以∠COD+∠COE=90°,
所以∠AOD+∠BOE=∠COD+∠COE,
因为OD平分∠AOC,所以∠AOD=∠COD,
AO
所以∠COE=∠BOE,所以OE平分∠BOC.
x + ( 3x+30 ) = 90. 解得 x=15.
故 ∠B 的度数为15°.
探究新知
素养考点 2 余角、补角、角平分线相结合的题目
例2 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON
分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与
∠AOB的度数.
M C
B
N
DO
C E
B
巩固练习
如图,已知∠AOB=90°, ∠AOC= ∠BOD,则与∠AOC 互余的角有_______∠__B_O__C__和__∠__A. OD
AC
D
O
B
探究新知
E 西
C F
知识点 3 方位角
北 D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D F C
A E
B O
70︒
15︒


C
A B
人教版七年级数学上册余角和补角
基础检测 一﹨填空:
1.已知∠1=200
,∠2=300
,∠3=600
,∠4=1500
,则∠2是____的余角,_____是∠4的补角. 2.如果∠α=39°31°,∠α的余角∠β =_____,∠α的补角∠γ=_____,∠α-∠β=___. 3.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=______°, 依据是_______。

二﹨选择:
4.如果∠α=n °,而∠α既有余角,也有补角,那么n 的取值范围是( ) A.90°<n<180° B.0°<n<90° C.n=90° D.n=180°
5.如图,甲从A 点出发向北偏东70°方向走50m 至点B,乙从A 出发向南偏西15°方向走80m 至点C,则∠BAC 的度数是
( )
A.85°
B.160°
C.125°
D.105°
6.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处, 如果∠BAF=60°,则∠DAE 等于( ) A.15° B.30° C.45° D.60°
7.已知∠α,用两种不同的方法,画出∠α的余角∠β 和∠α的补角∠γ.
α α
8.一个角的余角比它的补角的 少40°,求这个角的度数.
9.在图中,确定A ﹨B ﹨C ﹨D 的位置: (1)A 在O 的正北方向,距O 点2cm; (2)B 在O 的北偏东60°方向,距O 点3cm; (3)C 为O 的东南方向,距O 点1.5cm; (4)D 为O 的南偏西40°方向,距O 点2cm.
10.直线AB ﹨CD 相交于O,∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线. 画出图形并求出∠BOD 和∠DOF 的度数.
11.如图所示,A ﹨B 两条海上巡逻艇同时发现海面上有一不明物体,A 艇发现该不明物体在它的东北方向,B 艇发现该不明物体在它的南偏东60°的方向上, 请你试着在图中确定这个不明物体的位置.

西
东北
A
B
拓展提高
12.小华从A 点出发向北偏东50°方向走了80米到达B 地,从B 地他又向西走了100米到达C 地.
(1)用1:2000的比例尺(即图上1cm 等于实际距离20米)画出示意图; (2)用刻度尺和量角器量出AC 的距离,以及C 点的方向角;
(3)回答C 点距A 点的实际距离是多少(精确到1米),C 点的方向角为多少.(精确到1°). 13.在飞机飞行时,飞行方向是用飞行路线与实际的南或北方向线之间的夹角大小来表示的.如图,用AN(南北线)与飞行线之间顺时针方向夹角作为飞行方向角. 从A 到B 的飞行方向角为35°,从A 到C 的飞行方向角为60°,从A 到D 的飞行方向角为145°,试求AB 与AC 之间夹角为多少度AD 与AC 之间夹角为多少度并画出从A 飞出且方向角为105°的飞行线.
D
C
A
B N(北)
4.3.3 余角和补角答案:
1.∠3,∠2
2.50°29′,129°31′,79°2′
3.40°,同角的余角相等
4. B
5.C
6.A 8.30° 10.∠BOD=120°,∠DO F=40°13.AB与AC之间夹角为25°, AD与AC之间夹角85°.。

相关文档
最新文档